kernel-fxtec-pro1x/fs/ceph/caps.c

3332 lines
91 KiB
C
Raw Normal View History

#include <linux/ceph/ceph_debug.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/sched.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include <linux/writeback.h>
#include "super.h"
#include "mds_client.h"
#include "cache.h"
#include <linux/ceph/decode.h>
#include <linux/ceph/messenger.h>
/*
* Capability management
*
* The Ceph metadata servers control client access to inode metadata
* and file data by issuing capabilities, granting clients permission
* to read and/or write both inode field and file data to OSDs
* (storage nodes). Each capability consists of a set of bits
* indicating which operations are allowed.
*
* If the client holds a *_SHARED cap, the client has a coherent value
* that can be safely read from the cached inode.
*
* In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
* client is allowed to change inode attributes (e.g., file size,
* mtime), note its dirty state in the ceph_cap, and asynchronously
* flush that metadata change to the MDS.
*
* In the event of a conflicting operation (perhaps by another
* client), the MDS will revoke the conflicting client capabilities.
*
* In order for a client to cache an inode, it must hold a capability
* with at least one MDS server. When inodes are released, release
* notifications are batched and periodically sent en masse to the MDS
* cluster to release server state.
*/
/*
* Generate readable cap strings for debugging output.
*/
#define MAX_CAP_STR 20
static char cap_str[MAX_CAP_STR][40];
static DEFINE_SPINLOCK(cap_str_lock);
static int last_cap_str;
static char *gcap_string(char *s, int c)
{
if (c & CEPH_CAP_GSHARED)
*s++ = 's';
if (c & CEPH_CAP_GEXCL)
*s++ = 'x';
if (c & CEPH_CAP_GCACHE)
*s++ = 'c';
if (c & CEPH_CAP_GRD)
*s++ = 'r';
if (c & CEPH_CAP_GWR)
*s++ = 'w';
if (c & CEPH_CAP_GBUFFER)
*s++ = 'b';
if (c & CEPH_CAP_GLAZYIO)
*s++ = 'l';
return s;
}
const char *ceph_cap_string(int caps)
{
int i;
char *s;
int c;
spin_lock(&cap_str_lock);
i = last_cap_str++;
if (last_cap_str == MAX_CAP_STR)
last_cap_str = 0;
spin_unlock(&cap_str_lock);
s = cap_str[i];
if (caps & CEPH_CAP_PIN)
*s++ = 'p';
c = (caps >> CEPH_CAP_SAUTH) & 3;
if (c) {
*s++ = 'A';
s = gcap_string(s, c);
}
c = (caps >> CEPH_CAP_SLINK) & 3;
if (c) {
*s++ = 'L';
s = gcap_string(s, c);
}
c = (caps >> CEPH_CAP_SXATTR) & 3;
if (c) {
*s++ = 'X';
s = gcap_string(s, c);
}
c = caps >> CEPH_CAP_SFILE;
if (c) {
*s++ = 'F';
s = gcap_string(s, c);
}
if (s == cap_str[i])
*s++ = '-';
*s = 0;
return cap_str[i];
}
void ceph_caps_init(struct ceph_mds_client *mdsc)
{
INIT_LIST_HEAD(&mdsc->caps_list);
spin_lock_init(&mdsc->caps_list_lock);
}
void ceph_caps_finalize(struct ceph_mds_client *mdsc)
{
struct ceph_cap *cap;
spin_lock(&mdsc->caps_list_lock);
while (!list_empty(&mdsc->caps_list)) {
cap = list_first_entry(&mdsc->caps_list,
struct ceph_cap, caps_item);
list_del(&cap->caps_item);
kmem_cache_free(ceph_cap_cachep, cap);
}
mdsc->caps_total_count = 0;
mdsc->caps_avail_count = 0;
mdsc->caps_use_count = 0;
mdsc->caps_reserve_count = 0;
mdsc->caps_min_count = 0;
spin_unlock(&mdsc->caps_list_lock);
}
void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
{
spin_lock(&mdsc->caps_list_lock);
mdsc->caps_min_count += delta;
BUG_ON(mdsc->caps_min_count < 0);
spin_unlock(&mdsc->caps_list_lock);
}
void ceph_reserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx, int need)
{
int i;
struct ceph_cap *cap;
int have;
int alloc = 0;
LIST_HEAD(newcaps);
dout("reserve caps ctx=%p need=%d\n", ctx, need);
/* first reserve any caps that are already allocated */
spin_lock(&mdsc->caps_list_lock);
if (mdsc->caps_avail_count >= need)
have = need;
else
have = mdsc->caps_avail_count;
mdsc->caps_avail_count -= have;
mdsc->caps_reserve_count += have;
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count +
mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
for (i = have; i < need; i++) {
cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
if (!cap)
break;
list_add(&cap->caps_item, &newcaps);
alloc++;
}
/* we didn't manage to reserve as much as we needed */
if (have + alloc != need)
pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
ctx, need, have + alloc);
spin_lock(&mdsc->caps_list_lock);
mdsc->caps_total_count += alloc;
mdsc->caps_reserve_count += alloc;
list_splice(&newcaps, &mdsc->caps_list);
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count +
mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
ctx->count = need;
dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
ctx, mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
}
int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx)
{
dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
if (ctx->count) {
spin_lock(&mdsc->caps_list_lock);
BUG_ON(mdsc->caps_reserve_count < ctx->count);
mdsc->caps_reserve_count -= ctx->count;
mdsc->caps_avail_count += ctx->count;
ctx->count = 0;
dout("unreserve caps %d = %d used + %d resv + %d avail\n",
mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count +
mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
}
return 0;
}
struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx)
{
struct ceph_cap *cap = NULL;
/* temporary, until we do something about cap import/export */
if (!ctx) {
cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
if (cap) {
spin_lock(&mdsc->caps_list_lock);
mdsc->caps_use_count++;
mdsc->caps_total_count++;
spin_unlock(&mdsc->caps_list_lock);
}
return cap;
}
spin_lock(&mdsc->caps_list_lock);
dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
BUG_ON(!ctx->count);
BUG_ON(ctx->count > mdsc->caps_reserve_count);
BUG_ON(list_empty(&mdsc->caps_list));
ctx->count--;
mdsc->caps_reserve_count--;
mdsc->caps_use_count++;
cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
list_del(&cap->caps_item);
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count + mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
return cap;
}
void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
{
spin_lock(&mdsc->caps_list_lock);
dout("put_cap %p %d = %d used + %d resv + %d avail\n",
cap, mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
mdsc->caps_use_count--;
/*
* Keep some preallocated caps around (ceph_min_count), to
* avoid lots of free/alloc churn.
*/
if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
mdsc->caps_min_count) {
mdsc->caps_total_count--;
kmem_cache_free(ceph_cap_cachep, cap);
} else {
mdsc->caps_avail_count++;
list_add(&cap->caps_item, &mdsc->caps_list);
}
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count + mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
}
void ceph_reservation_status(struct ceph_fs_client *fsc,
int *total, int *avail, int *used, int *reserved,
int *min)
{
struct ceph_mds_client *mdsc = fsc->mdsc;
if (total)
*total = mdsc->caps_total_count;
if (avail)
*avail = mdsc->caps_avail_count;
if (used)
*used = mdsc->caps_use_count;
if (reserved)
*reserved = mdsc->caps_reserve_count;
if (min)
*min = mdsc->caps_min_count;
}
/*
* Find ceph_cap for given mds, if any.
