2006-09-28 12:29:01 -06:00
|
|
|
/*
|
|
|
|
* libata-acpi.c
|
|
|
|
* Provides ACPI support for PATA/SATA.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2006 Intel Corp.
|
|
|
|
* Copyright (C) 2006 Randy Dunlap
|
|
|
|
*/
|
|
|
|
|
2007-12-14 23:05:06 -07:00
|
|
|
#include <linux/module.h>
|
2006-09-28 12:29:01 -06:00
|
|
|
#include <linux/ata.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/acpi.h>
|
|
|
|
#include <linux/libata.h>
|
|
|
|
#include <linux/pci.h>
|
2007-10-02 18:24:16 -06:00
|
|
|
#include <scsi/scsi_device.h>
|
2006-09-28 12:29:01 -06:00
|
|
|
#include "libata.h"
|
|
|
|
|
|
|
|
#include <acpi/acpi_bus.h>
|
|
|
|
#include <acpi/acnames.h>
|
|
|
|
#include <acpi/acnamesp.h>
|
|
|
|
#include <acpi/acparser.h>
|
|
|
|
#include <acpi/acexcep.h>
|
|
|
|
#include <acpi/acmacros.h>
|
|
|
|
#include <acpi/actypes.h>
|
|
|
|
|
2007-12-14 23:05:06 -07:00
|
|
|
enum {
|
|
|
|
ATA_ACPI_FILTER_SETXFER = 1 << 0,
|
|
|
|
ATA_ACPI_FILTER_LOCK = 1 << 1,
|
2008-07-06 08:15:03 -06:00
|
|
|
ATA_ACPI_FILTER_DIPM = 1 << 2,
|
2007-12-14 23:05:06 -07:00
|
|
|
|
|
|
|
ATA_ACPI_FILTER_DEFAULT = ATA_ACPI_FILTER_SETXFER |
|
2008-07-06 08:15:03 -06:00
|
|
|
ATA_ACPI_FILTER_LOCK |
|
|
|
|
ATA_ACPI_FILTER_DIPM,
|
2007-12-14 23:05:06 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
static unsigned int ata_acpi_gtf_filter = ATA_ACPI_FILTER_DEFAULT;
|
|
|
|
module_param_named(acpi_gtf_filter, ata_acpi_gtf_filter, int, 0644);
|
2008-07-06 08:15:03 -06:00
|
|
|
MODULE_PARM_DESC(acpi_gtf_filter, "filter mask for ACPI _GTF commands, set to filter out (0x1=set xfermode, 0x2=lock/freeze lock, 0x4=DIPM)");
|
2007-12-14 23:05:06 -07:00
|
|
|
|
2006-09-28 12:29:01 -06:00
|
|
|
#define NO_PORT_MULT 0xffff
|
2007-10-19 04:42:56 -06:00
|
|
|
#define SATA_ADR(root, pmp) (((root) << 16) | (pmp))
|
2006-09-28 12:29:01 -06:00
|
|
|
|
|
|
|
#define REGS_PER_GTF 7
|
2007-05-14 12:28:16 -06:00
|
|
|
struct ata_acpi_gtf {
|
|
|
|
u8 tf[REGS_PER_GTF]; /* regs. 0x1f1 - 0x1f7 */
|
|
|
|
} __packed;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-03-08 16:13:50 -07:00
|
|
|
/*
|
|
|
|
* Helper - belongs in the PCI layer somewhere eventually
|
|
|
|
*/
|
|
|
|
static int is_pci_dev(struct device *dev)
|
|
|
|
{
|
|
|
|
return (dev->bus == &pci_bus_type);
|
|
|
|
}
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-12-14 23:05:03 -07:00
|
|
|
static void ata_acpi_clear_gtf(struct ata_device *dev)
|
|
|
|
{
|
|
|
|
kfree(dev->gtf_cache);
|
|
|
|
dev->gtf_cache = NULL;
|
|
|
|
}
|
|
|
|
|
2007-09-22 22:19:54 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_associate_sata_port - associate SATA port with ACPI objects
|
|
|
|
* @ap: target SATA port
|
|
|
|
*
|
|
|
|
* Look up ACPI objects associated with @ap and initialize acpi_handle
|
|
|
|
* fields of @ap, the port and devices accordingly.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* 0 on success, -errno on failure.
|
|
|
|
*/
|
|
|
|
void ata_acpi_associate_sata_port(struct ata_port *ap)
|
2006-09-28 12:29:01 -06:00
|
|
|
{
|
2007-09-22 22:19:54 -06:00
|
|
|
WARN_ON(!(ap->flags & ATA_FLAG_ACPI_SATA));
|
|
|
|
|
2008-04-07 07:47:22 -06:00
|
|
|
if (!sata_pmp_attached(ap)) {
|
2007-09-22 22:19:54 -06:00
|
|
|
acpi_integer adr = SATA_ADR(ap->port_no, NO_PORT_MULT);
|
|
|
|
|
|
|
|
ap->link.device->acpi_handle =
|
|
|
|
acpi_get_child(ap->host->acpi_handle, adr);
|
|
|
|
} else {
|
|
|
|
struct ata_link *link;
|
|
|
|
|
|
|
|
ap->link.device->acpi_handle = NULL;
|
|
|
|
|
|
|
|
ata_port_for_each_link(link, ap) {
|
|
|
|
acpi_integer adr = SATA_ADR(ap->port_no, link->pmp);
|
2007-05-14 12:28:16 -06:00
|
|
|
|
2007-09-22 22:19:54 -06:00
|
|
|
link->device->acpi_handle =
|
|
|
|
acpi_get_child(ap->host->acpi_handle, adr);
|
|
|
|
}
|
|
|
|
}
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
static void ata_acpi_associate_ide_port(struct ata_port *ap)
|
2006-09-28 12:29:01 -06:00
|
|
|
{
|
2007-05-14 12:28:16 -06:00
|
|
|
int max_devices, i;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
ap->acpi_handle = acpi_get_child(ap->host->acpi_handle, ap->port_no);
|
|
|
|
if (!ap->acpi_handle)
|
|
|
|
return;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
max_devices = 1;
|
|
|
|
if (ap->flags & ATA_FLAG_SLAVE_POSS)
|
|
|
|
max_devices++;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
for (i = 0; i < max_devices; i++) {
|
2007-08-06 03:36:22 -06:00
|
|
|
struct ata_device *dev = &ap->link.device[i];
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
dev->acpi_handle = acpi_get_child(ap->acpi_handle, i);
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
2007-12-14 23:05:02 -07:00
|
|
|
|
|
|
|
if (ata_acpi_gtm(ap, &ap->__acpi_init_gtm) == 0)
|
|
|
|
ap->pflags |= ATA_PFLAG_INIT_GTM_VALID;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
[libata] ACPI: Properly handle bay devices in dock stations
* Differentiate between bay devices in dock stations and others:
- When an ACPI_NOTIFY_EJECT_REQUEST appears, just signal uevent to
userspace (that is when the optional eject button on a bay device is
pressed/pulled) giving the possibility to unmount file systems and to
clean up. Also, only send uevent in case we get an EJECT_REQUEST
without doing anything else. In other cases, you'll get an add/remove
event because libata attaches/detaches the device.
