kernel-fxtec-pro1x/drivers/edac/edac_mc.c

2005 lines
51 KiB
C
Raw Normal View History

/*
* edac_mc kernel module
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Thayne Harbaugh
* Based on work by Dan Hollis <goemon at anime dot net> and others.
* http://www.anime.net/~goemon/linux-ecc/
*
* Modified by Dave Peterson and Doug Thompson
*
*/
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/sysdev.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/edac.h>
#include "edac_mc.h"
#define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
#ifdef CONFIG_EDAC_DEBUG
/* Values of 0 to 4 will generate output */
int edac_debug_level = 1;
EXPORT_SYMBOL_GPL(edac_debug_level);
#endif
/* EDAC Controls, setable by module parameter, and sysfs */
static int log_ue = 1;
static int log_ce = 1;
static int panic_on_ue;
static int poll_msec = 1000;
/* lock to memory controller's control array */
static DECLARE_MUTEX(mem_ctls_mutex);
static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
static struct task_struct *edac_thread;
#ifdef CONFIG_PCI
static int check_pci_parity = 0; /* default YES check PCI parity */
static int panic_on_pci_parity; /* default no panic on PCI Parity */
static atomic_t pci_parity_count = ATOMIC_INIT(0);
static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
static struct completion edac_pci_kobj_complete;
#endif /* CONFIG_PCI */
/* START sysfs data and methods */
static const char *mem_types[] = {
[MEM_EMPTY] = "Empty",
[MEM_RESERVED] = "Reserved",
[MEM_UNKNOWN] = "Unknown",
[MEM_FPM] = "FPM",
[MEM_EDO] = "EDO",
[MEM_BEDO] = "BEDO",
[MEM_SDR] = "Unbuffered-SDR",
[MEM_RDR] = "Registered-SDR",
[MEM_DDR] = "Unbuffered-DDR",
[MEM_RDDR] = "Registered-DDR",
[MEM_RMBS] = "RMBS"
};
static const char *dev_types[] = {
[DEV_UNKNOWN] = "Unknown",
[DEV_X1] = "x1",
[DEV_X2] = "x2",
[DEV_X4] = "x4",
[DEV_X8] = "x8",
[DEV_X16] = "x16",
[DEV_X32] = "x32",
[DEV_X64] = "x64"
};
static const char *edac_caps[] = {
[EDAC_UNKNOWN] = "Unknown",
[EDAC_NONE] = "None",
[EDAC_RESERVED] = "Reserved",
[EDAC_PARITY] = "PARITY",
[EDAC_EC] = "EC",
[EDAC_SECDED] = "SECDED",
[EDAC_S2ECD2ED] = "S2ECD2ED",
[EDAC_S4ECD4ED] = "S4ECD4ED",
[EDAC_S8ECD8ED] = "S8ECD8ED",
[EDAC_S16ECD16ED] = "S16ECD16ED"
};
/* sysfs object: /sys/devices/system/edac */
static struct sysdev_class edac_class = {
set_kset_name("edac"),
};
/* sysfs object:
* /sys/devices/system/edac/mc
*/
static struct kobject edac_memctrl_kobj;
/* We use these to wait for the reference counts on edac_memctrl_kobj and
* edac_pci_kobj to reach 0.
*/
static struct completion edac_memctrl_kobj_complete;
/*
* /sys/devices/system/edac/mc;
* data structures and methods
*/
static ssize_t memctrl_int_show(void *ptr, char *buffer)
{
int *value = (int*) ptr;
return sprintf(buffer, "%u\n", *value);
}
static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
{
int *value = (int*) ptr;
if (isdigit(*buffer))
*value = simple_strtoul(buffer, NULL, 0);
return count;
}
struct memctrl_dev_attribute {
struct attribute attr;
void *value;
ssize_t (*show)(void *,char *);
ssize_t (*store)(void *, const char *, size_t);
};
/* Set of show/store abstract level functions for memory control object */
static ssize_t memctrl_dev_show(struct kobject *kobj,
struct attribute *attr, char *buffer)
{
struct memctrl_dev_attribute *memctrl_dev;
memctrl_dev = (struct memctrl_dev_attribute*)attr;
if (memctrl_dev->show)
return memctrl_dev->show(memctrl_dev->value, buffer);
return -EIO;
}
static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
const char *buffer, size_t count)
{
struct memctrl_dev_attribute *memctrl_dev;
memctrl_dev = (struct memctrl_dev_attribute*)attr;
if (memctrl_dev->store)
return memctrl_dev->store(memctrl_dev->value, buffer, count);
return -EIO;
}
static struct sysfs_ops memctrlfs_ops = {
.show = memctrl_dev_show,
.store = memctrl_dev_store
};
#define MEMCTRL_ATTR(_name,_mode,_show,_store) \
struct memctrl_dev_attribute attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = &_name, \
.show = _show, \
.store = _store, \
};
#define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \
struct memctrl_dev_attribute attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = _data, \
.show = _show, \
.store = _store, \
};
/* csrow<id> control files */
MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
/* Base Attributes of the memory ECC object */
static struct memctrl_dev_attribute *memctrl_attr[] = {
&attr_panic_on_ue,
&attr_log_ue,
&attr_log_ce,
&attr_poll_msec,
NULL,
};
/* Main MC kobject release() function */
static void edac_memctrl_master_release(struct kobject *kobj)
{
debugf1("%s()\n", __func__);
complete(&edac_memctrl_kobj_complete);
}
static struct kobj_type ktype_memctrl = {
.release = edac_memctrl_master_release,
.sysfs_ops = &memctrlfs_ops,
.default_attrs = (struct attribute **) memctrl_attr,
};
/* Initialize the main sysfs entries for edac:
* /sys/devices/system/edac
*
* and children
*
* Return: 0 SUCCESS
* !0 FAILURE
*/
static int edac_sysfs_memctrl_setup(void)
{
int err = 0;
debugf1("%s()\n", __func__);
/* create the /sys/devices/system/edac directory */
err = sysdev_class_register(&edac_class);
if (err) {
debugf1("%s() error=%d\n", __func__, err);
return err;
}
/* Init the MC's kobject */
memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
edac_memctrl_kobj.parent = &edac_class.kset.kobj;
edac_memctrl_kobj.ktype = &ktype_memctrl;
/* generate sysfs "..../edac/mc" */
err = kobject_set_name(&edac_memctrl_kobj,"mc");
if (err)
goto fail;
/* FIXME: maybe new sysdev_create_subdir() */
err = kobject_register(&edac_memctrl_kobj);
if (err) {
debugf1("Failed to register '.../edac/mc'\n");
goto fail;
}
debugf1("Registered '.../edac/mc' kobject\n");
return 0;
fail:
sysdev_class_unregister(&edac_class);
return err;
}
/*
* MC teardown:
* the '..../edac/mc' kobject followed by '..../edac' itself
*/
static void edac_sysfs_memctrl_teardown(void)
{
debugf0("MC: " __FILE__ ": %s()\n", __func__);
/* Unregister the MC's kobject and wait for reference count to reach
* 0.