*
* Called with i_ceph_lock held.
*/
static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
{
struct ceph_cap *cap;
struct rb_node *n = ci->i_caps.rb_node;
while (n) {
cap = rb_entry(n, struct ceph_cap, ci_node);
if (mds < cap->mds)
n = n->rb_left;
else if (mds > cap->mds)
n = n->rb_right;
else
return cap;
}
return NULL;
}
struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
{
struct ceph_cap *cap;
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
spin_unlock(&ci->i_ceph_lock);
return cap;
}
/*
* Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
*/
static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
{
struct ceph_cap *cap;
int mds = -1;
struct rb_node *p;
/* prefer mds with WR|BUFFER|EXCL caps */
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
mds = cap->mds;
if (cap->issued & (CEPH_CAP_FILE_WR |
CEPH_CAP_FILE_BUFFER |
CEPH_CAP_FILE_EXCL))
break;
}
return mds;
}
int ceph_get_cap_mds(struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int mds;
spin_lock(&ci->i_ceph_lock);
mds = __ceph_get_cap_mds(ceph_inode(inode));
spin_unlock(&ci->i_ceph_lock);
return mds;
}
/*
* Called under i_ceph_lock.
*/
static void __insert_cap_node(struct ceph_inode_info *ci,
struct ceph_cap *new)
{
struct rb_node **p = &ci->i_caps.rb_node;
struct rb_node *parent = NULL;
struct ceph_cap *cap = NULL;
while (*p) {
parent = *p;
cap = rb_entry(parent, struct ceph_cap, ci_node);
if (new->mds < cap->mds)
p = &(*p)->rb_left;
else if (new->mds > cap->mds)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new->ci_node, parent, p);
rb_insert_color(&new->ci_node, &ci->i_caps);
}
/*
* (re)set cap hold timeouts, which control the delayed release
* of unused caps back to the MDS. Should be called on cap use.
*/
static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
struct ceph_mount_options *ma = mdsc->fsc->mount_options;
ci->i_hold_caps_min = round_jiffies(jiffies +
ma->caps_wanted_delay_min * HZ);
ci->i_hold_caps_max = round_jiffies(jiffies +
ma->caps_wanted_delay_max * HZ);
dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
}
/*
* (Re)queue cap at the end of the delayed cap release list.
*
* If I_FLUSH is set, leave the inode at the front of the list.
*
* Caller holds i_ceph_lock
* -> we take mdsc->cap_delay_lock
*/
static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
__cap_set_timeouts(mdsc, ci);
dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
ci->i_ceph_flags, ci->i_hold_caps_max);
if (!mdsc->stopping) {
spin_lock(&mdsc->cap_delay_lock);
if (!list_empty(&ci->i_cap_delay_list)) {
if (ci->i_ceph_flags & CEPH_I_FLUSH)
goto no_change;
list_del_init(&ci->i_cap_delay_list);
}
list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
no_change:
spin_unlock(&mdsc->cap_delay_lock);
}
}
/*
* Queue an inode for immediate writeback. Mark inode with I_FLUSH,
* indicating we should send a cap message to flush dirty metadata
* asap, and move to the front of the delayed cap list.
*/
static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
spin_lock(&mdsc->cap_delay_lock);
ci->i_ceph_flags |= CEPH_I_FLUSH;
if (!list_empty(&ci->i_cap_delay_list))
list_del_init(&ci->i_cap_delay_list);
list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
spin_unlock(&mdsc->cap_delay_lock);
}
/*
* Cancel delayed work on cap.
*
* Caller must hold i_ceph_lock.
*/
static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
if (list_empty(&ci->i_cap_delay_list))
return;
spin_lock(&mdsc->cap_delay_lock);
list_del_init(&ci->i_cap_delay_list);
spin_unlock(&mdsc->cap_delay_lock);
}
/*
* Common issue checks for add_cap, handle_cap_grant.
*/
static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
unsigned issued)
{
unsigned had = __ceph_caps_issued(ci, NULL);
/*
* Each time we receive FILE_CACHE anew, we increment
* i_rdcache_gen.
*/
if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
(had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
ci->i_rdcache_gen++;
}
/*
* if we are newly issued FILE_SHARED, mark dir not complete; we
* don't know what happened to this directory while we didn't
* have the cap.
*/
if ((issued & CEPH_CAP_FILE_SHARED) &&
(had & CEPH_CAP_FILE_SHARED) == 0) {
ci->i_shared_gen++;
if (S_ISDIR(ci->vfs_inode.i_mode)) {
dout(" marking %p NOT complete\n", &ci->vfs_inode);
__ceph_dir_clear_complete(ci);
}
}
}
/*
* Add a capability under the given MDS session.
*
* Caller should hold session snap_rwsem (read) and s_mutex.
*
* @fmode is the open file mode, if we are opening a file, otherwise
* it is < 0. (This is so we can atomically add the cap and add an
* open file reference to it.)
*/
void ceph_add_cap(struct inode *inode,
struct ceph_mds_session *session, u64 cap_id,
int fmode, unsigned issued, unsigned wanted,
unsigned seq, unsigned mseq, u64 realmino, int flags,
struct ceph_cap **new_cap)
{
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap *cap;
int mds = session->s_mds;
int actual_wanted;
dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
session->s_mds, cap_id, ceph_cap_string(issued), seq);
/*
* If we are opening the file, include file mode wanted bits
* in wanted.
*/
if (fmode >= 0)
wanted |= ceph_caps_for_mode(fmode);
cap = __get_cap_for_mds(ci, mds);
if (!cap) {
cap = *new_cap;
*new_cap = NULL;
cap->issued = 0;
cap->implemented = 0;
cap->mds = mds;
cap->mds_wanted = 0;
cap->mseq = 0;
cap->ci = ci;
__insert_cap_node(ci, cap);
/* add to session cap list */
cap->session = session;
spin_lock(&session->s_cap_lock);
list_add_tail(&cap->session_caps, &session->s_caps);
session->s_nr_caps++;
spin_unlock(&session->s_cap_lock);
} else {
/*
* auth mds of the inode changed. we received the cap export
* message, but still haven't received the cap import message.
* handle_cap_export() updated the new auth MDS' cap.
*
* "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
* a message that was send before the cap import message. So
* don't remove caps.
