License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 08:07:57 -06:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2009-02-20 14:32:10 -07:00
|
|
|
#ifndef _LINUX_MMIOTRACE_H
|
|
|
|
#define _LINUX_MMIOTRACE_H
|
2008-05-12 13:20:56 -06:00
|
|
|
|
2008-05-12 13:21:03 -06:00
|
|
|
#include <linux/types.h>
|
x86: mmiotrace full patch, preview 1
kmmio.c handles the list of mmio probes with callbacks, list of traced
pages, and attaching into the page fault handler and die notifier. It
arms, traps and disarms the given pages, this is the core of mmiotrace.
mmio-mod.c is a user interface, hooking into ioremap functions and
registering the mmio probes. It also decodes the required information
from trapped mmio accesses via the pre and post callbacks in each probe.
Currently, hooking into ioremap functions works by redefining the symbols
of the target (binary) kernel module, so that it calls the traced
versions of the functions.
The most notable changes done since the last discussion are:
- kmmio.c is a built-in, not part of the module
- direct call from fault.c to kmmio.c, removing all dynamic hooks
- prepare for unregistering probes at any time
- make kmmio re-initializable and accessible to more than one user
- rewrite kmmio locking to remove all spinlocks from page fault path
Can I abuse call_rcu() like I do in kmmio.c:unregister_kmmio_probe()
or is there a better way?
The function called via call_rcu() itself calls call_rcu() again,
will this work or break? There I need a second grace period for RCU
after the first grace period for page faults.
Mmiotrace itself (mmio-mod.c) is still a module, I am going to attack
that next. At some point I will start looking into how to make mmiotrace
a tracer component of ftrace (thanks for the hint, Ingo). Ftrace should
make the user space part of mmiotracing as simple as
'cat /debug/trace/mmio > dump.txt'.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 13:20:57 -06:00
|
|
|
#include <linux/list.h>
|
|
|
|
|
|
|
|
struct kmmio_probe;
|
|
|
|
struct pt_regs;
|
|
|
|
|
|
|
|
typedef void (*kmmio_pre_handler_t)(struct kmmio_probe *,
|
|
|
|
struct pt_regs *, unsigned long addr);
|
|
|
|
typedef void (*kmmio_post_handler_t)(struct kmmio_probe *,
|
|
|
|
unsigned long condition, struct pt_regs *);
|
|
|
|
|
|
|
|
struct kmmio_probe {
|
2009-02-20 14:32:10 -07:00
|
|
|
/* kmmio internal list: */
|
|
|
|
struct list_head list;
|
|
|
|
/* start location of the probe point: */
|
|
|
|
unsigned long addr;
|
|
|
|
/* length of the probe region: */
|
|
|
|
unsigned long len;
|
|
|
|
/* Called before addr is executed: */
|
|
|
|
kmmio_pre_handler_t pre_handler;
|
|
|
|
/* Called after addr is executed: */
|
|
|
|
kmmio_post_handler_t post_handler;
|
|
|
|
void *private;
|
x86: mmiotrace full patch, preview 1
kmmio.c handles the list of mmio probes with callbacks, list of traced
pages, and attaching into the page fault handler and die notifier. It
arms, traps and disarms the given pages, this is the core of mmiotrace.
mmio-mod.c is a user interface, hooking into ioremap functions and
registering the mmio probes. It also decodes the required information
from trapped mmio accesses via the pre and post callbacks in each probe.
Currently, hooking into ioremap functions works by redefining the symbols
of the target (binary) kernel module, so that it calls the traced
versions of the functions.
The most notable changes done since the last discussion are:
- kmmio.c is a built-in, not part of the module
- direct call from fault.c to kmmio.c, removing all dynamic hooks
- prepare for unregistering probes at any time
- make kmmio re-initializable and accessible to more than one user
- rewrite kmmio locking to remove all spinlocks from page fault path
Can I abuse call_rcu() like I do in kmmio.c:unregister_kmmio_probe()
or is there a better way?
The function called via call_rcu() itself calls call_rcu() again,
will this work or break? There I need a second grace period for RCU
after the first grace period for page faults.