*/
init_completion(&edac_memctrl_kobj_complete);
kobject_unregister(&edac_memctrl_kobj);
wait_for_completion(&edac_memctrl_kobj_complete);
/* Unregister the 'edac' object */
sysdev_class_unregister(&edac_class);
}
#ifdef CONFIG_PCI
static ssize_t edac_pci_int_show(void *ptr, char *buffer)
{
int *value = ptr;
return sprintf(buffer,"%d\n",*value);
}
static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
{
int *value = ptr;
if (isdigit(*buffer))
*value = simple_strtoul(buffer,NULL,0);
return count;
}
struct edac_pci_dev_attribute {
struct attribute attr;
void *value;
ssize_t (*show)(void *,char *);
ssize_t (*store)(void *, const char *,size_t);
};
/* Set of show/store abstract level functions for PCI Parity object */
static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
struct edac_pci_dev_attribute *edac_pci_dev;
edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
if (edac_pci_dev->show)
return edac_pci_dev->show(edac_pci_dev->value, buffer);
return -EIO;
}
static ssize_t edac_pci_dev_store(struct kobject *kobj,
struct attribute *attr, const char *buffer, size_t count)
{
struct edac_pci_dev_attribute *edac_pci_dev;
edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
if (edac_pci_dev->show)
return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
return -EIO;
}
static struct sysfs_ops edac_pci_sysfs_ops = {
.show = edac_pci_dev_show,
.store = edac_pci_dev_store
};
#define EDAC_PCI_ATTR(_name,_mode,_show,_store) \
struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = &_name, \
.show = _show, \
.store = _store, \
};
#define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \
struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.value = _data, \
.show = _show, \
.store = _store, \
};
/* PCI Parity control files */
EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
edac_pci_int_store);
EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
edac_pci_int_store);
EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
/* Base Attributes of the memory ECC object */
static struct edac_pci_dev_attribute *edac_pci_attr[] = {
&edac_pci_attr_check_pci_parity,
&edac_pci_attr_panic_on_pci_parity,
&edac_pci_attr_pci_parity_count,
NULL,
};
/* No memory to release */
static void edac_pci_release(struct kobject *kobj)
{
debugf1("%s()\n", __func__);
complete(&edac_pci_kobj_complete);
}
static struct kobj_type ktype_edac_pci = {
.release = edac_pci_release,
.sysfs_ops = &edac_pci_sysfs_ops,
.default_attrs = (struct attribute **) edac_pci_attr,
};
/**
* edac_sysfs_pci_setup()
*
*/
static int edac_sysfs_pci_setup(void)
{
int err;
debugf1("%s()\n", __func__);
memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
edac_pci_kobj.parent = &edac_class.kset.kobj;
edac_pci_kobj.ktype = &ktype_edac_pci;
err = kobject_set_name(&edac_pci_kobj, "pci");
if (!err) {
/* Instanstiate the csrow object */
/* FIXME: maybe new sysdev_create_subdir() */
err = kobject_register(&edac_pci_kobj);
if (err)
debugf1("Failed to register '.../edac/pci'\n");
else
debugf1("Registered '.../edac/pci' kobject\n");
}
return err;
}
static void edac_sysfs_pci_teardown(void)
{
debugf0("%s()\n", __func__);
init_completion(&edac_pci_kobj_complete);
kobject_unregister(&edac_pci_kobj);
wait_for_completion(&edac_pci_kobj_complete);
}
static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
{
int where;
u16 status;
where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
pci_read_config_word(dev, where, &status);
/* If we get back 0xFFFF then we must suspect that the card has been
* pulled but the Linux PCI layer has not yet finished cleaning up.
* We don't want to report on such devices
*/
if (status == 0xFFFF) {
u32 sanity;
pci_read_config_dword(dev, 0, &sanity);
if (sanity == 0xFFFFFFFF)
return 0;
}
status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
PCI_STATUS_PARITY;
if (status)
/* reset only the bits we are interested in */
pci_write_config_word(dev, where, status);
return status;
}
typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
/* Clear any PCI parity errors logged by this device. */
static void edac_pci_dev_parity_clear(struct pci_dev *dev)
{
u8 header_type;
get_pci_parity_status(dev, 0);
/* read the device TYPE, looking for bridges */
pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
get_pci_parity_status(dev, 1);
}
/*
* PCI Parity polling
*
*/
static void edac_pci_dev_parity_test(struct pci_dev *dev)
{
u16 status;
u8 header_type;
/* read the STATUS register on this device
*/
status = get_pci_parity_status(dev, 0);
debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
/* check the status reg for errors */
if (status) {
if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
edac_printk(KERN_CRIT, EDAC_PCI,
"Signaled System Error on %s\n",
pci_name(dev));
if (status & (PCI_STATUS_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI,
"Master Data Parity Error on %s\n",
pci_name(dev));
atomic_inc(&pci_parity_count);
}
if (status & (PCI_STATUS_DETECTED_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI,
"Detected Parity Error on %s\n",
pci_name(dev));
atomic_inc(&pci_parity_count);
}
}
/* read the device TYPE, looking for bridges */
pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
/* On bridges, need to examine secondary status register */
status = get_pci_parity_status(dev, 1);
debugf2("PCI SEC_STATUS= 0x%04x %s\n",
status, dev->dev.bus_id );
/* check the secondary status reg for errors */
if (status) {
if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
"Signaled System Error on %s\n",
pci_name(dev));
if (status & (PCI_STATUS_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
"Master Data Parity Error on "
"%s\n", pci_name(dev));
atomic_inc(&pci_parity_count);
}
if (status & (PCI_STATUS_DETECTED_PARITY)) {
edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
"Detected Parity Error on %s\n",
pci_name(dev));
atomic_inc(&pci_parity_count);
}
}
}
}
/*
* pci_dev parity list iterator
* Scan the PCI device list for one iteration, looking for SERRORs
* Master Parity ERRORS or Parity ERRORs on primary or secondary devices
*/
static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
{
struct pci_dev *dev = NULL;
/* request for kernel access to the next PCI device, if any,
* and while we are looking at it have its reference count
* bumped until we are done with it
*/
while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
fn(dev);
}
}
static void do_pci_parity_check(void)
{
unsigned long flags;
int before_count;
debugf3("%s()\n", __func__);
if (!check_pci_parity)
return;
before_count = atomic_read(&pci_parity_count);
/* scan all PCI devices looking for a Parity Error on devices and
* bridges
*/
local_irq_save(flags);
edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
local_irq_restore(flags);
/* Only if operator has selected panic on PCI Error */
if (panic_on_pci_parity) {
/* If the count is different 'after' from 'before' */
if (before_count != atomic_read(&pci_parity_count))
panic("EDAC: PCI Parity Error");
}
}
static inline void clear_pci_parity_errors(void)
{
/* Clear any PCI bus parity errors that devices initially have logged
* in their registers.