*/
if (ceph_seq_cmp(seq, cap->seq) <= 0) {
WARN_ON(cap != ci->i_auth_cap);
WARN_ON(cap->cap_id != cap_id);
seq = cap->seq;
mseq = cap->mseq;
issued |= cap->issued;
flags |= CEPH_CAP_FLAG_AUTH;
}
}
if (!ci->i_snap_realm) {
/*
* add this inode to the appropriate snap realm
*/
struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
realmino);
if (realm) {
ceph_get_snap_realm(mdsc, realm);
spin_lock(&realm->inodes_with_caps_lock);
ci->i_snap_realm = realm;
list_add(&ci->i_snap_realm_item,
&realm->inodes_with_caps);
spin_unlock(&realm->inodes_with_caps_lock);
} else {
pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
realmino);
WARN_ON(!realm);
}
}
__check_cap_issue(ci, cap, issued);
/*
* If we are issued caps we don't want, or the mds' wanted
* value appears to be off, queue a check so we'll release
* later and/or update the mds wanted value.
*/
actual_wanted = __ceph_caps_wanted(ci);
if ((wanted & ~actual_wanted) ||
(issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
dout(" issued %s, mds wanted %s, actual %s, queueing\n",
ceph_cap_string(issued), ceph_cap_string(wanted),
ceph_cap_string(actual_wanted));
__cap_delay_requeue(mdsc, ci);
}
if (flags & CEPH_CAP_FLAG_AUTH) {
if (ci->i_auth_cap == NULL ||
ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) {
ci->i_auth_cap = cap;
cap->mds_wanted = wanted;
}
} else {
WARN_ON(ci->i_auth_cap == cap);
}
dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
ceph_cap_string(issued|cap->issued), seq, mds);
cap->cap_id = cap_id;
cap->issued = issued;
cap->implemented |= issued;
if (ceph_seq_cmp(mseq, cap->mseq) > 0)
cap->mds_wanted = wanted;
else
cap->mds_wanted |= wanted;
cap->seq = seq;
cap->issue_seq = seq;
cap->mseq = mseq;
cap->cap_gen = session->s_cap_gen;
if (fmode >= 0)
__ceph_get_fmode(ci, fmode);
}
/*
* Return true if cap has not timed out and belongs to the current
* generation of the MDS session (i.e. has not gone 'stale' due to
* us losing touch with the mds).
*/
static int __cap_is_valid(struct ceph_cap *cap)
{
unsigned long ttl;
u32 gen;
spin_lock(&cap->session->s_gen_ttl_lock);
gen = cap->session->s_cap_gen;
ttl = cap->session->s_cap_ttl;
spin_unlock(&cap->session->s_gen_ttl_lock);
if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
dout("__cap_is_valid %p cap %p issued %s "
"but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
return 0;
}
return 1;
}
/*
* Return set of valid cap bits issued to us. Note that caps time
* out, and may be invalidated in bulk if the client session times out
* and session->s_cap_gen is bumped.
*/
int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
{
int have = ci->i_snap_caps;
struct ceph_cap *cap;
struct rb_node *p;
if (implemented)
*implemented = 0;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (!__cap_is_valid(cap))
continue;
dout("__ceph_caps_issued %p cap %p issued %s\n",
&ci->vfs_inode, cap, ceph_cap_string(cap->issued));
have |= cap->issued;
if (implemented)
*implemented |= cap->implemented;
}
/*
* exclude caps issued by non-auth MDS, but are been revoking
* by the auth MDS. The non-auth MDS should be revoking/exporting
* these caps, but the message is delayed.
*/
if (ci->i_auth_cap) {
cap = ci->i_auth_cap;
have &= ~cap->implemented | cap->issued;
}
return have;
}
/*
* Get cap bits issued by caps other than @ocap
*/
int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
{
int have = ci->i_snap_caps;
struct ceph_cap *cap;
struct rb_node *p;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (cap == ocap)
continue;
if (!__cap_is_valid(cap))
continue;
have |= cap->issued;
}
return have;
}
/*
* Move a cap to the end of the LRU (oldest caps at list head, newest
* at list tail).
*/
static void __touch_cap(struct ceph_cap *cap)
{
struct ceph_mds_session *s = cap->session;
spin_lock(&s->s_cap_lock);
if (s->s_cap_iterator == NULL) {
dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
s->s_mds);
list_move_tail(&cap->session_caps, &s->s_caps);
} else {
dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
&cap->ci->vfs_inode, cap, s->s_mds);
}
spin_unlock(&s->s_cap_lock);
}
/*
* Check if we hold the given mask. If so, move the cap(s) to the
* front of their respective LRUs. (This is the preferred way for
* callers to check for caps they want.)
*/
int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
{
struct ceph_cap *cap;
struct rb_node *p;
int have = ci->i_snap_caps;
if ((have & mask) == mask) {
dout("__ceph_caps_issued_mask %p snap issued %s"
" (mask %s)\n", &ci->vfs_inode,
ceph_cap_string(have),
ceph_cap_string(mask));
return 1;
}
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (!__cap_is_valid(cap))
continue;
if ((cap->issued & mask) == mask) {
dout("__ceph_caps_issued_mask %p cap %p issued %s"
" (mask %s)\n", &ci->vfs_inode, cap,
ceph_cap_string(cap->issued),
ceph_cap_string(mask));
if (touch)
__touch_cap(cap);
return 1;
}
/* does a combination of caps satisfy mask? */
have |= cap->issued;
if ((have & mask) == mask) {
dout("__ceph_caps_issued_mask %p combo issued %s"
" (mask %s)\n", &ci->vfs_inode,
ceph_cap_string(cap->issued),
ceph_cap_string(mask));
if (touch) {
struct rb_node *q;
/* touch this + preceding caps */
__touch_cap(cap);
for (q = rb_first(&ci->i_caps); q != p;
q = rb_next(q)) {
cap = rb_entry(q, struct ceph_cap,
ci_node);
if (!__cap_is_valid(cap))
continue;
__touch_cap(cap);
}
}
return 1;
}
}
return 0;
}
/*
* Return true if mask caps are currently being revoked by an MDS.
*/
int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
struct ceph_cap *ocap, int mask)
{
struct ceph_cap *cap;
struct rb_node *p;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (cap != ocap &&
(cap->implemented & ~cap->issued & mask))
return 1;
}
return 0;
}
int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
{
struct inode *inode = &ci->vfs_inode;
int ret;
spin_lock(&ci->i_ceph_lock);
ret = __ceph_caps_revoking_other(ci, NULL, mask);
spin_unlock(&ci->i_ceph_lock);
dout("ceph_caps_revoking %p %s = %d\n", inode,
ceph_cap_string(mask), ret);
return ret;
}
int __ceph_caps_used(struct ceph_inode_info *ci)
{
int used = 0;
if (ci->i_pin_ref)
used |= CEPH_CAP_PIN;
if (ci->i_rd_ref)
used |= CEPH_CAP_FILE_RD;
if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
used |= CEPH_CAP_FILE_CACHE;
if (ci->i_wr_ref)
used |= CEPH_CAP_FILE_WR;
if (ci->i_wb_ref || ci->i_wrbuffer_ref)
used |= CEPH_CAP_FILE_BUFFER;
return used;
}
/*
* wanted, by virtue of open file modes
*/
int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
{
int want = 0;
int mode;
for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
if (ci->i_nr_by_mode[mode])
want |= ceph_caps_for_mode(mode);
return want;
}
/*
* Return caps we have registered with the MDS(s) as 'wanted'.