Mmiotrace itself (mmio-mod.c) is still a module, I am going to attack
that next. At some point I will start looking into how to make mmiotrace
a tracer component of ftrace (thanks for the hint, Ingo). Ftrace should
make the user space part of mmiotracing as simple as
'cat /debug/trace/mmio > dump.txt'.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 13:20:57 -06:00
|
|
|
};
|
|
|
|
|
2009-02-20 14:32:10 -07:00
|
|
|
extern unsigned int kmmio_count;
|
|
|
|
|
|
|
|
extern int register_kmmio_probe(struct kmmio_probe *p);
|
|
|
|
extern void unregister_kmmio_probe(struct kmmio_probe *p);
|
2009-04-28 13:17:51 -06:00
|
|
|
extern int kmmio_init(void);
|
|
|
|
extern void kmmio_cleanup(void);
|
2009-02-20 14:32:10 -07:00
|
|
|
|
|
|
|
#ifdef CONFIG_MMIOTRACE
|
x86: mmiotrace full patch, preview 1
kmmio.c handles the list of mmio probes with callbacks, list of traced
pages, and attaching into the page fault handler and die notifier. It
arms, traps and disarms the given pages, this is the core of mmiotrace.
mmio-mod.c is a user interface, hooking into ioremap functions and
registering the mmio probes. It also decodes the required information
from trapped mmio accesses via the pre and post callbacks in each probe.
Currently, hooking into ioremap functions works by redefining the symbols
of the target (binary) kernel module, so that it calls the traced
versions of the functions.
The most notable changes done since the last discussion are:
- kmmio.c is a built-in, not part of the module
- direct call from fault.c to kmmio.c, removing all dynamic hooks
- prepare for unregistering probes at any time
- make kmmio re-initializable and accessible to more than one user
- rewrite kmmio locking to remove all spinlocks from page fault path
Can I abuse call_rcu() like I do in kmmio.c:unregister_kmmio_probe()
or is there a better way?
The function called via call_rcu() itself calls call_rcu() again,
will this work or break? There I need a second grace period for RCU
after the first grace period for page faults.
Mmiotrace itself (mmio-mod.c) is still a module, I am going to attack
that next. At some point I will start looking into how to make mmiotrace
a tracer component of ftrace (thanks for the hint, Ingo). Ftrace should
make the user space part of mmiotracing as simple as
'cat /debug/trace/mmio > dump.txt'.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 13:20:57 -06:00
|
|
|
/* kmmio is active by some kmmio_probes? */
|
|
|
|
static inline int is_kmmio_active(void)
|
|
|
|
{
|
|
|
|
return kmmio_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Called from page fault handler. */
|
|
|
|
extern int kmmio_handler(struct pt_regs *regs, unsigned long addr);
|
|
|
|
|
2008-09-16 13:00:34 -06:00
|
|
|
/* Called from ioremap.c */
|
2008-05-12 13:21:03 -06:00
|
|
|
extern void mmiotrace_ioremap(resource_size_t offset, unsigned long size,
|
|
|
|
void __iomem *addr);
|
2008-05-12 13:20:57 -06:00
|
|
|
extern void mmiotrace_iounmap(volatile void __iomem *addr);
|
2008-09-16 13:00:34 -06:00
|
|
|
|
|
|
|
/* For anyone to insert markers. Remember trailing newline. */
|
2011-10-31 18:11:33 -06:00
|
|
|
extern __printf(1, 2) int mmiotrace_printk(const char *fmt, ...);
|
2009-02-20 14:32:10 -07:00
|
|
|
#else /* !CONFIG_MMIOTRACE: */
|
|
|
|
static inline int is_kmmio_active(void)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int kmmio_handler(struct pt_regs *regs, unsigned long addr)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-05-12 13:21:03 -06:00
|
|
|
static inline void mmiotrace_ioremap(resource_size_t offset,
|
|
|
|
unsigned long size, void __iomem *addr)
|
2008-05-12 13:20:57 -06:00
|
|
|
{
|
|
|
|
}
|
2008-05-12 13:21:03 -06:00
|
|
|
|
2008-05-12 13:20:57 -06:00
|
|
|
static inline void mmiotrace_iounmap(volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
}
|
2008-09-16 13:00:34 -06:00
|
|
|
|
2011-10-31 18:11:33 -06:00
|
|
|
static inline __printf(1, 2) int mmiotrace_printk(const char *fmt, ...)
|
2008-09-16 13:00:34 -06:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_MMIOTRACE */
|
2008-05-12 13:20:57 -06:00
|
|
|
|
ftrace: mmiotrace, updates
here is a patch that makes mmiotrace work almost well within the tracing
framework. The patch applies on top of my previous patch. I have my own
output formatting in place now.