*/
edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
}
#else /* CONFIG_PCI */
/* pre-process these away */
#define do_pci_parity_check()
#define clear_pci_parity_errors()
#define edac_sysfs_pci_teardown()
#define edac_sysfs_pci_setup() (0)
#endif /* CONFIG_PCI */
/* EDAC sysfs CSROW data structures and methods
*/
/* Set of more default csrow<id> attribute show/store functions */
static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%u\n", csrow->ue_count);
}
static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%u\n", csrow->ce_count);
}
static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
}
static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%s\n", mem_types[csrow->mtype]);
}
static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%s\n", dev_types[csrow->dtype]);
}
static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
{
return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
}
/* show/store functions for DIMM Label attributes */
static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
char *data, int channel)
{
return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
csrow->channels[channel].label);
}
static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
const char *data,
size_t count,
int channel)
{
ssize_t max_size = 0;
max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
strncpy(csrow->channels[channel].label, data, max_size);
csrow->channels[channel].label[max_size] = '\0';
return max_size;
}
/* show function for dynamic chX_ce_count attribute */
static ssize_t channel_ce_count_show(struct csrow_info *csrow,
char *data,
int channel)
{
return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
}
/* csrow specific attribute structure */
struct csrowdev_attribute {
struct attribute attr;
ssize_t (*show)(struct csrow_info *,char *,int);
ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
int private;
};
#define to_csrow(k) container_of(k, struct csrow_info, kobj)
#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
/* Set of show/store higher level functions for default csrow attributes */
static ssize_t csrowdev_show(struct kobject *kobj,
struct attribute *attr,
char *buffer)
{
struct csrow_info *csrow = to_csrow(kobj);
struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
if (csrowdev_attr->show)
return csrowdev_attr->show(csrow,
buffer,
csrowdev_attr->private);
return -EIO;
}
static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
const char *buffer, size_t count)
{
struct csrow_info *csrow = to_csrow(kobj);
struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
if (csrowdev_attr->store)
return csrowdev_attr->store(csrow,
buffer,
count,
csrowdev_attr->private);
return -EIO;
}
static struct sysfs_ops csrowfs_ops = {
.show = csrowdev_show,
.store = csrowdev_store
};
#define CSROWDEV_ATTR(_name,_mode,_show,_store,_private) \
struct csrowdev_attribute attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
.private = _private, \
};
/* default cwrow<id>/attribute files */
CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
/* default attributes of the CSROW<id> object */
static struct csrowdev_attribute *default_csrow_attr[] = {
&attr_dev_type,
&attr_mem_type,
&attr_edac_mode,
&attr_size_mb,
&attr_ue_count,
&attr_ce_count,
NULL,
};
/* possible dynamic channel DIMM Label attribute files */
CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
0 );
CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
1 );
CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
2 );
CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
3 );
CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
4 );
CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
channel_dimm_label_show,
channel_dimm_label_store,
5 );
/* Total possible dynamic DIMM Label attribute file table */
static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
&attr_ch0_dimm_label,
&attr_ch1_dimm_label,
&attr_ch2_dimm_label,
&attr_ch3_dimm_label,
&attr_ch4_dimm_label,
&attr_ch5_dimm_label
};
/* possible dynamic channel ce_count attribute files */
CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
0 );
CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
1 );
CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
2 );
CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
3 );
CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
4 );
CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
channel_ce_count_show,
NULL,
5 );
/* Total possible dynamic ce_count attribute file table */
static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
&attr_ch0_ce_count,
&attr_ch1_ce_count,
&attr_ch2_ce_count,
&attr_ch3_ce_count,
&attr_ch4_ce_count,
&attr_ch5_ce_count
};
#define EDAC_NR_CHANNELS 6
/* Create dynamic CHANNEL files, indexed by 'chan', under specifed CSROW */
static int edac_create_channel_files(struct kobject *kobj, int chan)
{
int err=-ENODEV;
if (chan >= EDAC_NR_CHANNELS)
return err;
/* create the DIMM label attribute file */
err = sysfs_create_file(kobj,
(struct attribute *) dynamic_csrow_dimm_attr[chan]);
if (!err) {
/* create the CE Count attribute file */
err = sysfs_create_file(kobj,
(struct attribute *) dynamic_csrow_ce_count_attr[chan]);
} else {
debugf1("%s() dimm labels and ce_count files created", __func__);
}
return err;
}
/* No memory to release for this kobj */
static void edac_csrow_instance_release(struct kobject *kobj)
{
struct csrow_info *cs;
cs = container_of(kobj, struct csrow_info, kobj);
complete(&cs->kobj_complete);
}
/* the kobj_type instance for a CSROW */
static struct kobj_type ktype_csrow = {
.release = edac_csrow_instance_release,
.sysfs_ops = &csrowfs_ops,
.default_attrs = (struct attribute **) default_csrow_attr,
};
/* Create a CSROW object under specifed edac_mc_device */
static int edac_create_csrow_object(
struct kobject *edac_mci_kobj,
struct csrow_info *csrow,
int index)
{
int err = 0;
int chan;
memset(&csrow->kobj, 0, sizeof(csrow->kobj));
/* generate ..../edac/mc/mc<id>/csrow<index> */
csrow->kobj.parent = edac_mci_kobj;
csrow->kobj.ktype = &ktype_csrow;
/* name this instance of csrow<id> */
err = kobject_set_name(&csrow->kobj,"csrow%d",index);
if (err)
goto error_exit;
/* Instanstiate the csrow object */
err = kobject_register(&csrow->kobj);
if (!err) {
/* Create the dyanmic attribute files on this csrow,
* namely, the DIMM labels and the channel ce_count
*/
for (chan = 0; chan < csrow->nr_channels; chan++) {
err = edac_create_channel_files(&csrow->kobj,chan);
if (err)
break;
}
}
error_exit:
return err;
}