*/
int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
{
struct ceph_cap *cap;
struct rb_node *p;
int mds_wanted = 0;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (!__cap_is_valid(cap))
continue;
if (cap == ci->i_auth_cap)
mds_wanted |= cap->mds_wanted;
else
mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR);
}
return mds_wanted;
}
/*
* called under i_ceph_lock
*/
static int __ceph_is_any_caps(struct ceph_inode_info *ci)
{
return !RB_EMPTY_ROOT(&ci->i_caps);
}
int ceph_is_any_caps(struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int ret;
spin_lock(&ci->i_ceph_lock);
ret = __ceph_is_any_caps(ci);
spin_unlock(&ci->i_ceph_lock);
return ret;
}
/*
* Remove a cap. Take steps to deal with a racing iterate_session_caps.
*
* caller should hold i_ceph_lock.
* caller will not hold session s_mutex if called from destroy_inode.
*/
void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
{
struct ceph_mds_session *session = cap->session;
struct ceph_inode_info *ci = cap->ci;
struct ceph_mds_client *mdsc =
ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
int removed = 0;
dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
/* remove from session list */
spin_lock(&session->s_cap_lock);
/*
* s_cap_reconnect is protected by s_cap_lock. no one changes
* s_cap_gen while session is in the reconnect state.
*/
if (queue_release &&
(!session->s_cap_reconnect ||
cap->cap_gen == session->s_cap_gen))
__queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
cap->mseq, cap->issue_seq);
if (session->s_cap_iterator == cap) {
/* not yet, we are iterating over this very cap */
dout("__ceph_remove_cap delaying %p removal from session %p\n",
cap, cap->session);
} else {
list_del_init(&cap->session_caps);
session->s_nr_caps--;
cap->session = NULL;
removed = 1;
}
/* protect backpointer with s_cap_lock: see iterate_session_caps */
cap->ci = NULL;
spin_unlock(&session->s_cap_lock);
/* remove from inode list */
rb_erase(&cap->ci_node, &ci->i_caps);
if (ci->i_auth_cap == cap)
ci->i_auth_cap = NULL;
if (removed)
ceph_put_cap(mdsc, cap);
if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
struct ceph_snap_realm *realm = ci->i_snap_realm;
spin_lock(&realm->inodes_with_caps_lock);
list_del_init(&ci->i_snap_realm_item);
ci->i_snap_realm_counter++;
ci->i_snap_realm = NULL;
spin_unlock(&realm->inodes_with_caps_lock);
ceph_put_snap_realm(mdsc, realm);
}
if (!__ceph_is_any_real_caps(ci))
__cap_delay_cancel(mdsc, ci);
}
/*
* Build and send a cap message to the given MDS.
*
* Caller should be holding s_mutex.
*/
static int send_cap_msg(struct ceph_mds_session *session,
u64 ino, u64 cid, int op,
int caps, int wanted, int dirty,
u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
u64 size, u64 max_size,
struct timespec *mtime, struct timespec *atime,
u64 time_warp_seq,
kuid_t uid, kgid_t gid, umode_t mode,
u64 xattr_version,
struct ceph_buffer *xattrs_buf,
u64 follows)
{
struct ceph_mds_caps *fc;
struct ceph_msg *msg;
dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
" seq %u/%u mseq %u follows %lld size %llu/%llu"
" xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
ceph_cap_string(dirty),
seq, issue_seq, mseq, follows, size, max_size,
xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
if (!msg)
return -ENOMEM;
msg->hdr.tid = cpu_to_le64(flush_tid);
fc = msg->front.iov_base;
memset(fc, 0, sizeof(*fc));
fc->cap_id = cpu_to_le64(cid);
fc->op = cpu_to_le32(op);
fc->seq = cpu_to_le32(seq);
fc->issue_seq = cpu_to_le32(issue_seq);
fc->migrate_seq = cpu_to_le32(mseq);
fc->caps = cpu_to_le32(caps);
fc->wanted = cpu_to_le32(wanted);
fc->dirty = cpu_to_le32(dirty);
fc->ino = cpu_to_le64(ino);
fc->snap_follows = cpu_to_le64(follows);
fc->size = cpu_to_le64(size);
fc->max_size = cpu_to_le64(max_size);
if (mtime)
ceph_encode_timespec(&fc->mtime, mtime);
if (atime)
ceph_encode_timespec(&fc->atime, atime);
fc->time_warp_seq = cpu_to_le32(time_warp_seq);
fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
fc->mode = cpu_to_le32(mode);
fc->xattr_version = cpu_to_le64(xattr_version);
if (xattrs_buf) {
msg->middle = ceph_buffer_get(xattrs_buf);
fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
}
ceph_con_send(&session->s_con, msg);
return 0;
}
void __queue_cap_release(struct ceph_mds_session *session,
u64 ino, u64 cap_id, u32 migrate_seq,
u32 issue_seq)
{
struct ceph_msg *msg;
struct ceph_mds_cap_release *head;
struct ceph_mds_cap_item *item;
BUG_ON(!session->s_num_cap_releases);
msg = list_first_entry(&session->s_cap_releases,
struct ceph_msg, list_head);
dout(" adding %llx release to mds%d msg %p (%d left)\n",
ino, session->s_mds, msg, session->s_num_cap_releases);
BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
head = msg->front.iov_base;
le32_add_cpu(&head->num, 1);
item = msg->front.iov_base + msg->front.iov_len;
item->ino = cpu_to_le64(ino);
item->cap_id = cpu_to_le64(cap_id);
item->migrate_seq = cpu_to_le32(migrate_seq);
item->seq = cpu_to_le32(issue_seq);
session->s_num_cap_releases--;
msg->front.iov_len += sizeof(*item);
if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
dout(" release msg %p full\n", msg);
list_move_tail(&msg->list_head, &session->s_cap_releases_done);
} else {
dout(" release msg %p at %d/%d (%d)\n", msg,
(int)le32_to_cpu(head->num),
(int)CEPH_CAPS_PER_RELEASE,
(int)msg->front.iov_len);
}
}
/*
* Queue cap releases when an inode is dropped from our cache. Since
* inode is about to be destroyed, there is no need for i_ceph_lock.
*/
void ceph_queue_caps_release(struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct rb_node *p;
p = rb_first(&ci->i_caps);
while (p) {
struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
p = rb_next(p);
__ceph_remove_cap(cap, true);
}
}
/*
* Send a cap msg on the given inode. Update our caps state, then
* drop i_ceph_lock and send the message.
*
* Make note of max_size reported/requested from mds, revoked caps
* that have now been implemented.
*
* Make half-hearted attempt ot to invalidate page cache if we are
* dropping RDCACHE. Note that this will leave behind locked pages
* that we'll then need to deal with elsewhere.
*
* Return non-zero if delayed release, or we experienced an error
* such that the caller should requeue + retry later.
*
* called with i_ceph_lock, then drops it.
* caller should hold snap_rwsem (read), s_mutex.