- In case of a dock event, which in turn signals an
ACPI_NOTIFY_EJECT_REQUEST, immediately detach the device, because it
may already have been gone
* In case of an ACPI_NOTIFY_DEVICE/BUS_CHECK, evaluate _STA to check if
the device has been plugged or unplugged. If plugged, hotplug it, if
unplugged, just signal event to userspace
(initial patch by Matthew Garrett <mjg59@srcf.ucam.org>)
* Call ACPI _EJ0 for detached devices
Signed-off-by: Holger Macht <hmacht@suse.de>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-03 12:27:59 -06:00
|
|
|
/* @ap and @dev are the same as ata_acpi_handle_hotplug() */
|
|
|
|
static void ata_acpi_detach_device(struct ata_port *ap, struct ata_device *dev)
|
|
|
|
{
|
|
|
|
if (dev)
|
|
|
|
dev->flags |= ATA_DFLAG_DETACH;
|
|
|
|
else {
|
|
|
|
struct ata_link *tlink;
|
|
|
|
struct ata_device *tdev;
|
|
|
|
|
|
|
|
ata_port_for_each_link(tlink, ap)
|
|
|
|
ata_link_for_each_dev(tdev, tlink)
|
|
|
|
tdev->flags |= ATA_DFLAG_DETACH;
|
|
|
|
}
|
|
|
|
|
|
|
|
ata_port_schedule_eh(ap);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ata_acpi_handle_hotplug - ACPI event handler backend
|
|
|
|
* @ap: ATA port ACPI event occurred
|
|
|
|
* @dev: ATA device ACPI event occurred (can be NULL)
|
|
|
|
* @event: ACPI event which occurred
|
|
|
|
*
|
|
|
|
* All ACPI bay / device realted events end up in this function. If
|
|
|
|
* the event is port-wide @dev is NULL. If the event is specific to a
|
|
|
|
* device, @dev points to it.
|
|
|
|
*
|
|
|
|
* Hotplug (as opposed to unplug) notification is always handled as
|
|
|
|
* port-wide while unplug only kills the target device on device-wide
|
|
|
|
* event.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* ACPI notify handler context. May sleep.
|
|
|
|
*/
|
|
|
|
static void ata_acpi_handle_hotplug(struct ata_port *ap, struct ata_device *dev,
|
2008-08-27 20:05:45 -06:00
|
|
|
u32 event)
|
2007-10-02 18:24:16 -06:00
|
|
|
{
|
[libata] ACPI: Properly handle bay devices in dock stations
* Differentiate between bay devices in dock stations and others:
- When an ACPI_NOTIFY_EJECT_REQUEST appears, just signal uevent to
userspace (that is when the optional eject button on a bay device is
pressed/pulled) giving the possibility to unmount file systems and to
clean up. Also, only send uevent in case we get an EJECT_REQUEST
without doing anything else. In other cases, you'll get an add/remove
event because libata attaches/detaches the device.
- In case of a dock event, which in turn signals an
ACPI_NOTIFY_EJECT_REQUEST, immediately detach the device, because it
may already have been gone
* In case of an ACPI_NOTIFY_DEVICE/BUS_CHECK, evaluate _STA to check if
the device has been plugged or unplugged. If plugged, hotplug it, if
unplugged, just signal event to userspace
(initial patch by Matthew Garrett <mjg59@srcf.ucam.org>)
* Call ACPI _EJ0 for detached devices
Signed-off-by: Holger Macht <hmacht@suse.de>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-03 12:27:59 -06:00
|
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
2008-03-11 23:24:43 -06:00
|
|
|
int wait = 0;
|
|
|
|
unsigned long flags;
|
2008-08-27 20:05:45 -06:00
|
|
|
acpi_handle handle;
|
2008-05-19 15:56:10 -06:00
|
|
|
|
2008-08-27 20:05:45 -06:00
|
|
|
if (dev)
|
2008-05-19 10:29:34 -06:00
|
|
|
handle = dev->acpi_handle;
|
2008-08-27 20:05:45 -06:00
|
|
|
else
|
2008-05-19 10:29:34 -06:00
|
|
|
handle = ap->acpi_handle;
|
2008-07-11 07:42:03 -06:00
|
|
|
|
[libata] ACPI: Properly handle bay devices in dock stations
* Differentiate between bay devices in dock stations and others:
- When an ACPI_NOTIFY_EJECT_REQUEST appears, just signal uevent to
userspace (that is when the optional eject button on a bay device is
pressed/pulled) giving the possibility to unmount file systems and to
clean up. Also, only send uevent in case we get an EJECT_REQUEST
without doing anything else. In other cases, you'll get an add/remove
event because libata attaches/detaches the device.
- In case of a dock event, which in turn signals an
ACPI_NOTIFY_EJECT_REQUEST, immediately detach the device, because it
may already have been gone
* In case of an ACPI_NOTIFY_DEVICE/BUS_CHECK, evaluate _STA to check if
the device has been plugged or unplugged. If plugged, hotplug it, if
unplugged, just signal event to userspace
(initial patch by Matthew Garrett <mjg59@srcf.ucam.org>)
* Call ACPI _EJ0 for detached devices
Signed-off-by: Holger Macht <hmacht@suse.de>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-03 12:27:59 -06:00
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
2008-08-27 20:05:45 -06:00
|
|
|
/*
|
|
|
|
* When dock driver calls into the routine, it will always use
|
|
|
|
* ACPI_NOTIFY_BUS_CHECK/ACPI_NOTIFY_DEVICE_CHECK for add and
|
|
|
|
* ACPI_NOTIFY_EJECT_REQUEST for remove
|
|
|
|
*/
|
2008-03-11 23:24:43 -06:00
|
|
|
switch (event) {
|
|
|
|
case ACPI_NOTIFY_BUS_CHECK:
|
|
|
|
case ACPI_NOTIFY_DEVICE_CHECK:
|
|
|
|
ata_ehi_push_desc(ehi, "ACPI event");
|
[libata] ACPI: Properly handle bay devices in dock stations
* Differentiate between bay devices in dock stations and others:
- When an ACPI_NOTIFY_EJECT_REQUEST appears, just signal uevent to
userspace (that is when the optional eject button on a bay device is
pressed/pulled) giving the possibility to unmount file systems and to
clean up. Also, only send uevent in case we get an EJECT_REQUEST
without doing anything else. In other cases, you'll get an add/remove
event because libata attaches/detaches the device.
- In case of a dock event, which in turn signals an
ACPI_NOTIFY_EJECT_REQUEST, immediately detach the device, because it
may already have been gone
* In case of an ACPI_NOTIFY_DEVICE/BUS_CHECK, evaluate _STA to check if
the device has been plugged or unplugged. If plugged, hotplug it, if
unplugged, just signal event to userspace
(initial patch by Matthew Garrett <mjg59@srcf.ucam.org>)
* Call ACPI _EJ0 for detached devices
Signed-off-by: Holger Macht <hmacht@suse.de>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-03 12:27:59 -06:00
|
|
|
|
2008-08-27 20:05:45 -06:00
|
|
|
ata_ehi_hotplugged(ehi);
|
|
|
|
ata_port_freeze(ap);
|
[libata] ACPI: Properly handle bay devices in dock stations
* Differentiate between bay devices in dock stations and others:
- When an ACPI_NOTIFY_EJECT_REQUEST appears, just signal uevent to
userspace (that is when the optional eject button on a bay device is
pressed/pulled) giving the possibility to unmount file systems and to
clean up. Also, only send uevent in case we get an EJECT_REQUEST
without doing anything else. In other cases, you'll get an add/remove
event because libata attaches/detaches the device.
- In case of a dock event, which in turn signals an
ACPI_NOTIFY_EJECT_REQUEST, immediately detach the device, because it
may already have been gone
* In case of an ACPI_NOTIFY_DEVICE/BUS_CHECK, evaluate _STA to check if
the device has been plugged or unplugged. If plugged, hotplug it, if
unplugged, just signal event to userspace
(initial patch by Matthew Garrett <mjg59@srcf.ucam.org>)
* Call ACPI _EJ0 for detached devices
Signed-off-by: Holger Macht <hmacht@suse.de>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-03 12:27:59 -06:00
|
|
|
break;
|
|
|
|
case ACPI_NOTIFY_EJECT_REQUEST:
|
|
|
|
ata_ehi_push_desc(ehi, "ACPI event");
|
|
|
|
|
|
|
|
ata_acpi_detach_device(ap, dev);
|
|
|
|
wait = 1;
|
|
|
|
break;
|
2007-10-02 18:24:16 -06:00
|
|
|
}
|
|
|
|
|
2008-05-19 10:29:34 -06:00
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
|
2008-08-27 20:05:45 -06:00
|
|
|
if (wait)
|
2008-05-19 10:29:34 -06:00
|
|
|
ata_port_wait_eh(ap);
|
[libata] ACPI: Properly handle bay devices in dock stations
* Differentiate between bay devices in dock stations and others:
- When an ACPI_NOTIFY_EJECT_REQUEST appears, just signal uevent to
userspace (that is when the optional eject button on a bay device is
pressed/pulled) giving the possibility to unmount file systems and to
clean up. Also, only send uevent in case we get an EJECT_REQUEST
without doing anything else. In other cases, you'll get an add/remove
event because libata attaches/detaches the device.