/* default sysfs methods and data structures for the main MCI kobject */
static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
int row, chan;
mci->ue_noinfo_count = 0;
mci->ce_noinfo_count = 0;
mci->ue_count = 0;
mci->ce_count = 0;
for (row = 0; row < mci->nr_csrows; row++) {
struct csrow_info *ri = &mci->csrows[row];
ri->ue_count = 0;
ri->ce_count = 0;
for (chan = 0; chan < ri->nr_channels; chan++)
ri->channels[chan].ce_count = 0;
}
mci->start_time = jiffies;
return count;
}
[PATCH] EDAC: Add memory scrubbing controls API to core This is an attempt of providing an interface for memory scrubbing control in EDAC. This patch modifies the EDAC Core to provide the Interface for memory controller modules to implment. The following things are still outstanding: - K8 is the first implemenation, The patch provide a method of configuring the K8 hardware memory scrubber via the 'mcX' sysfs directory. There should be some fallback to a generic scrubber implemented in software if the hardware does not support scrubbing. Or .. the scrubbing sysfs entry should not be visible at all. - Only works with SDRAM, not cache, The K8 can scrub cache and l2cache also - but I think this is not so useful as the cache is busy all the time (one hopes). One would also expect that cache scrubbing requires hardware support. - Error Handling, I would like that errors are returned to the user in "terms of file system". - Presentation, I chose Bandwidth in Bytes/Second as a representation of the scrubbing rate for the following reasons: I like that the sysfs entries are sort-of textual, related to something that makes sense instead of magical values that must be looked up. "My People" wants "% main memory scrubbed per hour" others prefer "% memory bandwidth used" as representation, "bandwith used" makes it easy to calculate both versions in one-liner scripts. If one later wants to scrub cache, the scaling becomes wierd for K8 changing from "blocks of 64 byte memory" to "blocks of 64 cache lines" to "blocks of 64 bit". Using "bandwidth used" makes sense in all three cases, (I.M.O. anyway ;-). - Discovery, There is no way to discover the possible settings and what they do without reading the code and the documentation. *I* do not know how to make that work in a practical way. - Bugs(??), other tools can set invalid values in the memory scrub control register, those will read back as '-1', requiring the user to reset the scrub rate. This is how *I* think it should be. - Afflicting other areas of code, I made changes to edac_mc.c and edac_mc.h which will show up globally - this is not nice, it would be better that the memory scrubbing fuctionality and interface could be entirely contained within the memory controller it applies to. Frithiof Jensen edac_mc.c and its .h file is a CORE helper module for EDAC driver modules. This provides the abstraction for device specific drivers. It is fine to modify this CORE to provide help for new features of the the drivers doug thompson Signed-off-by: Frithiof Jensen <frithiof.jensen@ericson.com> Signed-off-by: doug thompson <norsk5@xmission.com> Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 01:53:07 -07:00
/* memory scrubbing */
static ssize_t mci_sdram_scrub_rate_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
u32 bandwidth = -1;
if (mci->set_sdram_scrub_rate) {
memctrl_int_store(&bandwidth, data, count);
if (!(*mci->set_sdram_scrub_rate)(mci, &bandwidth)) {
edac_printk(KERN_DEBUG, EDAC_MC,
"Scrub rate set successfully, applied: %d\n",
bandwidth);
} else {
/* FIXME: error codes maybe? */
edac_printk(KERN_DEBUG, EDAC_MC,
"Scrub rate set FAILED, could not apply: %d\n",
bandwidth);
}
} else {
/* FIXME: produce "not implemented" ERROR for user-side. */
edac_printk(KERN_WARNING, EDAC_MC,
"Memory scrubbing 'set'control is not implemented!\n");
}
return count;
}
static ssize_t mci_sdram_scrub_rate_show(struct mem_ctl_info *mci, char *data)
{
u32 bandwidth = -1;
if (mci->get_sdram_scrub_rate) {
if (!(*mci->get_sdram_scrub_rate)(mci, &bandwidth)) {
edac_printk(KERN_DEBUG, EDAC_MC,
"Scrub rate successfully, fetched: %d\n",
bandwidth);
} else {
/* FIXME: error codes maybe? */
edac_printk(KERN_DEBUG, EDAC_MC,
"Scrub rate fetch FAILED, got: %d\n",
bandwidth);
}
} else {
/* FIXME: produce "not implemented" ERROR for user-side. */
edac_printk(KERN_WARNING, EDAC_MC,
"Memory scrubbing 'get' control is not implemented!\n");
}
return sprintf(data, "%d\n", bandwidth);
}
/* default attribute files for the MCI object */
static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ue_count);
}
static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ce_count);
}
static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ce_noinfo_count);
}
static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%d\n", mci->ue_noinfo_count);
}
static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
}
static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
{
return sprintf(data,"%s\n", mci->ctl_name);
}
static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
{
int total_pages, csrow_idx;
for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
csrow_idx++) {
struct csrow_info *csrow = &mci->csrows[csrow_idx];
if (!csrow->nr_pages)
continue;
total_pages += csrow->nr_pages;
}
return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
}
struct mcidev_attribute {
struct attribute attr;
ssize_t (*show)(struct mem_ctl_info *,char *);
ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
};
#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
#define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
/* MCI show/store functions for top most object */
static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
if (mcidev_attr->show)
return mcidev_attr->show(mem_ctl_info, buffer);
return -EIO;
}
static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
const char *buffer, size_t count)
{
struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
if (mcidev_attr->store)
return mcidev_attr->store(mem_ctl_info, buffer, count);
return -EIO;
}
static struct sysfs_ops mci_ops = {
.show = mcidev_show,
.store = mcidev_store
};
#define MCIDEV_ATTR(_name,_mode,_show,_store) \
struct mcidev_attribute mci_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
};
/* default Control file */
MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
/* default Attribute files */
MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