Summary of changes:
- fix the NULL dereference that was due to not calling tracing_reset()
- add print_line() callback into struct tracer
- implement print_line() for mmiotrace, producing up-to-spec text
- add my output header, but that is not really called in the right place
- rewrote the main structs in mmiotrace
- added two new trace entry types: TRACE_MMIO_RW and TRACE_MMIO_MAP
- made some functions in trace.c non-static
- check current==NULL in tracing_generic_entry_update()
- fix(?) comparison in trace_seq_printf()
Things seem to work fine except a few issues. Markers (text lines injected
into mmiotrace log) are missing, I did not feel hacking them in before we
have variable length entries. My output header is printed only for 'trace'
file, but not 'trace_pipe'. For some reason, despite my quick fix,
iter->trace is NULL in print_trace_line() when called from 'trace_pipe'
file, which means I don't get proper output formatting.
I only tried by loading nouveau.ko, which just detects the card, and that
is traced fine. I didn't try further. Map, two reads and unmap. Works
perfectly.
I am missing the information about overflows, I'd prefer to have a
counter for lost events. I didn't try, but I guess currently there is no
way of knowning when it overflows?
So, not too far from being fully operational, it seems :-)
And looking at the diffstat, there also is some 700-900 lines of user space
code that just became obsolete.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 13:20:57 -06:00
|
|
|
enum mm_io_opcode {
|
2009-02-20 14:32:10 -07:00
|
|
|
MMIO_READ = 0x1, /* struct mmiotrace_rw */
|
|
|
|
MMIO_WRITE = 0x2, /* struct mmiotrace_rw */
|
|
|
|
MMIO_PROBE = 0x3, /* struct mmiotrace_map */
|
|
|
|
MMIO_UNPROBE = 0x4, /* struct mmiotrace_map */
|
|
|
|
MMIO_UNKNOWN_OP = 0x5, /* struct mmiotrace_rw */
|
2008-05-12 13:20:56 -06:00
|
|
|
};
|
|
|
|
|
ftrace: mmiotrace, updates
here is a patch that makes mmiotrace work almost well within the tracing
framework. The patch applies on top of my previous patch. I have my own
output formatting in place now.
Summary of changes:
- fix the NULL dereference that was due to not calling tracing_reset()
- add print_line() callback into struct tracer
- implement print_line() for mmiotrace, producing up-to-spec text
- add my output header, but that is not really called in the right place
- rewrote the main structs in mmiotrace
- added two new trace entry types: TRACE_MMIO_RW and TRACE_MMIO_MAP
- made some functions in trace.c non-static
- check current==NULL in tracing_generic_entry_update()
- fix(?) comparison in trace_seq_printf()
Things seem to work fine except a few issues. Markers (text lines injected
into mmiotrace log) are missing, I did not feel hacking them in before we
have variable length entries. My output header is printed only for 'trace'
file, but not 'trace_pipe'. For some reason, despite my quick fix,
iter->trace is NULL in print_trace_line() when called from 'trace_pipe'
file, which means I don't get proper output formatting.
I only tried by loading nouveau.ko, which just detects the card, and that
is traced fine. I didn't try further. Map, two reads and unmap. Works
perfectly.
I am missing the information about overflows, I'd prefer to have a
counter for lost events. I didn't try, but I guess currently there is no
way of knowning when it overflows?
So, not too far from being fully operational, it seems :-)
And looking at the diffstat, there also is some 700-900 lines of user space
code that just became obsolete.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 13:20:57 -06:00
|
|
|
struct mmiotrace_rw {
|
2009-02-20 14:32:10 -07:00
|
|
|
resource_size_t phys; /* PCI address of register */
|
|
|
|
unsigned long value;
|
|
|
|
unsigned long pc; /* optional program counter */
|
|
|
|
int map_id;
|
|
|
|
unsigned char opcode; /* one of MMIO_{READ,WRITE,UNKNOWN_OP} */
|
|
|
|
unsigned char width; /* size of register access in bytes */
|
2008-05-12 13:20:56 -06:00
|
|
|
};
|
|
|
|
|
ftrace: mmiotrace, updates
here is a patch that makes mmiotrace work almost well within the tracing
framework. The patch applies on top of my previous patch. I have my own
output formatting in place now.