- In case of a dock event, which in turn signals an
ACPI_NOTIFY_EJECT_REQUEST, immediately detach the device, because it
may already have been gone
* In case of an ACPI_NOTIFY_DEVICE/BUS_CHECK, evaluate _STA to check if
the device has been plugged or unplugged. If plugged, hotplug it, if
unplugged, just signal event to userspace
(initial patch by Matthew Garrett <mjg59@srcf.ucam.org>)
* Call ACPI _EJ0 for detached devices
Signed-off-by: Holger Macht <hmacht@suse.de>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-03 12:27:59 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static void ata_acpi_dev_notify_dock(acpi_handle handle, u32 event, void *data)
|
|
|
|
{
|
|
|
|
struct ata_device *dev = data;
|
|
|
|
|
2008-08-27 20:05:45 -06:00
|
|
|
ata_acpi_handle_hotplug(dev->link->ap, dev, event);
|
[libata] ACPI: Properly handle bay devices in dock stations
* Differentiate between bay devices in dock stations and others:
- When an ACPI_NOTIFY_EJECT_REQUEST appears, just signal uevent to
userspace (that is when the optional eject button on a bay device is
pressed/pulled) giving the possibility to unmount file systems and to
clean up. Also, only send uevent in case we get an EJECT_REQUEST
without doing anything else. In other cases, you'll get an add/remove
event because libata attaches/detaches the device.
- In case of a dock event, which in turn signals an
ACPI_NOTIFY_EJECT_REQUEST, immediately detach the device, because it
may already have been gone
* In case of an ACPI_NOTIFY_DEVICE/BUS_CHECK, evaluate _STA to check if
the device has been plugged or unplugged. If plugged, hotplug it, if
unplugged, just signal event to userspace
(initial patch by Matthew Garrett <mjg59@srcf.ucam.org>)
* Call ACPI _EJ0 for detached devices
Signed-off-by: Holger Macht <hmacht@suse.de>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-03 12:27:59 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static void ata_acpi_ap_notify_dock(acpi_handle handle, u32 event, void *data)
|
|
|
|
{
|
|
|
|
struct ata_port *ap = data;
|
|
|
|
|
2008-08-27 20:05:45 -06:00
|
|
|
ata_acpi_handle_hotplug(ap, NULL, event);
|
2007-10-02 18:24:16 -06:00
|
|
|
}
|
|
|
|
|
2008-08-27 20:06:16 -06:00
|
|
|
static void ata_acpi_uevent(struct ata_port *ap, struct ata_device *dev,
|
|
|
|
u32 event)
|
|
|
|
{
|
|
|
|
struct kobject *kobj = NULL;
|
|
|
|
char event_string[20];
|
|
|
|
char *envp[] = { event_string, NULL };
|
|
|
|
|
|
|
|
if (dev) {
|
|
|
|
if (dev->sdev)
|
|
|
|
kobj = &dev->sdev->sdev_gendev.kobj;
|
|
|
|
} else
|
|
|
|
kobj = &ap->dev->kobj;
|
|
|
|
|
|
|
|
if (kobj) {
|
|
|
|
snprintf(event_string, 20, "BAY_EVENT=%d", event);
|
|
|
|
kobject_uevent_env(kobj, KOBJ_CHANGE, envp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ata_acpi_ap_uevent(acpi_handle handle, u32 event, void *data)
|
|
|
|
{
|
|
|
|
ata_acpi_uevent(data, NULL, event);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ata_acpi_dev_uevent(acpi_handle handle, u32 event, void *data)
|
|
|
|
{
|
|
|
|
struct ata_device *dev = data;
|
|
|
|
ata_acpi_uevent(dev->link->ap, dev, event);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct acpi_dock_ops ata_acpi_dev_dock_ops = {
|
|
|
|
.handler = ata_acpi_dev_notify_dock,
|
|
|
|
.uevent = ata_acpi_dev_uevent,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct acpi_dock_ops ata_acpi_ap_dock_ops = {
|
|
|
|
.handler = ata_acpi_ap_notify_dock,
|
|
|
|
.uevent = ata_acpi_ap_uevent,
|
|
|
|
};
|
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_associate - associate ATA host with ACPI objects
|
|
|
|
* @host: target ATA host
|
|
|
|
*
|
|
|
|
* Look up ACPI objects associated with @host and initialize
|
|
|
|
* acpi_handle fields of @host, its ports and devices accordingly.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* 0 on success, -errno on failure.
|
|
|
|
*/
|
|
|
|
void ata_acpi_associate(struct ata_host *host)
|
2006-09-28 12:29:01 -06:00
|
|
|
{
|
2007-10-02 18:24:16 -06:00
|
|
|
int i, j;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
if (!is_pci_dev(host->dev) || libata_noacpi)
|
|
|
|
return;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
host->acpi_handle = DEVICE_ACPI_HANDLE(host->dev);
|
|
|
|
if (!host->acpi_handle)
|
|
|
|
return;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
|
|
|
|
if (host->ports[0]->flags & ATA_FLAG_ACPI_SATA)
|
|
|
|
ata_acpi_associate_sata_port(ap);
|
|
|
|
else
|
|
|
|
ata_acpi_associate_ide_port(ap);
|
2007-10-02 18:24:16 -06:00
|
|
|
|
2008-03-11 23:24:43 -06:00
|
|
|
if (ap->acpi_handle) {
|
|
|
|
/* we might be on a docking station */
|
|
|
|
register_hotplug_dock_device(ap->acpi_handle,
|
2008-08-27 20:06:16 -06:00
|
|
|
&ata_acpi_ap_dock_ops, ap);
|
2008-03-11 23:24:43 -06:00
|
|
|
}
|
2007-10-02 18:24:16 -06:00
|
|
|
|
|
|
|
for (j = 0; j < ata_link_max_devices(&ap->link); j++) {
|
|
|
|
struct ata_device *dev = &ap->link.device[j];
|
|
|
|
|
2008-03-11 23:24:43 -06:00
|
|
|
if (dev->acpi_handle) {
|
|
|
|
/* we might be on a docking station */
|
|
|
|
register_hotplug_dock_device(dev->acpi_handle,
|
2008-08-27 20:06:16 -06:00
|
|
|
&ata_acpi_dev_dock_ops, dev);
|
2008-03-11 23:24:43 -06:00
|
|
|
}
|
2007-10-02 18:24:16 -06:00
|
|
|
}
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-12-14 23:05:01 -07:00
|
|
|
/**
|
|
|
|
* ata_acpi_dissociate - dissociate ATA host from ACPI objects
|
|
|
|
* @host: target ATA host
|
|
|
|
*
|
|
|
|
* This function is called during driver detach after the whole host
|
|
|
|
* is shut down.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*/
|
|
|
|
void ata_acpi_dissociate(struct ata_host *host)
|
|
|
|
{
|
2007-12-14 23:05:02 -07:00
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Restore initial _GTM values so that driver which attaches
|
|
|
|
* afterward can use them too.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
const struct ata_acpi_gtm *gtm = ata_acpi_init_gtm(ap);
|
|
|
|
|
|
|
|
if (ap->acpi_handle && gtm)
|
|
|
|
ata_acpi_stm(ap, gtm);
|
|
|
|
}
|
2007-12-14 23:05:01 -07:00
|
|
|
}
|
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_gtm - execute _GTM
|
|
|
|
* @ap: target ATA port
|
|
|
|
* @gtm: out parameter for _GTM result
|
|
|
|
*
|
|
|
|
* Evaluate _GTM and store the result in @gtm.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* 0 on success, -ENOENT if _GTM doesn't exist, -errno on failure.