[PATCH] EDAC: Add memory scrubbing controls API to core This is an attempt of providing an interface for memory scrubbing control in EDAC. This patch modifies the EDAC Core to provide the Interface for memory controller modules to implment. The following things are still outstanding: - K8 is the first implemenation, The patch provide a method of configuring the K8 hardware memory scrubber via the 'mcX' sysfs directory. There should be some fallback to a generic scrubber implemented in software if the hardware does not support scrubbing. Or .. the scrubbing sysfs entry should not be visible at all. - Only works with SDRAM, not cache, The K8 can scrub cache and l2cache also - but I think this is not so useful as the cache is busy all the time (one hopes). One would also expect that cache scrubbing requires hardware support. - Error Handling, I would like that errors are returned to the user in "terms of file system". - Presentation, I chose Bandwidth in Bytes/Second as a representation of the scrubbing rate for the following reasons: I like that the sysfs entries are sort-of textual, related to something that makes sense instead of magical values that must be looked up. "My People" wants "% main memory scrubbed per hour" others prefer "% memory bandwidth used" as representation, "bandwith used" makes it easy to calculate both versions in one-liner scripts. If one later wants to scrub cache, the scaling becomes wierd for K8 changing from "blocks of 64 byte memory" to "blocks of 64 cache lines" to "blocks of 64 bit". Using "bandwidth used" makes sense in all three cases, (I.M.O. anyway ;-). - Discovery, There is no way to discover the possible settings and what they do without reading the code and the documentation. *I* do not know how to make that work in a practical way. - Bugs(??), other tools can set invalid values in the memory scrub control register, those will read back as '-1', requiring the user to reset the scrub rate. This is how *I* think it should be. - Afflicting other areas of code, I made changes to edac_mc.c and edac_mc.h which will show up globally - this is not nice, it would be better that the memory scrubbing fuctionality and interface could be entirely contained within the memory controller it applies to. Frithiof Jensen edac_mc.c and its .h file is a CORE helper module for EDAC driver modules. This provides the abstraction for device specific drivers. It is fine to modify this CORE to provide help for new features of the the drivers doug thompson Signed-off-by: Frithiof Jensen <frithiof.jensen@ericson.com> Signed-off-by: doug thompson <norsk5@xmission.com> Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 01:53:07 -07:00
/* memory scrubber attribute file */
MCIDEV_ATTR(sdram_scrub_rate,S_IRUGO|S_IWUSR,mci_sdram_scrub_rate_show,mci_sdram_scrub_rate_store);
static struct mcidev_attribute *mci_attr[] = {
&mci_attr_reset_counters,
&mci_attr_mc_name,
&mci_attr_size_mb,
&mci_attr_seconds_since_reset,
&mci_attr_ue_noinfo_count,
&mci_attr_ce_noinfo_count,
&mci_attr_ue_count,
&mci_attr_ce_count,
[PATCH] EDAC: Add memory scrubbing controls API to core This is an attempt of providing an interface for memory scrubbing control in EDAC. This patch modifies the EDAC Core to provide the Interface for memory controller modules to implment. The following things are still outstanding: - K8 is the first implemenation, The patch provide a method of configuring the K8 hardware memory scrubber via the 'mcX' sysfs directory. There should be some fallback to a generic scrubber implemented in software if the hardware does not support scrubbing. Or .. the scrubbing sysfs entry should not be visible at all. - Only works with SDRAM, not cache, The K8 can scrub cache and l2cache also - but I think this is not so useful as the cache is busy all the time (one hopes). One would also expect that cache scrubbing requires hardware support. - Error Handling, I would like that errors are returned to the user in "terms of file system". - Presentation, I chose Bandwidth in Bytes/Second as a representation of the scrubbing rate for the following reasons: I like that the sysfs entries are sort-of textual, related to something that makes sense instead of magical values that must be looked up. "My People" wants "% main memory scrubbed per hour" others prefer "% memory bandwidth used" as representation, "bandwith used" makes it easy to calculate both versions in one-liner scripts. If one later wants to scrub cache, the scaling becomes wierd for K8 changing from "blocks of 64 byte memory" to "blocks of 64 cache lines" to "blocks of 64 bit". Using "bandwidth used" makes sense in all three cases, (I.M.O. anyway ;-). - Discovery, There is no way to discover the possible settings and what they do without reading the code and the documentation. *I* do not know how to make that work in a practical way. - Bugs(??), other tools can set invalid values in the memory scrub control register, those will read back as '-1', requiring the user to reset the scrub rate. This is how *I* think it should be. - Afflicting other areas of code, I made changes to edac_mc.c and edac_mc.h which will show up globally - this is not nice, it would be better that the memory scrubbing fuctionality and interface could be entirely contained within the memory controller it applies to. Frithiof Jensen edac_mc.c and its .h file is a CORE helper module for EDAC driver modules. This provides the abstraction for device specific drivers. It is fine to modify this CORE to provide help for new features of the the drivers doug thompson Signed-off-by: Frithiof Jensen <frithiof.jensen@ericson.com> Signed-off-by: doug thompson <norsk5@xmission.com> Acked-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 01:53:07 -07:00
&mci_attr_sdram_scrub_rate,
NULL
};
/*
* Release of a MC controlling instance
*/
static void edac_mci_instance_release(struct kobject *kobj)
{
struct mem_ctl_info *mci;
mci = to_mci(kobj);
debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
complete(&mci->kobj_complete);
}
static struct kobj_type ktype_mci = {
.release = edac_mci_instance_release,
.sysfs_ops = &mci_ops,
.default_attrs = (struct attribute **) mci_attr,
};
#define EDAC_DEVICE_SYMLINK "device"
/*
* Create a new Memory Controller kobject instance,
* mc<id> under the 'mc' directory
*
* Return:
* 0 Success
* !0 Failure
*/
static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
{
int i;
int err;
struct csrow_info *csrow;
struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
/* set the name of the mc<id> object */
err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
if (err)
return err;