*/
static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
int op, int used, int want, int retain, int flushing,
unsigned *pflush_tid)
__releases(cap->ci->i_ceph_lock)
{
struct ceph_inode_info *ci = cap->ci;
struct inode *inode = &ci->vfs_inode;
u64 cap_id = cap->cap_id;
int held, revoking, dropping, keep;
u64 seq, issue_seq, mseq, time_warp_seq, follows;
u64 size, max_size;
struct timespec mtime, atime;
int wake = 0;
umode_t mode;
kuid_t uid;
kgid_t gid;
struct ceph_mds_session *session;
u64 xattr_version = 0;
struct ceph_buffer *xattr_blob = NULL;
int delayed = 0;
u64 flush_tid = 0;
int i;
int ret;
held = cap->issued | cap->implemented;
revoking = cap->implemented & ~cap->issued;
retain &= ~revoking;
dropping = cap->issued & ~retain;
dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
inode, cap, cap->session,
ceph_cap_string(held), ceph_cap_string(held & retain),
ceph_cap_string(revoking));
BUG_ON((retain & CEPH_CAP_PIN) == 0);
session = cap->session;
/* don't release wanted unless we've waited a bit. */
if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
time_before(jiffies, ci->i_hold_caps_min)) {
dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
ceph_cap_string(cap->issued),
ceph_cap_string(cap->issued & retain),
ceph_cap_string(cap->mds_wanted),
ceph_cap_string(want));
want |= cap->mds_wanted;
retain |= cap->issued;
delayed = 1;
}
ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
cap->issued &= retain; /* drop bits we don't want */
if (cap->implemented & ~cap->issued) {
/*
* Wake up any waiters on wanted -> needed transition.
* This is due to the weird transition from buffered
* to sync IO... we need to flush dirty pages _before_
* allowing sync writes to avoid reordering.
*/
wake = 1;
}
cap->implemented &= cap->issued | used;
cap->mds_wanted = want;
if (flushing) {
/*
* assign a tid for flush operations so we can avoid
* flush1 -> dirty1 -> flush2 -> flushack1 -> mark
* clean type races. track latest tid for every bit
* so we can handle flush AxFw, flush Fw, and have the
* first ack clean Ax.
*/
flush_tid = ++ci->i_cap_flush_last_tid;
if (pflush_tid)
*pflush_tid = flush_tid;
dout(" cap_flush_tid %d\n", (int)flush_tid);
for (i = 0; i < CEPH_CAP_BITS; i++)
if (flushing & (1 << i))
ci->i_cap_flush_tid[i] = flush_tid;
follows = ci->i_head_snapc->seq;
} else {
follows = 0;
}
keep = cap->implemented;
seq = cap->seq;
issue_seq = cap->issue_seq;
mseq = cap->mseq;
size = inode->i_size;
ci->i_reported_size = size;
max_size = ci->i_wanted_max_size;
ci->i_requested_max_size = max_size;
mtime = inode->i_mtime;
atime = inode->i_atime;
time_warp_seq = ci->i_time_warp_seq;
uid = inode->i_uid;
gid = inode->i_gid;
mode = inode->i_mode;
if (flushing & CEPH_CAP_XATTR_EXCL) {
__ceph_build_xattrs_blob(ci);
xattr_blob = ci->i_xattrs.blob;
xattr_version = ci->i_xattrs.version;
}
spin_unlock(&ci->i_ceph_lock);
ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
size, max_size, &mtime, &atime, time_warp_seq,
uid, gid, mode, xattr_version, xattr_blob,
follows);
if (ret < 0) {
dout("error sending cap msg, must requeue %p\n", inode);
delayed = 1;
}
if (wake)
wake_up_all(&ci->i_cap_wq);
return delayed;
}
/*
* When a snapshot is taken, clients accumulate dirty metadata on
* inodes with capabilities in ceph_cap_snaps to describe the file
* state at the time the snapshot was taken. This must be flushed
* asynchronously back to the MDS once sync writes complete and dirty
* data is written out.
*
* Unless @again is true, skip cap_snaps that were already sent to
* the MDS (i.e., during this session).
*
* Called under i_ceph_lock. Takes s_mutex as needed.
*/
void __ceph_flush_snaps(struct ceph_inode_info *ci,
struct ceph_mds_session **psession,
int again)
__releases(ci->i_ceph_lock)
__acquires(ci->i_ceph_lock)
{
struct inode *inode = &ci->vfs_inode;
int mds;
struct ceph_cap_snap *capsnap;
u32 mseq;
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
session->s_mutex */
u64 next_follows = 0; /* keep track of how far we've gotten through the
i_cap_snaps list, and skip these entries next time
around to avoid an infinite loop */
if (psession)
session = *psession;
dout("__flush_snaps %p\n", inode);
retry:
list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
/* avoid an infiniute loop after retry */
if (capsnap->follows < next_follows)
continue;
/*
* we need to wait for sync writes to complete and for dirty
* pages to be written out.
*/
if (capsnap->dirty_pages || capsnap->writing)
break;
/*
* if cap writeback already occurred, we should have dropped
* the capsnap in ceph_put_wrbuffer_cap_refs.
*/
BUG_ON(capsnap->dirty == 0);
/* pick mds, take s_mutex */
if (ci->i_auth_cap == NULL) {
dout("no auth cap (migrating?), doing nothing\n");
goto out;
}
/* only flush each capsnap once */
if (!again && !list_empty(&capsnap->flushing_item)) {
dout("already flushed %p, skipping\n", capsnap);
continue;
}
mds = ci->i_auth_cap->session->s_mds;
mseq = ci->i_auth_cap->mseq;
if (session && session->s_mds != mds) {
dout("oops, wrong session %p mutex\n", session);
mutex_unlock(&session->s_mutex);
ceph_put_mds_session(session);
session = NULL;
}
if (!session) {
spin_unlock(&ci->i_ceph_lock);
mutex_lock(&mdsc->mutex);
session = __ceph_lookup_mds_session(mdsc, mds);
mutex_unlock(&mdsc->mutex);
if (session) {
dout("inverting session/ino locks on %p\n",
session);
mutex_lock(&session->s_mutex);
}
/*
* if session == NULL, we raced against a cap
* deletion or migration. retry, and we'll
* get a better @mds value next time.
*/
spin_lock(&ci->i_ceph_lock);
goto retry;
}
capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
atomic_inc(&capsnap->nref);
if (!list_empty(&capsnap->flushing_item))
list_del_init(&capsnap->flushing_item);
list_add_tail(&capsnap->flushing_item,
&session->s_cap_snaps_flushing);
spin_unlock(&ci->i_ceph_lock);
dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
inode, capsnap, capsnap->follows, capsnap->flush_tid);
send_cap_msg(session, ceph_vino(inode).ino, 0,
CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
capsnap->size, 0,
&capsnap->mtime, &capsnap->atime,
capsnap->time_warp_seq,
capsnap->uid, capsnap->gid, capsnap->mode,
capsnap->xattr_version, capsnap->xattr_blob,
capsnap->follows);
next_follows = capsnap->follows + 1;
ceph_put_cap_snap(capsnap);
spin_lock(&ci->i_ceph_lock);
goto retry;
}
/* we flushed them all; remove this inode from the queue */
spin_lock(&mdsc->snap_flush_lock);
list_del_init(&ci->i_snap_flush_item);
spin_unlock(&mdsc->snap_flush_lock);
out:
if (psession)
*psession = session;
else if (session) {
mutex_unlock(&session->s_mutex);
ceph_put_mds_session(session);
}
}
static void ceph_flush_snaps(struct ceph_inode_info *ci)
{
spin_lock(&ci->i_ceph_lock);
__ceph_flush_snaps(ci, NULL, 0);
spin_unlock(&ci->i_ceph_lock);
}
/*
* Mark caps dirty. If inode is newly dirty, return the dirty flags.