|
|
|
|
*/
|
2007-12-14 23:04:57 -07:00
|
|
|
int ata_acpi_gtm(struct ata_port *ap, struct ata_acpi_gtm *gtm)
|
2007-05-14 12:28:16 -06:00
|
|
|
{
|
|
|
|
struct acpi_buffer output = { .length = ACPI_ALLOCATE_BUFFER };
|
|
|
|
union acpi_object *out_obj;
|
|
|
|
acpi_status status;
|
|
|
|
int rc = 0;
|
|
|
|
|
|
|
|
status = acpi_evaluate_object(ap->acpi_handle, "_GTM", NULL, &output);
|
|
|
|
|
|
|
|
rc = -ENOENT;
|
|
|
|
if (status == AE_NOT_FOUND)
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
rc = -EINVAL;
|
|
|
|
if (ACPI_FAILURE(status)) {
|
|
|
|
ata_port_printk(ap, KERN_ERR,
|
|
|
|
"ACPI get timing mode failed (AE 0x%x)\n",
|
|
|
|
status);
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
out_obj = output.pointer;
|
|
|
|
if (out_obj->type != ACPI_TYPE_BUFFER) {
|
|
|
|
ata_port_printk(ap, KERN_WARNING,
|
|
|
|
"_GTM returned unexpected object type 0x%x\n",
|
|
|
|
out_obj->type);
|
|
|
|
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (out_obj->buffer.length != sizeof(struct ata_acpi_gtm)) {
|
|
|
|
ata_port_printk(ap, KERN_ERR,
|
|
|
|
"_GTM returned invalid length %d\n",
|
|
|
|
out_obj->buffer.length);
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(gtm, out_obj->buffer.pointer, sizeof(struct ata_acpi_gtm));
|
|
|
|
rc = 0;
|
|
|
|
out_free:
|
|
|
|
kfree(output.pointer);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
2007-10-04 14:28:18 -06:00
|
|
|
EXPORT_SYMBOL_GPL(ata_acpi_gtm);
|
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_stm - execute _STM
|
|
|
|
* @ap: target ATA port
|
|
|
|
* @stm: timing parameter to _STM
|
|
|
|
*
|
|
|
|
* Evaluate _STM with timing parameter @stm.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* 0 on success, -ENOENT if _STM doesn't exist, -errno on failure.
|
|
|
|
*/
|
2007-12-14 23:04:57 -07:00
|
|
|
int ata_acpi_stm(struct ata_port *ap, const struct ata_acpi_gtm *stm)
|
2007-05-14 12:28:16 -06:00
|
|
|
{
|
|
|
|
acpi_status status;
|
2007-12-14 23:04:57 -07:00
|
|
|
struct ata_acpi_gtm stm_buf = *stm;
|
2007-05-14 12:28:16 -06:00
|
|
|
struct acpi_object_list input;
|
|
|
|
union acpi_object in_params[3];
|
|
|
|
|
|
|
|
in_params[0].type = ACPI_TYPE_BUFFER;
|
|
|
|
in_params[0].buffer.length = sizeof(struct ata_acpi_gtm);
|
2007-12-14 23:04:57 -07:00
|
|
|
in_params[0].buffer.pointer = (u8 *)&stm_buf;
|
2007-05-14 12:28:16 -06:00
|
|
|
/* Buffers for id may need byteswapping ? */
|
|
|
|
in_params[1].type = ACPI_TYPE_BUFFER;
|
|
|
|
in_params[1].buffer.length = 512;
|
2007-08-06 03:36:22 -06:00
|
|
|
in_params[1].buffer.pointer = (u8 *)ap->link.device[0].id;
|
2007-05-14 12:28:16 -06:00
|
|
|
in_params[2].type = ACPI_TYPE_BUFFER;
|
|
|
|
in_params[2].buffer.length = 512;
|
2007-08-06 03:36:22 -06:00
|
|
|
in_params[2].buffer.pointer = (u8 *)ap->link.device[1].id;
|
2007-05-14 12:28:16 -06:00
|
|
|
|
|
|
|
input.count = 3;
|
|
|
|
input.pointer = in_params;
|
|
|
|
|
|
|
|
status = acpi_evaluate_object(ap->acpi_handle, "_STM", &input, NULL);
|
|
|
|
|
|
|
|
if (status == AE_NOT_FOUND)
|
|
|
|
return -ENOENT;
|
|
|
|
if (ACPI_FAILURE(status)) {
|
|
|
|
ata_port_printk(ap, KERN_ERR,
|
|
|
|
"ACPI set timing mode failed (status=0x%x)\n", status);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-10-04 14:28:18 -06:00
|
|
|
EXPORT_SYMBOL_GPL(ata_acpi_stm);
|
|
|
|
|
2006-09-28 12:29:01 -06:00
|
|
|
/**
|
2007-05-14 12:28:16 -06:00
|
|
|
* ata_dev_get_GTF - get the drive bootup default taskfile settings
|
2007-05-05 08:50:38 -06:00
|
|
|
* @dev: target ATA device
|
2007-05-14 12:28:16 -06:00
|
|
|
* @gtf: output parameter for buffer containing _GTF taskfile arrays
|
2006-09-28 12:29:01 -06:00
|
|
|
*
|
|
|
|
* This applies to both PATA and SATA drives.
|
|
|
|
*
|
|
|
|
* The _GTF method has no input parameters.
|
|
|
|
* It returns a variable number of register set values (registers
|
|
|
|
* hex 1F1..1F7, taskfiles).
|
|
|
|
* The <variable number> is not known in advance, so have ACPI-CA
|
|
|
|
* allocate the buffer as needed and return it, then free it later.
|
|
|
|
*
|
2007-05-14 12:28:16 -06:00
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
2007-12-14 23:05:04 -07:00
|
|
|
* Number of taskfiles on success, 0 if _GTF doesn't exist. -EINVAL
|
|
|
|
* if _GTF is invalid.