/* link to our parent the '..../edac/mc' object */
edac_mci_kobj->parent = &edac_memctrl_kobj;
edac_mci_kobj->ktype = &ktype_mci;
/* register the mc<id> kobject */
err = kobject_register(edac_mci_kobj);
if (err)
return err;
/* create a symlink for the device */
err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
EDAC_DEVICE_SYMLINK);
if (err)
goto fail0;
/* Make directories for each CSROW object
* under the mc<id> kobject
*/
for (i = 0; i < mci->nr_csrows; i++) {
csrow = &mci->csrows[i];
/* Only expose populated CSROWs */
if (csrow->nr_pages > 0) {
err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
if (err)
goto fail1;
}
}
return 0;
/* CSROW error: backout what has already been registered, */
fail1:
for ( i--; i >= 0; i--) {
if (csrow->nr_pages > 0) {
init_completion(&csrow->kobj_complete);
kobject_unregister(&mci->csrows[i].kobj);
wait_for_completion(&csrow->kobj_complete);
}
}
fail0:
init_completion(&mci->kobj_complete);
kobject_unregister(edac_mci_kobj);
wait_for_completion(&mci->kobj_complete);
return err;
}
/*
* remove a Memory Controller instance
*/
static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
{
int i;
debugf0("%s()\n", __func__);
/* remove all csrow kobjects */
for (i = 0; i < mci->nr_csrows; i++) {
if (mci->csrows[i].nr_pages > 0) {
init_completion(&mci->csrows[i].kobj_complete);
kobject_unregister(&mci->csrows[i].kobj);
wait_for_completion(&mci->csrows[i].kobj_complete);
}
}
sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
init_completion(&mci->kobj_complete);
kobject_unregister(&mci->edac_mci_kobj);
wait_for_completion(&mci->kobj_complete);
}
/* END OF sysfs data and methods */
#ifdef CONFIG_EDAC_DEBUG
void edac_mc_dump_channel(struct channel_info *chan)
{
debugf4("\tchannel = %p\n", chan);
debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
debugf4("\tchannel->label = '%s'\n", chan->label);
debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
}
EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
void edac_mc_dump_csrow(struct csrow_info *csrow)
{
debugf4("\tcsrow = %p\n", csrow);
debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
debugf4("\tcsrow->first_page = 0x%lx\n",
csrow->first_page);
debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
debugf4("\tcsrow->nr_channels = %d\n",
csrow->nr_channels);
debugf4("\tcsrow->channels = %p\n", csrow->channels);
debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
}
EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
void edac_mc_dump_mci(struct mem_ctl_info *mci)
{
debugf3("\tmci = %p\n", mci);
debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
debugf4("\tmci->edac_check = %p\n", mci->edac_check);
debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
mci->nr_csrows, mci->csrows);
debugf3("\tdev = %p\n", mci->dev);
debugf3("\tmod_name:ctl_name = %s:%s\n",
mci->mod_name, mci->ctl_name);
debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
}
EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
#endif /* CONFIG_EDAC_DEBUG */
/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
* Adjust 'ptr' so that its alignment is at least as stringent as what the
* compiler would provide for X and return the aligned result.
*
* If 'size' is a constant, the compiler will optimize this whole function
* down to either a no-op or the addition of a constant to the value of 'ptr'.
*/
static inline char * align_ptr(void *ptr, unsigned size)
{
unsigned align, r;
/* Here we assume that the alignment of a "long long" is the most
* stringent alignment that the compiler will ever provide by default.
* As far as I know, this is a reasonable assumption.
*/
if (size > sizeof(long))
align = sizeof(long long);
else if (size > sizeof(int))
align = sizeof(long);
else if (size > sizeof(short))
align = sizeof(int);
else if (size > sizeof(char))
align = sizeof(short);
else
return (char *) ptr;
r = size % align;
if (r == 0)
return (char *) ptr;
return (char *) (((unsigned long) ptr) + align - r);
}
/**
* edac_mc_alloc: Allocate a struct mem_ctl_info structure
* @size_pvt: size of private storage needed
* @nr_csrows: Number of CWROWS needed for this MC
* @nr_chans: Number of channels for the MC
*
* Everything is kmalloc'ed as one big chunk - more efficient.
* Only can be used if all structures have the same lifetime - otherwise
* you have to allocate and initialize your own structures.
*
* Use edac_mc_free() to free mc structures allocated by this function.
*
* Returns:
* NULL allocation failed
* struct mem_ctl_info pointer
*/
struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
unsigned nr_chans)
{
struct mem_ctl_info *mci;
struct csrow_info *csi, *csrow;
struct channel_info *chi, *chp, *chan;
void *pvt;
unsigned size;
int row, chn;
/* Figure out the offsets of the various items from the start of an mc
* structure. We want the alignment of each item to be at least as
* stringent as what the compiler would provide if we could simply
* hardcode everything into a single struct.
*/
mci = (struct mem_ctl_info *) 0;
csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
chi = (struct channel_info *)
align_ptr(&csi[nr_csrows], sizeof(*chi));
pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
size = ((unsigned long) pvt) + sz_pvt;
if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
return NULL;
/* Adjust pointers so they point within the memory we just allocated
* rather than an imaginary chunk of memory located at address 0.
*/
csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
memset(mci, 0, size); /* clear all fields */
mci->csrows = csi;
mci->pvt_info = pvt;
mci->nr_csrows = nr_csrows;
for (row = 0; row < nr_csrows; row++) {
csrow = &csi[row];
csrow->csrow_idx = row;
csrow->mci = mci;
csrow->nr_channels = nr_chans;
chp = &chi[row * nr_chans];
csrow->channels = chp;
for (chn = 0; chn < nr_chans; chn++) {
chan = &chp[chn];
chan->chan_idx = chn;
chan->csrow = csrow;
}
}
return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_alloc);
/**
* edac_mc_free: Free a previously allocated 'mci' structure
* @mci: pointer to a struct mem_ctl_info structure
*/
void edac_mc_free(struct mem_ctl_info *mci)
{
kfree(mci);
}
EXPORT_SYMBOL_GPL(edac_mc_free);
static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
{
struct mem_ctl_info *mci;
struct list_head *item;
debugf3("%s()\n", __func__);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->dev == dev)
return mci;
}
return NULL;
}
/* Return 0 on success, 1 on failure.
* Before calling this function, caller must
* assign a unique value to mci->mc_idx.