* Caller is then responsible for calling __mark_inode_dirty with the
* returned flags value.
*/
int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
{
struct ceph_mds_client *mdsc =
ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
struct inode *inode = &ci->vfs_inode;
int was = ci->i_dirty_caps;
int dirty = 0;
dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
ceph_cap_string(mask), ceph_cap_string(was),
ceph_cap_string(was | mask));
ci->i_dirty_caps |= mask;
if (was == 0) {
if (!ci->i_head_snapc)
ci->i_head_snapc = ceph_get_snap_context(
ci->i_snap_realm->cached_context);
dout(" inode %p now dirty snapc %p auth cap %p\n",
&ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
WARN_ON(!ci->i_auth_cap);
BUG_ON(!list_empty(&ci->i_dirty_item));
spin_lock(&mdsc->cap_dirty_lock);
list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
spin_unlock(&mdsc->cap_dirty_lock);
if (ci->i_flushing_caps == 0) {
ihold(inode);
dirty |= I_DIRTY_SYNC;
}
}
BUG_ON(list_empty(&ci->i_dirty_item));
if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
(mask & CEPH_CAP_FILE_BUFFER))
dirty |= I_DIRTY_DATASYNC;
__cap_delay_requeue(mdsc, ci);
return dirty;
}
/*
* Add dirty inode to the flushing list. Assigned a seq number so we
* can wait for caps to flush without starving.
*
* Called under i_ceph_lock.
*/
static int __mark_caps_flushing(struct inode *inode,
struct ceph_mds_session *session)
{
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
int flushing;
BUG_ON(ci->i_dirty_caps == 0);
BUG_ON(list_empty(&ci->i_dirty_item));
flushing = ci->i_dirty_caps;
dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
ceph_cap_string(flushing),
ceph_cap_string(ci->i_flushing_caps),
ceph_cap_string(ci->i_flushing_caps | flushing));
ci->i_flushing_caps |= flushing;
ci->i_dirty_caps = 0;
dout(" inode %p now !dirty\n", inode);
spin_lock(&mdsc->cap_dirty_lock);
list_del_init(&ci->i_dirty_item);
ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
if (list_empty(&ci->i_flushing_item)) {
list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
mdsc->num_cap_flushing++;
dout(" inode %p now flushing seq %lld\n", inode,
ci->i_cap_flush_seq);
} else {
list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
dout(" inode %p now flushing (more) seq %lld\n", inode,
ci->i_cap_flush_seq);
}
spin_unlock(&mdsc->cap_dirty_lock);
return flushing;
}
/*
* try to invalidate mapping pages without blocking.
*/
static int try_nonblocking_invalidate(struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
u32 invalidating_gen = ci->i_rdcache_gen;
spin_unlock(&ci->i_ceph_lock);
invalidate_mapping_pages(&inode->i_data, 0, -1);
spin_lock(&ci->i_ceph_lock);
if (inode->i_data.nrpages == 0 &&
invalidating_gen == ci->i_rdcache_gen) {
/* success. */
dout("try_nonblocking_invalidate %p success\n", inode);
/* save any racing async invalidate some trouble */
ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
return 0;
}
dout("try_nonblocking_invalidate %p failed\n", inode);
return -1;
}
/*
* Swiss army knife function to examine currently used and wanted
* versus held caps. Release, flush, ack revoked caps to mds as
* appropriate.
*
* CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
* cap release further.
* CHECK_CAPS_AUTHONLY - we should only check the auth cap
* CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
* further delay.
*/
void ceph_check_caps(struct ceph_inode_info *ci, int flags,
struct ceph_mds_session *session)
{
struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
struct ceph_mds_client *mdsc = fsc->mdsc;
struct inode *inode = &ci->vfs_inode;
struct ceph_cap *cap;
int file_wanted, used, cap_used;
int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
int issued, implemented, want, retain, revoking, flushing = 0;
int mds = -1; /* keep track of how far we've gone through i_caps list
to avoid an infinite loop on retry */
struct rb_node *p;
int tried_invalidate = 0;
int delayed = 0, sent = 0, force_requeue = 0, num;
int queue_invalidate = 0;
int is_delayed = flags & CHECK_CAPS_NODELAY;
/* if we are unmounting, flush any unused caps immediately. */
if (mdsc->stopping)
is_delayed = 1;
spin_lock(&ci->i_ceph_lock);
if (ci->i_ceph_flags & CEPH_I_FLUSH)
flags |= CHECK_CAPS_FLUSH;
/* flush snaps first time around only */
if (!list_empty(&ci->i_cap_snaps))
__ceph_flush_snaps(ci, &session, 0);
goto retry_locked;
retry:
spin_lock(&ci->i_ceph_lock);
retry_locked:
file_wanted = __ceph_caps_file_wanted(ci);
used = __ceph_caps_used(ci);
want = file_wanted | used;
issued = __ceph_caps_issued(ci, &implemented);
revoking = implemented & ~issued;
retain = want | CEPH_CAP_PIN;
if (!mdsc->stopping && inode->i_nlink > 0) {
if (want) {
retain |= CEPH_CAP_ANY; /* be greedy */
} else {
retain |= CEPH_CAP_ANY_SHARED;
/*
* keep RD only if we didn't have the file open RW,
* because then the mds would revoke it anyway to
* journal max_size=0.
*/
if (ci->i_max_size == 0)
retain |= CEPH_CAP_ANY_RD;
}
}
dout("check_caps %p file_want %s used %s dirty %s flushing %s"
" issued %s revoking %s retain %s %s%s%s\n", inode,
ceph_cap_string(file_wanted),
ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
ceph_cap_string(ci->i_flushing_caps),
ceph_cap_string(issued), ceph_cap_string(revoking),
ceph_cap_string(retain),
(flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
(flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
(flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
/*
* If we no longer need to hold onto old our caps, and we may
* have cached pages, but don't want them, then try to invalidate.
* If we fail, it's because pages are locked.... try again later.