|
2006-09-28 12:29:01 -06:00
|
|
|
*/
|
2007-12-14 23:05:03 -07:00
|
|
|
static int ata_dev_get_GTF(struct ata_device *dev, struct ata_acpi_gtf **gtf)
|
2006-09-28 12:29:01 -06:00
|
|
|
{
|
2007-08-06 03:36:22 -06:00
|
|
|
struct ata_port *ap = dev->link->ap;
|
2007-05-05 08:50:38 -06:00
|
|
|
acpi_status status;
|
|
|
|
struct acpi_buffer output;
|
|
|
|
union acpi_object *out_obj;
|
2007-05-14 12:28:16 -06:00
|
|
|
int rc = 0;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-12-14 23:05:03 -07:00
|
|
|
/* if _GTF is cached, use the cached value */
|
|
|
|
if (dev->gtf_cache) {
|
|
|
|
out_obj = dev->gtf_cache;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
/* set up output buffer */
|
|
|
|
output.length = ACPI_ALLOCATE_BUFFER;
|
|
|
|
output.pointer = NULL; /* ACPI-CA sets this; save/free it later */
|
2006-09-28 12:29:01 -06:00
|
|
|
|
|
|
|
if (ata_msg_probe(ap))
|
2007-05-05 08:50:38 -06:00
|
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER: port#: %d\n",
|
2008-03-05 19:24:52 -07:00
|
|
|
__func__, ap->port_no);
|
2006-09-28 12:29:01 -06:00
|
|
|
|
|
|
|
/* _GTF has no input parameters */
|
2007-05-14 12:28:16 -06:00
|
|
|
status = acpi_evaluate_object(dev->acpi_handle, "_GTF", NULL, &output);
|
2007-12-14 23:05:03 -07:00
|
|
|
out_obj = dev->gtf_cache = output.pointer;
|
2007-05-14 12:28:16 -06:00
|
|
|
|
2006-09-28 12:29:01 -06:00
|
|
|
if (ACPI_FAILURE(status)) {
|
2007-05-14 12:28:16 -06:00
|
|
|
if (status != AE_NOT_FOUND) {
|
|
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
|
|
"_GTF evaluation failed (AE 0x%x)\n",
|
|
|
|
status);
|
2007-12-14 23:05:04 -07:00
|
|
|
rc = -EINVAL;
|
2007-05-14 12:28:16 -06:00
|
|
|
}
|
|
|
|
goto out_free;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
if (!output.length || !output.pointer) {
|
|
|
|
if (ata_msg_probe(ap))
|
2007-05-05 08:50:38 -06:00
|
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: Run _GTF: "
|
2006-09-28 12:29:01 -06:00
|
|
|
"length or ptr is NULL (0x%llx, 0x%p)\n",
|
2008-03-05 19:24:52 -07:00
|
|
|
__func__,
|
2006-09-28 12:29:01 -06:00
|
|
|
(unsigned long long)output.length,
|
|
|
|
output.pointer);
|
2007-12-14 23:05:04 -07:00
|
|
|
rc = -EINVAL;
|
2007-05-14 12:28:16 -06:00
|
|
|
goto out_free;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
if (out_obj->type != ACPI_TYPE_BUFFER) {
|
2007-05-14 12:28:16 -06:00
|
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
|
|
"_GTF unexpected object type 0x%x\n",
|
|
|
|
out_obj->type);
|
2007-12-14 23:05:04 -07:00
|
|
|
rc = -EINVAL;
|
2007-05-14 12:28:16 -06:00
|
|
|
goto out_free;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
if (out_obj->buffer.length % REGS_PER_GTF) {
|
2007-05-14 12:28:16 -06:00
|
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
|
|
"unexpected _GTF length (%d)\n",
|
|
|
|
out_obj->buffer.length);
|
2007-12-14 23:05:04 -07:00
|
|
|
rc = -EINVAL;
|
2007-05-14 12:28:16 -06:00
|
|
|
goto out_free;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
2007-12-14 23:05:03 -07:00
|
|
|
done:
|
2007-05-14 12:28:16 -06:00
|
|
|
rc = out_obj->buffer.length / REGS_PER_GTF;
|
2007-12-14 23:05:03 -07:00
|
|
|
if (gtf) {
|
|
|
|
*gtf = (void *)out_obj->buffer.pointer;
|
|
|
|
if (ata_msg_probe(ap))
|
|
|
|
ata_dev_printk(dev, KERN_DEBUG,
|
|
|
|
"%s: returning gtf=%p, gtf_count=%d\n",
|
2008-03-05 19:24:52 -07:00
|
|
|
__func__, *gtf, rc);
|
2007-12-14 23:05:03 -07:00
|
|
|
}
|
2007-05-14 12:28:16 -06:00
|
|
|
return rc;
|
|
|
|
|
|
|
|
out_free:
|
2007-12-14 23:05:03 -07:00
|
|
|
ata_acpi_clear_gtf(dev);
|
2007-05-14 12:28:16 -06:00
|
|
|
return rc;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
2007-12-18 00:33:03 -07:00
|
|
|
/**
|
|
|
|
* ata_acpi_gtm_xfermode - determine xfermode from GTM parameter
|
|
|
|
* @dev: target device
|
|
|
|
* @gtm: GTM parameter to use
|
|
|
|
*
|
|
|
|
* Determine xfermask for @dev from @gtm.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* None.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* Determined xfermask.
|
|
|
|
*/
|
|
|
|
unsigned long ata_acpi_gtm_xfermask(struct ata_device *dev,
|
|
|
|
const struct ata_acpi_gtm *gtm)
|
|
|
|
{
|
2007-12-18 00:33:05 -07:00
|
|
|
unsigned long xfer_mask = 0;
|
|
|
|
unsigned int type;
|
|
|
|
int unit;
|
|
|
|
u8 mode;
|
2007-12-18 00:33:03 -07:00
|
|
|
|
|
|
|
/* we always use the 0 slot for crap hardware */
|
|
|
|
unit = dev->devno;
|
|
|
|
if (!(gtm->flags & 0x10))
|
|
|
|
unit = 0;
|
|
|
|
|
2007-12-18 00:33:05 -07:00
|
|
|
/* PIO */
|
|
|
|
mode = ata_timing_cycle2mode(ATA_SHIFT_PIO, gtm->drive[unit].pio);
|
|
|
|
xfer_mask |= ata_xfer_mode2mask(mode);
|
2007-12-18 00:33:03 -07:00
|
|
|
|
|
|
|
/* See if we have MWDMA or UDMA data. We don't bother with
|
|
|
|
* MWDMA if UDMA is available as this means the BIOS set UDMA
|
|
|
|
* and our error changedown if it works is UDMA to PIO anyway.
|
|
|
|
*/
|
2007-12-18 00:33:05 -07:00
|
|
|
if (!(gtm->flags & (1 << (2 * unit))))
|
|
|
|
type = ATA_SHIFT_MWDMA;
|
|
|
|
else
|
|
|
|
type = ATA_SHIFT_UDMA;
|
|
|
|
|
|
|
|
mode = ata_timing_cycle2mode(type, gtm->drive[unit].dma);
|
|
|
|
xfer_mask |= ata_xfer_mode2mask(mode);
|
2007-12-18 00:33:03 -07:00
|
|
|
|
2007-12-18 00:33:05 -07:00
|
|
|
return xfer_mask;
|
2007-12-18 00:33:03 -07:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ata_acpi_gtm_xfermask);
|
|
|
|
|
2007-08-16 00:33:36 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_cbl_80wire - Check for 80 wire cable
|
|
|
|
* @ap: Port to check
|
2007-12-18 00:33:06 -07:00
|
|
|
* @gtm: GTM data to use
|
2007-08-16 00:33:36 -06:00
|
|
|
*
|
2007-12-18 00:33:06 -07:00
|
|
|
* Return 1 if the @gtm indicates the BIOS selected an 80wire mode.
|
2007-08-16 00:33:36 -06:00
|
|
|
*/
|
2007-12-18 00:33:06 -07:00
|
|
|
int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm)
|
2007-08-16 00:33:36 -06:00
|
|
|
{
|
2007-12-18 00:33:06 -07:00
|
|
|
struct ata_device *dev;
|
|
|
|
|
|
|
|
ata_link_for_each_dev(dev, &ap->link) {
|
|
|
|
unsigned long xfer_mask, udma_mask;
|
|
|
|
|
|
|
|
if (!ata_dev_enabled(dev))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
xfer_mask = ata_acpi_gtm_xfermask(dev, gtm);
|
|
|
|
ata_unpack_xfermask(xfer_mask, NULL, NULL, &udma_mask);
|
|
|
|
|
|
|
|
if (udma_mask & ~ATA_UDMA_MASK_40C)
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2007-08-16 00:33:36 -06:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ata_acpi_cbl_80wire);
|
|
|
|
|
2007-12-14 23:05:06 -07:00
|
|
|
static void ata_acpi_gtf_to_tf(struct ata_device *dev,
|
|
|
|
const struct ata_acpi_gtf *gtf,
|
|
|
|
struct ata_taskfile *tf)
|
|
|
|
{
|
|
|
|
ata_tf_init(dev, tf);
|
|
|
|
|
|
|
|
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
|
|
tf->protocol = ATA_PROT_NODATA;
|
|
|
|
tf->feature = gtf->tf[0]; /* 0x1f1 */
|
|
|
|
tf->nsect = gtf->tf[1]; /* 0x1f2 */
|
|
|
|
tf->lbal = gtf->tf[2]; /* 0x1f3 */
|
|
|
|
tf->lbam = gtf->tf[3]; /* 0x1f4 */
|
|
|
|
tf->lbah = gtf->tf[4]; /* 0x1f5 */
|
|
|
|
tf->device = gtf->tf[5]; /* 0x1f6 */
|
|
|
|
tf->command = gtf->tf[6]; /* 0x1f7 */
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ata_acpi_filter_tf(const struct ata_taskfile *tf,
|
|
|
|
const struct ata_taskfile *ptf)
|
|
|
|
{
|
|
|
|
if (ata_acpi_gtf_filter & ATA_ACPI_FILTER_SETXFER) {
|
|
|
|
/* libata doesn't use ACPI to configure transfer mode.