Summary of changes:
- fix the NULL dereference that was due to not calling tracing_reset()
- add print_line() callback into struct tracer
- implement print_line() for mmiotrace, producing up-to-spec text
- add my output header, but that is not really called in the right place
- rewrote the main structs in mmiotrace
- added two new trace entry types: TRACE_MMIO_RW and TRACE_MMIO_MAP
- made some functions in trace.c non-static
- check current==NULL in tracing_generic_entry_update()
- fix(?) comparison in trace_seq_printf()
Things seem to work fine except a few issues. Markers (text lines injected
into mmiotrace log) are missing, I did not feel hacking them in before we
have variable length entries. My output header is printed only for 'trace'
file, but not 'trace_pipe'. For some reason, despite my quick fix,
iter->trace is NULL in print_trace_line() when called from 'trace_pipe'
file, which means I don't get proper output formatting.
I only tried by loading nouveau.ko, which just detects the card, and that
is traced fine. I didn't try further. Map, two reads and unmap. Works
perfectly.
I am missing the information about overflows, I'd prefer to have a
counter for lost events. I didn't try, but I guess currently there is no
way of knowning when it overflows?
So, not too far from being fully operational, it seems :-)
And looking at the diffstat, there also is some 700-900 lines of user space
code that just became obsolete.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 13:20:57 -06:00
|
|
|
struct mmiotrace_map {
|
2009-02-20 14:32:10 -07:00
|
|
|
resource_size_t phys; /* base address in PCI space */
|
|
|
|
unsigned long virt; /* base virtual address */
|
|
|
|
unsigned long len; /* mapping size */
|
|
|
|
int map_id;
|
|
|
|
unsigned char opcode; /* MMIO_PROBE or MMIO_UNPROBE */
|
2008-05-12 13:20:56 -06:00
|
|
|
};
|
|
|
|
|
ftrace: mmiotrace, updates
here is a patch that makes mmiotrace work almost well within the tracing
framework. The patch applies on top of my previous patch. I have my own
output formatting in place now.
Summary of changes:
- fix the NULL dereference that was due to not calling tracing_reset()
- add print_line() callback into struct tracer
- implement print_line() for mmiotrace, producing up-to-spec text
- add my output header, but that is not really called in the right place
- rewrote the main structs in mmiotrace
- added two new trace entry types: TRACE_MMIO_RW and TRACE_MMIO_MAP
- made some functions in trace.c non-static
- check current==NULL in tracing_generic_entry_update()
- fix(?) comparison in trace_seq_printf()
Things seem to work fine except a few issues. Markers (text lines injected
into mmiotrace log) are missing, I did not feel hacking them in before we
have variable length entries. My output header is printed only for 'trace'
file, but not 'trace_pipe'. For some reason, despite my quick fix,
iter->trace is NULL in print_trace_line() when called from 'trace_pipe'
file, which means I don't get proper output formatting.
I only tried by loading nouveau.ko, which just detects the card, and that
is traced fine. I didn't try further. Map, two reads and unmap. Works
perfectly.
I am missing the information about overflows, I'd prefer to have a
counter for lost events. I didn't try, but I guess currently there is no
way of knowning when it overflows?
So, not too far from being fully operational, it seems :-)
And looking at the diffstat, there also is some 700-900 lines of user space
code that just became obsolete.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 13:20:57 -06:00
|
|
|
/* in kernel/trace/trace_mmiotrace.c */
|
|
|
|
extern void enable_mmiotrace(void);
|
|
|
|
extern void disable_mmiotrace(void);
|
|
|
|
extern void mmio_trace_rw(struct mmiotrace_rw *rw);
|
|
|
|
extern void mmio_trace_mapping(struct mmiotrace_map *map);
|
2015-07-17 17:23:42 -06:00
|
|
|
extern __printf(1, 0) int mmio_trace_printk(const char *fmt, va_list args);
|
2008-05-12 13:20:56 -06:00
|
|
|
|
2009-02-20 14:32:10 -07:00
|
|
|
#endif /* _LINUX_MMIOTRACE_H */
|