*/
if ((!is_delayed || mdsc->stopping) &&
ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
inode->i_data.nrpages && /* have cached pages */
(file_wanted == 0 || /* no open files */
(revoking & (CEPH_CAP_FILE_CACHE|
CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
!tried_invalidate) {
dout("check_caps trying to invalidate on %p\n", inode);
if (try_nonblocking_invalidate(inode) < 0) {
if (revoking & (CEPH_CAP_FILE_CACHE|
CEPH_CAP_FILE_LAZYIO)) {
dout("check_caps queuing invalidate\n");
queue_invalidate = 1;
ci->i_rdcache_revoking = ci->i_rdcache_gen;
} else {
dout("check_caps failed to invalidate pages\n");
/* we failed to invalidate pages. check these
caps again later. */
force_requeue = 1;
__cap_set_timeouts(mdsc, ci);
}
}
tried_invalidate = 1;
goto retry_locked;
}
num = 0;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
num++;
/* avoid looping forever */
if (mds >= cap->mds ||
((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
continue;
/* NOTE: no side-effects allowed, until we take s_mutex */
cap_used = used;
if (ci->i_auth_cap && cap != ci->i_auth_cap)
cap_used &= ~ci->i_auth_cap->issued;
revoking = cap->implemented & ~cap->issued;
dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
cap->mds, cap, ceph_cap_string(cap->issued),
ceph_cap_string(cap_used),
ceph_cap_string(cap->implemented),
ceph_cap_string(revoking));
if (cap == ci->i_auth_cap &&
(cap->issued & CEPH_CAP_FILE_WR)) {
/* request larger max_size from MDS? */
if (ci->i_wanted_max_size > ci->i_max_size &&
ci->i_wanted_max_size > ci->i_requested_max_size) {
dout("requesting new max_size\n");
goto ack;
}
/* approaching file_max? */
if ((inode->i_size << 1) >= ci->i_max_size &&
(ci->i_reported_size << 1) < ci->i_max_size) {
dout("i_size approaching max_size\n");
goto ack;
}
}
/* flush anything dirty? */
if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
ci->i_dirty_caps) {
dout("flushing dirty caps\n");
goto ack;
}
/* completed revocation? going down and there are no caps? */
if (revoking && (revoking & cap_used) == 0) {
dout("completed revocation of %s\n",
ceph_cap_string(cap->implemented & ~cap->issued));
goto ack;
}
/* want more caps from mds? */
if (want & ~(cap->mds_wanted | cap->issued))
goto ack;
/* things we might delay */
if ((cap->issued & ~retain) == 0 &&
cap->mds_wanted == want)
continue; /* nope, all good */
if (is_delayed)
goto ack;
/* delay? */
if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
time_before(jiffies, ci->i_hold_caps_max)) {
dout(" delaying issued %s -> %s, wanted %s -> %s\n",
ceph_cap_string(cap->issued),
ceph_cap_string(cap->issued & retain),
ceph_cap_string(cap->mds_wanted),
ceph_cap_string(want));
delayed++;
continue;
}
ack:
if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
dout(" skipping %p I_NOFLUSH set\n", inode);
continue;
}
if (session && session != cap->session) {
dout("oops, wrong session %p mutex\n", session);
mutex_unlock(&session->s_mutex);
session = NULL;
}
if (!session) {
session = cap->session;
if (mutex_trylock(&session->s_mutex) == 0) {
dout("inverting session/ino locks on %p\n",
session);
spin_unlock(&ci->i_ceph_lock);
if (took_snap_rwsem) {
up_read(&mdsc->snap_rwsem);
took_snap_rwsem = 0;
}
mutex_lock(&session->s_mutex);
goto retry;
}
}
/* take snap_rwsem after session mutex */
if (!took_snap_rwsem) {
if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
dout("inverting snap/in locks on %p\n",
inode);
spin_unlock(&ci->i_ceph_lock);
down_read(&mdsc->snap_rwsem);
took_snap_rwsem = 1;
goto retry;
}
took_snap_rwsem = 1;
}
if (cap == ci->i_auth_cap && ci->i_dirty_caps)
flushing = __mark_caps_flushing(inode, session);
else
flushing = 0;
mds = cap->mds; /* remember mds, so we don't repeat */
sent++;
/* __send_cap drops i_ceph_lock */
delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
want, retain, flushing, NULL);
goto retry; /* retake i_ceph_lock and restart our cap scan. */
}
/*
* Reschedule delayed caps release if we delayed anything,
* otherwise cancel.
*/
if (delayed && is_delayed)
force_requeue = 1; /* __send_cap delayed release; requeue */
if (!delayed && !is_delayed)
__cap_delay_cancel(mdsc, ci);
else if (!is_delayed || force_requeue)
__cap_delay_requeue(mdsc, ci);
spin_unlock(&ci->i_ceph_lock);
if (queue_invalidate)
ceph_queue_invalidate(inode);
if (session)
mutex_unlock(&session->s_mutex);
if (took_snap_rwsem)
up_read(&mdsc->snap_rwsem);
}
/*
* Try to flush dirty caps back to the auth mds.
*/
static int try_flush_caps(struct inode *inode, unsigned *flush_tid)
{
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
int flushing = 0;
struct ceph_mds_session *session = NULL;
retry:
spin_lock(&ci->i_ceph_lock);
if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
goto out;
}
if (ci->i_dirty_caps && ci->i_auth_cap) {
struct ceph_cap *cap = ci->i_auth_cap;
int used = __ceph_caps_used(ci);
int want = __ceph_caps_wanted(ci);
int delayed;
if (!session || session != cap->session) {
spin_unlock(&ci->i_ceph_lock);
if (session)
mutex_unlock(&session->s_mutex);
session = cap->session;
mutex_lock(&session->s_mutex);
goto retry;
}
if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
goto out;
flushing = __mark_caps_flushing(inode, session);
/* __send_cap drops i_ceph_lock */
delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
cap->issued | cap->implemented, flushing,
flush_tid);
if (!delayed)
goto out_unlocked;
spin_lock(&ci->i_ceph_lock);
__cap_delay_requeue(mdsc, ci);
}
out:
spin_unlock(&ci->i_ceph_lock);
out_unlocked:
if (session)
mutex_unlock(&session->s_mutex);
return flushing;
}
/*
* Return true if we've flushed caps through the given flush_tid.
*/
static int caps_are_flushed(struct inode *inode, unsigned tid)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int i, ret = 1;
spin_lock(&ci->i_ceph_lock);
for (i = 0; i < CEPH_CAP_BITS; i++)
if ((ci->i_flushing_caps & (1 << i)) &&
ci->i_cap_flush_tid[i] <= tid) {
/* still flushing this bit */
ret = 0;
break;
}
spin_unlock(&ci->i_ceph_lock);
return ret;
}
/*
* Wait on any unsafe replies for the given inode. First wait on the
* newest request, and make that the upper bound. Then, if there are
* more requests, keep waiting on the oldest as long as it is still older
* than the original request.