|
|
|
|
* It will only confuse device configuration. Skip.
|
|
|
|
*/
|
|
|
|
if (tf->command == ATA_CMD_SET_FEATURES &&
|
|
|
|
tf->feature == SETFEATURES_XFER)
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ata_acpi_gtf_filter & ATA_ACPI_FILTER_LOCK) {
|
|
|
|
/* BIOS writers, sorry but we don't wanna lock
|
|
|
|
* features unless the user explicitly said so.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* DEVICE CONFIGURATION FREEZE LOCK */
|
|
|
|
if (tf->command == ATA_CMD_CONF_OVERLAY &&
|
|
|
|
tf->feature == ATA_DCO_FREEZE_LOCK)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* SECURITY FREEZE LOCK */
|
|
|
|
if (tf->command == ATA_CMD_SEC_FREEZE_LOCK)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* SET MAX LOCK and SET MAX FREEZE LOCK */
|
|
|
|
if ((!ptf || ptf->command != ATA_CMD_READ_NATIVE_MAX) &&
|
|
|
|
tf->command == ATA_CMD_SET_MAX &&
|
|
|
|
(tf->feature == ATA_SET_MAX_LOCK ||
|
|
|
|
tf->feature == ATA_SET_MAX_FREEZE_LOCK))
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2008-07-06 08:15:03 -06:00
|
|
|
if (ata_acpi_gtf_filter & ATA_ACPI_FILTER_DIPM) {
|
|
|
|
/* inhibit enabling DIPM */
|
|
|
|
if (tf->command == ATA_CMD_SET_FEATURES &&
|
|
|
|
tf->feature == SETFEATURES_SATA_ENABLE &&
|
|
|
|
tf->nsect == SATA_DIPM)
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2007-12-14 23:05:06 -07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-09-28 12:29:01 -06:00
|
|
|
/**
|
2007-12-14 23:05:05 -07:00
|
|
|
* ata_acpi_run_tf - send taskfile registers to host controller
|
2007-05-05 08:50:38 -06:00
|
|
|
* @dev: target ATA device
|
2006-09-28 12:29:01 -06:00
|
|
|
* @gtf: raw ATA taskfile register set (0x1f1 - 0x1f7)
|
|
|
|
*
|
|
|
|
* Outputs ATA taskfile to standard ATA host controller using MMIO
|
|
|
|
* or PIO as indicated by the ATA_FLAG_MMIO flag.
|
|
|
|
* Writes the control, feature, nsect, lbal, lbam, and lbah registers.
|
|
|
|
* Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
|
|
|
|
* hob_lbal, hob_lbam, and hob_lbah.
|
|
|
|
*
|
|
|
|
* This function waits for idle (!BUSY and !DRQ) after writing
|
|
|
|
* registers. If the control register has a new value, this
|
|
|
|
* function also waits for idle after writing control and before
|
|
|
|
* writing the remaining registers.
|
|
|
|
*
|
2007-05-14 12:28:16 -06:00
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
2007-12-14 23:05:06 -07:00
|
|
|
* 1 if command is executed successfully. 0 if ignored, rejected or
|
|
|
|
* filtered out, -errno on other errors.
|
2006-09-28 12:29:01 -06:00
|
|
|
*/
|
2007-12-14 23:05:05 -07:00
|
|
|
static int ata_acpi_run_tf(struct ata_device *dev,
|
2007-12-14 23:05:06 -07:00
|
|
|
const struct ata_acpi_gtf *gtf,
|
|
|
|
const struct ata_acpi_gtf *prev_gtf)
|
2006-09-28 12:29:01 -06:00
|
|
|
{
|
2007-12-14 23:05:06 -07:00
|
|
|
struct ata_taskfile *pptf = NULL;
|
|
|
|
struct ata_taskfile tf, ptf, rtf;
|
2007-05-14 12:28:16 -06:00
|
|
|
unsigned int err_mask;
|
2007-12-14 23:05:05 -07:00
|
|
|
const char *level;
|
|
|
|
char msg[60];
|
|
|
|
int rc;
|
2007-02-24 19:05:01 -07:00
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
if ((gtf->tf[0] == 0) && (gtf->tf[1] == 0) && (gtf->tf[2] == 0)
|
|
|
|
&& (gtf->tf[3] == 0) && (gtf->tf[4] == 0) && (gtf->tf[5] == 0)
|
|
|
|
&& (gtf->tf[6] == 0))
|
|
|
|
return 0;
|
2006-09-28 12:29:01 -06:00
|
|
|
|
2007-12-14 23:05:06 -07:00
|
|
|
ata_acpi_gtf_to_tf(dev, gtf, &tf);
|
|
|
|
if (prev_gtf) {
|
|
|
|
ata_acpi_gtf_to_tf(dev, prev_gtf, &ptf);
|
|
|
|
pptf = &ptf;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ata_acpi_filter_tf(&tf, pptf)) {
|
|
|
|
rtf = tf;
|
|
|
|
err_mask = ata_exec_internal(dev, &rtf, NULL,
|
|
|
|
DMA_NONE, NULL, 0, 0);
|
|
|
|
|
|
|
|
switch (err_mask) {
|
|
|
|
case 0:
|
|
|
|
level = KERN_DEBUG;
|
|
|
|
snprintf(msg, sizeof(msg), "succeeded");
|
|
|
|
rc = 1;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case AC_ERR_DEV:
|
|
|
|
level = KERN_INFO;
|
|
|
|
snprintf(msg, sizeof(msg),
|
|
|
|
"rejected by device (Stat=0x%02x Err=0x%02x)",
|
|
|
|
rtf.command, rtf.feature);
|
|
|
|
rc = 0;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
level = KERN_ERR;
|
|
|
|
snprintf(msg, sizeof(msg),
|
|
|
|
"failed (Emask=0x%x Stat=0x%02x Err=0x%02x)",
|
|
|
|
err_mask, rtf.command, rtf.feature);
|
|
|
|
rc = -EIO;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
2007-12-14 23:05:05 -07:00
|
|
|
level = KERN_INFO;
|
2007-12-14 23:05:06 -07:00
|
|
|
snprintf(msg, sizeof(msg), "filtered out");
|
2007-12-14 23:05:05 -07:00
|
|
|
rc = 0;
|
2007-05-14 12:28:16 -06:00
|
|
|
}
|
|
|
|
|
2007-12-14 23:05:05 -07:00
|
|
|
ata_dev_printk(dev, level,
|
|
|
|
"ACPI cmd %02x/%02x:%02x:%02x:%02x:%02x:%02x %s\n",
|
|
|
|
tf.command, tf.feature, tf.nsect, tf.lbal,
|
|
|
|
tf.lbam, tf.lbah, tf.device, msg);
|
|
|
|
|
|
|
|
return rc;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ata_acpi_exec_tfs - get then write drive taskfile settings
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
* @dev: target ATA device
|
2007-12-14 23:05:04 -07:00
|
|
|
* @nr_executed: out paramter for the number of executed commands
|
2006-09-28 12:29:01 -06:00
|
|
|
*
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
* Evaluate _GTF and excute returned taskfiles.