*/
static int add_mc_to_global_list (struct mem_ctl_info *mci)
{
struct list_head *item, *insert_before;
struct mem_ctl_info *p;
insert_before = &mc_devices;
if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
goto fail0;
list_for_each(item, &mc_devices) {
p = list_entry(item, struct mem_ctl_info, link);
if (p->mc_idx >= mci->mc_idx) {
if (unlikely(p->mc_idx == mci->mc_idx))
goto fail1;
insert_before = item;
break;
}
}
list_add_tail_rcu(&mci->link, insert_before);
return 0;
fail0:
edac_printk(KERN_WARNING, EDAC_MC,
"%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
return 1;
fail1:
edac_printk(KERN_WARNING, EDAC_MC,
"bug in low-level driver: attempt to assign\n"
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
return 1;
}
static void complete_mc_list_del(struct rcu_head *head)
{
struct mem_ctl_info *mci;
mci = container_of(head, struct mem_ctl_info, rcu);
INIT_LIST_HEAD(&mci->link);
complete(&mci->complete);
}
static void del_mc_from_global_list(struct mem_ctl_info *mci)
{
list_del_rcu(&mci->link);
init_completion(&mci->complete);
call_rcu(&mci->rcu, complete_mc_list_del);
wait_for_completion(&mci->complete);
}
/**
* edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
* create sysfs entries associated with mci structure
* @mci: pointer to the mci structure to be added to the list
* @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
*
* Return:
* 0 Success
* !0 Failure
*/
/* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
{
debugf0("%s()\n", __func__);
mci->mc_idx = mc_idx;
#ifdef CONFIG_EDAC_DEBUG
if (edac_debug_level >= 3)
edac_mc_dump_mci(mci);
if (edac_debug_level >= 4) {
int i;
for (i = 0; i < mci->nr_csrows; i++) {
int j;
edac_mc_dump_csrow(&mci->csrows[i]);
for (j = 0; j < mci->csrows[i].nr_channels; j++)
edac_mc_dump_channel(
&mci->csrows[i].channels[j]);
}
}
#endif
down(&mem_ctls_mutex);
if (add_mc_to_global_list(mci))
goto fail0;
/* set load time so that error rate can be tracked */
mci->start_time = jiffies;
if (edac_create_sysfs_mci_device(mci)) {
edac_mc_printk(mci, KERN_WARNING,
"failed to create sysfs device\n");
goto fail1;
}
/* Report action taken */
edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
mci->mod_name, mci->ctl_name, dev_name(mci->dev));
up(&mem_ctls_mutex);
return 0;
fail1:
del_mc_from_global_list(mci);
fail0:
up(&mem_ctls_mutex);
return 1;
}
EXPORT_SYMBOL_GPL(edac_mc_add_mc);
/**
* edac_mc_del_mc: Remove sysfs entries for specified mci structure and
* remove mci structure from global list
* @pdev: Pointer to 'struct device' representing mci structure to remove.
*
* Return pointer to removed mci structure, or NULL if device not found.
*/
struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
{
struct mem_ctl_info *mci;
debugf0("MC: %s()\n", __func__);
down(&mem_ctls_mutex);
if ((mci = find_mci_by_dev(dev)) == NULL) {
up(&mem_ctls_mutex);
return NULL;
}
edac_remove_sysfs_mci_device(mci);
del_mc_from_global_list(mci);
up(&mem_ctls_mutex);
edac_printk(KERN_INFO, EDAC_MC,
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
mci->mod_name, mci->ctl_name, dev_name(mci->dev));
return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
{
struct page *pg;
void *virt_addr;
unsigned long flags = 0;
debugf3("%s()\n", __func__);
/* ECC error page was not in our memory. Ignore it. */
if(!pfn_valid(page))
return;
/* Find the actual page structure then map it and fix */
pg = pfn_to_page(page);
if (PageHighMem(pg))
local_irq_save(flags);
virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
/* Perform architecture specific atomic scrub operation */
atomic_scrub(virt_addr + offset, size);
/* Unmap and complete */
kunmap_atomic(virt_addr, KM_BOUNCE_READ);
if (PageHighMem(pg))
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
/* FIXME - should return -1 */
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
{
struct csrow_info *csrows = mci->csrows;
int row, i;
debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
row = -1;
for (i = 0; i < mci->nr_csrows; i++) {
struct csrow_info *csrow = &csrows[i];
if (csrow->nr_pages == 0)
continue;
debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
"mask(0x%lx)\n", mci->mc_idx, __func__,
csrow->first_page, page, csrow->last_page,
csrow->page_mask);
if ((page >= csrow->first_page) &&
(page <= csrow->last_page) &&
((page & csrow->page_mask) ==
(csrow->first_page & csrow->page_mask))) {
row = i;
break;
}
}
if (row == -1)
edac_mc_printk(mci, KERN_ERR,
"could not look up page error address %lx\n",
(unsigned long) page);
return row;
}
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
/* FIXME - setable log (warning/emerg) levels */
/* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
void edac_mc_handle_ce(struct mem_ctl_info *mci,
unsigned long page_frame_number, unsigned long offset_in_page,
unsigned long syndrome, int row, int channel, const char *msg)
{
unsigned long remapped_page;
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
/* FIXME - maybe make panic on INTERNAL ERROR an option */
if (row >= mci->nr_csrows || row < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range "
"(%d >= %d)\n", row, mci->nr_csrows);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (channel >= mci->csrows[row].nr_channels || channel < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel out of range "
"(%d >= %d)\n", channel,
mci->csrows[row].nr_channels);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (log_ce)
/* FIXME - put in DIMM location */
edac_mc_printk(mci, KERN_WARNING,
"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
"0x%lx, row %d, channel %d, label \"%s\": %s\n",
page_frame_number, offset_in_page,
mci->csrows[row].grain, syndrome, row, channel,
mci->csrows[row].channels[channel].label, msg);
mci->ce_count++;
mci->csrows[row].ce_count++;
mci->csrows[row].channels[channel].ce_count++;
if (mci->scrub_mode & SCRUB_SW_SRC) {
/*
* Some MC's can remap memory so that it is still available
* at a different address when PCI devices map into memory.
* MC's that can't do this lose the memory where PCI devices
* are mapped. This mapping is MC dependant and so we call
* back into the MC driver for it to map the MC page to
* a physical (CPU) page which can then be mapped to a virtual
* page - which can then be scrubbed.
*/
remapped_page = mci->ctl_page_to_phys ?