|
2007-05-14 12:28:16 -06:00
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
2007-12-14 23:05:04 -07:00
|
|
|
* Number of executed taskfiles on success, 0 if _GTF doesn't exist.
|
|
|
|
* -errno on other errors.
|
2006-09-28 12:29:01 -06:00
|
|
|
*/
|
2007-12-14 23:05:04 -07:00
|
|
|
static int ata_acpi_exec_tfs(struct ata_device *dev, int *nr_executed)
|
2006-09-28 12:29:01 -06:00
|
|
|
{
|
2007-12-14 23:05:06 -07:00
|
|
|
struct ata_acpi_gtf *gtf = NULL, *pgtf = NULL;
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
int gtf_count, i, rc;
|
|
|
|
|
|
|
|
/* get taskfiles */
|
2007-12-14 23:05:04 -07:00
|
|
|
rc = ata_dev_get_GTF(dev, >f);
|
|
|
|
if (rc < 0)
|
|
|
|
return rc;
|
|
|
|
gtf_count = rc;
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
|
|
|
|
/* execute them */
|
2007-12-14 23:05:06 -07:00
|
|
|
for (i = 0; i < gtf_count; i++, gtf++) {
|
|
|
|
rc = ata_acpi_run_tf(dev, gtf, pgtf);
|
2007-12-14 23:05:05 -07:00
|
|
|
if (rc < 0)
|
|
|
|
break;
|
2007-12-14 23:05:06 -07:00
|
|
|
if (rc) {
|
2007-12-14 23:05:05 -07:00
|
|
|
(*nr_executed)++;
|
2007-12-14 23:05:06 -07:00
|
|
|
pgtf = gtf;
|
|
|
|
}
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
2007-12-14 23:05:03 -07:00
|
|
|
ata_acpi_clear_gtf(dev);
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
|
2007-12-14 23:05:05 -07:00
|
|
|
if (rc < 0)
|
|
|
|
return rc;
|
|
|
|
return 0;
|
2006-09-28 12:29:01 -06:00
|
|
|
}
|
|
|
|
|
2006-09-28 12:29:12 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_push_id - send Identify data to drive
|
2007-05-05 08:50:38 -06:00
|
|
|
* @dev: target ATA device
|
2006-09-28 12:29:12 -06:00
|
|
|
*
|
|
|
|
* _SDD ACPI object: for SATA mode only
|
|
|
|
* Must be after Identify (Packet) Device -- uses its data
|
|
|
|
* ATM this function never returns a failure. It is an optional
|
|
|
|
* method and if it fails for whatever reason, we should still
|
|
|
|
* just keep going.
|
2007-05-14 12:28:16 -06:00
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* 0 on success, -errno on failure.
|
2006-09-28 12:29:12 -06:00
|
|
|
*/
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
static int ata_acpi_push_id(struct ata_device *dev)
|
2006-09-28 12:29:12 -06:00
|
|
|
{
|
2007-08-06 03:36:22 -06:00
|
|
|
struct ata_port *ap = dev->link->ap;
|
2007-05-05 08:50:38 -06:00
|
|
|
int err;
|
|
|
|
acpi_status status;
|
|
|
|
struct acpi_object_list input;
|
|
|
|
union acpi_object in_params[1];
|
2006-09-28 12:29:12 -06:00
|
|
|
|
|
|
|
if (ata_msg_probe(ap))
|
2007-05-05 08:50:38 -06:00
|
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: ix = %d, port#: %d\n",
|
2008-03-05 19:24:52 -07:00
|
|
|
__func__, dev->devno, ap->port_no);
|
2006-09-28 12:29:12 -06:00
|
|
|
|
|
|
|
/* Give the drive Identify data to the drive via the _SDD method */
|
|
|
|
/* _SDD: set up input parameters */
|
|
|
|
input.count = 1;
|
|
|
|
input.pointer = in_params;
|
|
|
|
in_params[0].type = ACPI_TYPE_BUFFER;
|
2007-05-05 08:50:38 -06:00
|
|
|
in_params[0].buffer.length = sizeof(dev->id[0]) * ATA_ID_WORDS;
|
|
|
|
in_params[0].buffer.pointer = (u8 *)dev->id;
|
2006-09-28 12:29:12 -06:00
|
|
|
/* Output buffer: _SDD has no output */
|
|
|
|
|
|
|
|
/* It's OK for _SDD to be missing too. */
|
2007-05-05 08:50:38 -06:00
|
|
|
swap_buf_le16(dev->id, ATA_ID_WORDS);
|
2007-05-14 12:28:16 -06:00
|
|
|
status = acpi_evaluate_object(dev->acpi_handle, "_SDD", &input, NULL);
|
2007-05-05 08:50:38 -06:00
|
|
|
swap_buf_le16(dev->id, ATA_ID_WORDS);
|
2006-09-28 12:29:12 -06:00
|
|
|
|
|
|
|
err = ACPI_FAILURE(status) ? -EIO : 0;
|
2007-05-14 12:28:16 -06:00
|
|
|
if (err < 0)
|
|
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
|
|
"ACPI _SDD failed (AE 0x%x)\n", status);
|
2006-09-28 12:29:12 -06:00
|
|
|
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2007-05-14 12:28:16 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_on_suspend - ATA ACPI hook called on suspend
|
|
|
|
* @ap: target ATA port
|
|
|
|
*
|
|
|
|
* This function is called when @ap is about to be suspended. All
|
|
|
|
* devices are already put to sleep but the port_suspend() callback
|
|
|
|
* hasn't been executed yet. Error return from this function aborts
|
|
|
|
* suspend.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* 0 on success, -errno on failure.
|
|
|
|
*/
|
|
|
|
int ata_acpi_on_suspend(struct ata_port *ap)
|
|
|
|
{
|
2007-12-14 23:05:02 -07:00
|
|
|
/* nada */
|
|
|
|
return 0;
|
2007-05-14 12:28:16 -06:00
|
|
|
}
|
|
|
|
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_on_resume - ATA ACPI hook called on resume
|
|
|
|
* @ap: target ATA port
|
|
|
|
*
|
|
|
|
* This function is called when @ap is resumed - right after port
|
|
|
|
* itself is resumed but before any EH action is taken.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*/
|
|
|
|
void ata_acpi_on_resume(struct ata_port *ap)
|
|
|
|
{
|
2007-12-14 23:05:02 -07:00
|
|
|
const struct ata_acpi_gtm *gtm = ata_acpi_init_gtm(ap);
|
2007-08-06 03:36:23 -06:00
|
|
|
struct ata_device *dev;
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
|
2007-12-14 23:05:03 -07:00
|
|
|
if (ap->acpi_handle && gtm) {
|
|
|
|
/* _GTM valid */
|
|
|
|
|
|
|
|
/* restore timing parameters */
|
2007-12-14 23:05:02 -07:00
|
|
|
ata_acpi_stm(ap, gtm);
|
2007-05-14 12:28:16 -06:00
|
|
|
|
2007-12-14 23:05:03 -07:00
|
|
|
/* _GTF should immediately follow _STM so that it can
|
|
|
|
* use values set by _STM. Cache _GTF result and
|
|
|
|
* schedule _GTF.
|
|
|
|
*/
|
|
|
|
ata_link_for_each_dev(dev, &ap->link) {
|
|
|
|
ata_acpi_clear_gtf(dev);
|
2008-03-25 02:50:45 -06:00
|
|
|
if (ata_dev_enabled(dev) &&
|
|
|
|
ata_dev_get_GTF(dev, NULL) >= 0)
|
2007-12-14 23:05:03 -07:00
|
|
|
dev->flags |= ATA_DFLAG_ACPI_PENDING;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* SATA _GTF needs to be evaulated after _SDD and
|
|
|
|
* there's no reason to evaluate IDE _GTF early
|
|
|
|
* without _STM. Clear cache and schedule _GTF.
|
|
|
|
*/
|
|
|
|
ata_link_for_each_dev(dev, &ap->link) {
|
|
|
|
ata_acpi_clear_gtf(dev);
|
2008-03-25 02:50:45 -06:00
|
|
|
if (ata_dev_enabled(dev))
|
|
|
|
dev->flags |= ATA_DFLAG_ACPI_PENDING;
|
2007-12-14 23:05:03 -07:00
|
|
|
}
|
|
|
|
}
|
2006-09-28 12:29:12 -06:00
|
|
|
}
|
|
|
|
|
2007-11-01 19:32:38 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_set_state - set the port power state
|
|
|
|
* @ap: target ATA port
|
|
|
|
* @state: state, on/off
|
|
|
|
*
|
|
|
|
* This function executes the _PS0/_PS3 ACPI method to set the power state.
|
|
|
|
* ACPI spec requires _PS0 when IDE power on and _PS3 when power off
|
|
|
|
*/
|
|
|
|
void ata_acpi_set_state(struct ata_port *ap, pm_message_t state)
|
|
|
|
{
|
|
|
|
struct ata_device *dev;
|
|
|
|
|
|
|
|
if (!ap->acpi_handle || (ap->flags & ATA_FLAG_ACPI_SATA))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* channel first and then drives for power on and vica versa
|
|
|
|
for power off */
|
|
|
|
if (state.event == PM_EVENT_ON)
|
|
|
|
acpi_bus_set_power(ap->acpi_handle, ACPI_STATE_D0);
|
|
|
|
|
|
|
|
ata_link_for_each_dev(dev, &ap->link) {
|
|
|
|
if (dev->acpi_handle && ata_dev_enabled(dev))
|
|
|
|
acpi_bus_set_power(dev->acpi_handle,
|
|
|
|
state.event == PM_EVENT_ON ?
|
|
|
|
ACPI_STATE_D0 : ACPI_STATE_D3);
|
|
|
|
}
|
|
|
|
if (state.event != PM_EVENT_ON)
|
|
|
|
acpi_bus_set_power(ap->acpi_handle, ACPI_STATE_D3);
|
|
|
|
}
|
|
|
|
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
/**
|
|
|
|
* ata_acpi_on_devcfg - ATA ACPI hook called on device donfiguration
|
|
|
|
* @dev: target ATA device
|
|
|
|
*
|
|
|
|
* This function is called when @dev is about to be configured.
|
|
|
|
* IDENTIFY data might have been modified after this hook is run.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*
|
|
|
|
* RETURNS:
|
|
|
|
* Positive number if IDENTIFY data needs to be refreshed, 0 if not,
|
|
|
|
* -errno on failure.
|
|
|
|
*/
|
|
|
|
int ata_acpi_on_devcfg(struct ata_device *dev)
|
|
|
|
{
|
2007-08-06 03:36:22 -06:00
|
|
|
struct ata_port *ap = dev->link->ap;
|
|
|
|
struct ata_eh_context *ehc = &ap->link.eh_context;
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
int acpi_sata = ap->flags & ATA_FLAG_ACPI_SATA;
|
2007-12-14 23:05:04 -07:00
|
|
|
int nr_executed = 0;
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (!dev->acpi_handle)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* do we need to do _GTF? */
|
|
|
|
if (!(dev->flags & ATA_DFLAG_ACPI_PENDING) &&
|
|
|
|
!(acpi_sata && (ehc->i.flags & ATA_EHI_DID_HARDRESET)))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* do _SDD if SATA */
|
|
|
|
if (acpi_sata) {
|
|
|
|
rc = ata_acpi_push_id(dev);
|
|
|
|
if (rc)
|
|
|
|
goto acpi_err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* do _GTF */
|
2007-12-14 23:05:04 -07:00
|
|
|
rc = ata_acpi_exec_tfs(dev, &nr_executed);
|
|
|
|
if (rc)
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
goto acpi_err;
|
|
|
|
|
|
|
|
dev->flags &= ~ATA_DFLAG_ACPI_PENDING;
|
|
|
|
|
|
|
|
/* refresh IDENTIFY page if any _GTF command has been executed */
|
2007-12-14 23:05:04 -07:00
|
|
|
if (nr_executed) {
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
rc = ata_dev_reread_id(dev, 0);
|
|
|
|
if (rc < 0) {
|
|
|
|
ata_dev_printk(dev, KERN_ERR, "failed to IDENTIFY "
|
|
|
|
"after ACPI commands\n");
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
acpi_err:
|
2007-12-14 23:05:04 -07:00
|
|
|
/* ignore evaluation failure if we can continue safely */
|
|
|
|
if (rc == -EINVAL && !nr_executed && !(ap->pflags & ATA_PFLAG_FROZEN))
|
|
|
|
return 0;
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
|
2007-12-14 23:05:04 -07:00
|
|
|
/* fail and let EH retry once more for unknown IO errors */
|
|
|
|
if (!(dev->flags & ATA_DFLAG_ACPI_FAILED)) {
|
|
|
|
dev->flags |= ATA_DFLAG_ACPI_FAILED;
|
|
|
|
return rc;
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
}
|
2007-12-14 23:05:04 -07:00
|
|
|
|
|
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
|
|
"ACPI: failed the second time, disabled\n");
|
|
|
|
dev->acpi_handle = NULL;
|
|
|
|
|
|
|
|
/* We can safely continue if no _GTF command has been executed
|
|
|
|
* and port is not frozen.
|
|
|
|
*/
|
|
|
|
if (!nr_executed && !(ap->pflags & ATA_PFLAG_FROZEN))
|
|
|
|
return 0;
|
|
|
|
|
libata: reimplement ACPI invocation
This patch reimplements ACPI invocation such that, instead of
exporting ACPI details to the rest of libata, ACPI event handlers -
ata_acpi_on_resume() and ata_acpi_on_devcfg() - are used. These two
functions are responsible for determining whether specific ACPI method
is used and when.
On resume, _GTF is scheduled by setting ATA_DFLAG_ACPI_PENDING device
flag. This is done this way to avoid performing the action on wrong
device device (device swapping while suspended).
On every ata_dev_configure(), ata_acpi_on_devcfg() is called, which
performs _SDD and _GTF. _GTF is performed only after resuming and, if
SATA, hardreset as the ACPI spec specifies. As _GTF may contain
arbitrary commands, IDENTIFY page is re-read after _GTF taskfiles are
executed.
If one of ACPI methods fails, ata_acpi_on_devcfg() retries on the
first failure. If it fails again on the second try, ACPI is disabled
on the device. Note that successful configuration clears ACPI failed
status.
With all feature checks moved to the above two functions,
do_drive_set_taskfiles() is trivial and thus collapsed into
ata_acpi_exec_tfs(), which is now static and converted to return the
number of executed taskfiles to be used by ata_acpi_on_resume(). As
failures are handled properly, ata_acpi_push_id() now returns -errno
on errors instead of unconditional zero.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-14 12:28:16 -06:00
|
|
|
return rc;
|
|
|
|
}
|
2007-12-14 23:05:01 -07:00
|
|
|
|
|
|
|
/**
|
|
|
|
* ata_acpi_on_disable - ATA ACPI hook called when a device is disabled
|
|
|
|
* @dev: target ATA device
|
|
|
|
*
|
|
|
|
* This function is called when @dev is about to be disabled.
|
|
|
|
*
|
|
|
|
* LOCKING:
|
|
|
|
* EH context.
|
|
|
|
*/
|
|
|
|
void ata_acpi_on_disable(struct ata_device *dev)
|
|
|
|
{
|
2007-12-14 23:05:03 -07:00
|
|
|
ata_acpi_clear_gtf(dev);
|
2007-12-14 23:05:01 -07:00
|
|
|
}
|