mci->ctl_page_to_phys(mci, page_frame_number) :
page_frame_number;
edac_mc_scrub_block(remapped_page, offset_in_page,
mci->csrows[row].grain);
}
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
{
if (log_ce)
edac_mc_printk(mci, KERN_WARNING,
"CE - no information available: %s\n", msg);
mci->ce_noinfo_count++;
mci->ce_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
void edac_mc_handle_ue(struct mem_ctl_info *mci,
unsigned long page_frame_number, unsigned long offset_in_page,
int row, const char *msg)
{
int len = EDAC_MC_LABEL_LEN * 4;
char labels[len + 1];
char *pos = labels;
int chan;
int chars;
debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
/* FIXME - maybe make panic on INTERNAL ERROR an option */
if (row >= mci->nr_csrows || row < 0) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range "
"(%d >= %d)\n", row, mci->nr_csrows);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
chars = snprintf(pos, len + 1, "%s",
mci->csrows[row].channels[0].label);
len -= chars;
pos += chars;
for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
chan++) {
chars = snprintf(pos, len + 1, ":%s",
mci->csrows[row].channels[chan].label);
len -= chars;
pos += chars;
}
if (log_ue)
edac_mc_printk(mci, KERN_EMERG,
"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
"labels \"%s\": %s\n", page_frame_number,
offset_in_page, mci->csrows[row].grain, row, labels,
msg);
if (panic_on_ue)
panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
"row %d, labels \"%s\": %s\n", mci->mc_idx,
page_frame_number, offset_in_page,
mci->csrows[row].grain, row, labels, msg);
mci->ue_count++;
mci->csrows[row].ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
{
if (panic_on_ue)
panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
if (log_ue)
edac_mc_printk(mci, KERN_WARNING,
"UE - no information available: %s\n", msg);
mci->ue_noinfo_count++;
mci->ue_count++;
}
EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
/*************************************************************
* On Fully Buffered DIMM modules, this help function is
* called to process UE events
*/
void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
unsigned int csrow,
unsigned int channela,
unsigned int channelb,
char *msg)
{
int len = EDAC_MC_LABEL_LEN * 4;
char labels[len + 1];
char *pos = labels;
int chars;
if (csrow >= mci->nr_csrows) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range (%d >= %d)\n",
csrow, mci->nr_csrows);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
if (channela >= mci->csrows[csrow].nr_channels) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel-a out of range "
"(%d >= %d)\n",
channela, mci->csrows[csrow].nr_channels);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
if (channelb >= mci->csrows[csrow].nr_channels) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel-b out of range "
"(%d >= %d)\n",
channelb, mci->csrows[csrow].nr_channels);
edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
return;
}
mci->ue_count++;
mci->csrows[csrow].ue_count++;
/* Generate the DIMM labels from the specified channels */
chars = snprintf(pos, len + 1, "%s",
mci->csrows[csrow].channels[channela].label);
len -= chars; pos += chars;
chars = snprintf(pos, len + 1, "-%s",
mci->csrows[csrow].channels[channelb].label);
if (log_ue)
edac_mc_printk(mci, KERN_EMERG,
"UE row %d, channel-a= %d channel-b= %d "
"labels \"%s\": %s\n", csrow, channela, channelb,
labels, msg);
if (panic_on_ue)
panic("UE row %d, channel-a= %d channel-b= %d "
"labels \"%s\": %s\n", csrow, channela,
channelb, labels, msg);
}
EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
/*************************************************************
* On Fully Buffered DIMM modules, this help function is
* called to process CE events
*/
void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
unsigned int csrow,
unsigned int channel,
char *msg)
{
/* Ensure boundary values */
if (csrow >= mci->nr_csrows) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: row out of range (%d >= %d)\n",
csrow, mci->nr_csrows);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (channel >= mci->csrows[csrow].nr_channels) {
/* something is wrong */
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: channel out of range (%d >= %d)\n",
channel, mci->csrows[csrow].nr_channels);
edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
return;
}
if (log_ce)
/* FIXME - put in DIMM location */
edac_mc_printk(mci, KERN_WARNING,
"CE row %d, channel %d, label \"%s\": %s\n",
csrow, channel,
mci->csrows[csrow].channels[channel].label,
msg);
mci->ce_count++;
mci->csrows[csrow].ce_count++;
mci->csrows[csrow].channels[channel].ce_count++;
}
EXPORT_SYMBOL(edac_mc_handle_fbd_ce);
/*
* Iterate over all MC instances and check for ECC, et al, errors
*/
static inline void check_mc_devices(void)
{
struct list_head *item;
struct mem_ctl_info *mci;
debugf3("%s()\n", __func__);
down(&mem_ctls_mutex);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->edac_check != NULL)
mci->edac_check(mci);
}
up(&mem_ctls_mutex);
}
/*
* Check MC status every poll_msec.
* Check PCI status every poll_msec as well.
*
* This where the work gets done for edac.
*
* SMP safe, doesn't use NMI, and auto-rate-limits.
*/
static void do_edac_check(void)
{
debugf3("%s()\n", __func__);
check_mc_devices();
do_pci_parity_check();
}
static int edac_kernel_thread(void *arg)
{
while (!kthread_should_stop()) {
do_edac_check();
/* goto sleep for the interval */
schedule_timeout_interruptible((HZ * poll_msec) / 1000);
try_to_freeze();
}
return 0;
}
/*
* edac_mc_init
* module initialization entry point
*/
static int __init edac_mc_init(void)
{
edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
/*
* Harvest and clear any boot/initialization PCI parity errors
*
* FIXME: This only clears errors logged by devices present at time of
* module initialization. We should also do an initial clear
* of each newly hotplugged device.
*/
clear_pci_parity_errors();
/* Create the MC sysfs entries */
if (edac_sysfs_memctrl_setup()) {
edac_printk(KERN_ERR, EDAC_MC,
"Error initializing sysfs code\n");
return -ENODEV;
}
/* Create the PCI parity sysfs entries */
if (edac_sysfs_pci_setup()) {
edac_sysfs_memctrl_teardown();
edac_printk(KERN_ERR, EDAC_MC,
"EDAC PCI: Error initializing sysfs code\n");
return -ENODEV;
}
/* create our kernel thread */
edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
if (IS_ERR(edac_thread)) {
/* remove the sysfs entries */
edac_sysfs_memctrl_teardown();
edac_sysfs_pci_teardown();
return PTR_ERR(edac_thread);
}
return 0;
}
/*
* edac_mc_exit()
* module exit/termination functioni
*/
static void __exit edac_mc_exit(void)
{
debugf0("%s()\n", __func__);
kthread_stop(edac_thread);
/* tear down the sysfs device */
edac_sysfs_memctrl_teardown();
edac_sysfs_pci_teardown();
}
module_init(edac_mc_init);
module_exit(edac_mc_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
"Based on work by Dan Hollis et al");
MODULE_DESCRIPTION("Core library routines for MC reporting");
module_param(panic_on_ue, int, 0644);
MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
#ifdef CONFIG_PCI
module_param(check_pci_parity, int, 0644);
MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
module_param(panic_on_pci_parity, int, 0644);
MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
#endif
module_param(log_ue, int, 0644);
MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
module_param(log_ce, int, 0644);
MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
module_param(poll_msec, int, 0644);
MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
#ifdef CONFIG_EDAC_DEBUG
module_param(edac_debug_level, int, 0644);
MODULE_PARM_DESC(edac_debug_level, "Debug level");
#endif