*/
static void sync_write_wait(struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct list_head *head = &ci->i_unsafe_writes;
struct ceph_osd_request *req;
u64 last_tid;
spin_lock(&ci->i_unsafe_lock);
if (list_empty(head))
goto out;
/* set upper bound as _last_ entry in chain */
req = list_entry(head->prev, struct ceph_osd_request,
r_unsafe_item);
last_tid = req->r_tid;
do {
ceph_osdc_get_request(req);
spin_unlock(&ci->i_unsafe_lock);
dout("sync_write_wait on tid %llu (until %llu)\n",
req->r_tid, last_tid);
wait_for_completion(&req->r_safe_completion);
spin_lock(&ci->i_unsafe_lock);
ceph_osdc_put_request(req);
/*
* from here on look at first entry in chain, since we
* only want to wait for anything older than last_tid
*/
if (list_empty(head))
break;
req = list_entry(head->next, struct ceph_osd_request,
r_unsafe_item);
} while (req->r_tid < last_tid);
out:
spin_unlock(&ci->i_unsafe_lock);
}
int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct ceph_inode_info *ci = ceph_inode(inode);
unsigned flush_tid;
int ret;
int dirty;
dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
sync_write_wait(inode);
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (ret < 0)
return ret;
mutex_lock(&inode->i_mutex);
dirty = try_flush_caps(inode, &flush_tid);
dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
/*
* only wait on non-file metadata writeback (the mds
* can recover size and mtime, so we don't need to
* wait for that)
*/
if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
dout("fsync waiting for flush_tid %u\n", flush_tid);
ret = wait_event_interruptible(ci->i_cap_wq,
caps_are_flushed(inode, flush_tid));
}
dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
mutex_unlock(&inode->i_mutex);
return ret;
}
/*
* Flush any dirty caps back to the mds. If we aren't asked to wait,
* queue inode for flush but don't do so immediately, because we can
* get by with fewer MDS messages if we wait for data writeback to
* complete first.
*/
int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct ceph_inode_info *ci = ceph_inode(inode);
unsigned flush_tid;
int err = 0;
int dirty;
int wait = wbc->sync_mode == WB_SYNC_ALL;
dout("write_inode %p wait=%d\n", inode, wait);
if (wait) {
dirty = try_flush_caps(inode, &flush_tid);
if (dirty)
err = wait_event_interruptible(ci->i_cap_wq,
caps_are_flushed(inode, flush_tid));
} else {
struct ceph_mds_client *mdsc =
ceph_sb_to_client(inode->i_sb)->mdsc;
spin_lock(&ci->i_ceph_lock);
if (__ceph_caps_dirty(ci))
__cap_delay_requeue_front(mdsc, ci);
spin_unlock(&ci->i_ceph_lock);
}
return err;
}
/*
* After a recovering MDS goes active, we need to resend any caps
* we were flushing.
*
* Caller holds session->s_mutex.
*/
static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_cap_snap *capsnap;
dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
flushing_item) {
struct ceph_inode_info *ci = capsnap->ci;
struct inode *inode = &ci->vfs_inode;
struct ceph_cap *cap;
spin_lock(&ci->i_ceph_lock);
cap = ci->i_auth_cap;
if (cap && cap->session == session) {
dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
cap, capsnap);
__ceph_flush_snaps(ci, &session, 1);
} else {
pr_err("%p auth cap %p not mds%d ???\n", inode,
cap, session->s_mds);
}
spin_unlock(&ci->i_ceph_lock);
}
}
void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_inode_info *ci;
kick_flushing_capsnaps(mdsc, session);
dout("kick_flushing_caps mds%d\n", session->s_mds);
list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
struct inode *inode = &ci->vfs_inode;
struct ceph_cap *cap;
int delayed = 0;
spin_lock(&ci->i_ceph_lock);
cap = ci->i_auth_cap;
if (cap && cap->session == session) {
dout("kick_flushing_caps %p cap %p %s\n", inode,
cap, ceph_cap_string(ci->i_flushing_caps));
delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
__ceph_caps_used(ci),
__ceph_caps_wanted(ci),
cap->issued | cap->implemented,
ci->i_flushing_caps, NULL);
if (delayed) {
spin_lock(&ci->i_ceph_lock);
__cap_delay_requeue(mdsc, ci);
spin_unlock(&ci->i_ceph_lock);
}
} else {
pr_err("%p auth cap %p not mds%d ???\n", inode,
cap, session->s_mds);
spin_unlock(&ci->i_ceph_lock);
}
}
}
static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap *cap;
int delayed = 0;
spin_lock(&ci->i_ceph_lock);
cap = ci->i_auth_cap;
dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
__ceph_flush_snaps(ci, &session, 1);
if (ci->i_flushing_caps) {
spin_lock(&mdsc->cap_dirty_lock);
list_move_tail(&ci->i_flushing_item,
&cap->session->s_cap_flushing);
spin_unlock(&mdsc->cap_dirty_lock);
delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
__ceph_caps_used(ci),
__ceph_caps_wanted(ci),
cap->issued | cap->implemented,
ci->i_flushing_caps, NULL);
if (delayed) {
spin_lock(&ci->i_ceph_lock);
__cap_delay_requeue(mdsc, ci);
spin_unlock(&ci->i_ceph_lock);
}
} else {
spin_unlock(&ci->i_ceph_lock);
}
}
/*
* Take references to capabilities we hold, so that we don't release
* them to the MDS prematurely.
*
* Protected by i_ceph_lock.
*/
static void __take_cap_refs(struct ceph_inode_info *ci, int got)
{
if (got & CEPH_CAP_PIN)
ci->i_pin_ref++;
if (got & CEPH_CAP_FILE_RD)
ci->i_rd_ref++;
if (got & CEPH_CAP_FILE_CACHE)
ci->i_rdcache_ref++;
if (got & CEPH_CAP_FILE_WR)
ci->i_wr_ref++;
if (got & CEPH_CAP_FILE_BUFFER) {
if (ci->i_wb_ref == 0)
ihold(&ci->vfs_inode);
ci->i_wb_ref++;
dout("__take_cap_refs %p wb %d -> %d (?)\n",
&ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
}
}
/*
* Try to grab cap references. Specify those refs we @want, and the
* minimal set we @need. Also include the larger offset we are writing
* to (when applicable), and check against max_size here as well.
* Note that caller is responsible for ensuring max_size increases are
* requested from the MDS.
*/
static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
int *got, loff_t endoff, int *check_max, int *err)
{
struct inode *inode = &ci->vfs_inode;
int ret = 0;
int have, implemented;
int file_wanted;
dout("get_cap_refs %p need %s want %s\n", inode,
ceph_cap_string(need), ceph_cap_string(want));
spin_lock(&ci->i_ceph_lock);
/* make sure file is actually open */
file_wanted = __ceph_caps_file_wanted(ci);
if ((file_wanted & need) == 0) {
dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
ceph_cap_string(need), ceph_cap_string(file_wanted));
*err = -EBADF;
ret = 1;
goto out;
}
/* finish pending truncate */
while (ci->i_truncate_pending) {
spin_unlock(&ci->i_ceph_lock);
__ceph_do_pending_vmtruncate(inode);
spin_lock(&ci->i_ceph_lock);
}
have = __ceph_caps_issued(ci, &implemented);
if (have & need & CEPH_CAP_FILE_WR) {
if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
inode, endoff, ci->i_max_size);
if (endoff > ci->i_requested_max_size) {
*check_max = 1;
ret = 1;
}
goto out;
}
/*
* If a sync write is in progress, we must wait, so that we
* can get a final snapshot value for size+mtime.
*/
if (__ceph_have_pending_cap_snap(ci)) {
dout("get_cap_refs %p cap_snap_pending\n", inode);
goto out;
}
}
if ((have & need) == need) {
/*
* Look at (implemented & ~have & not) so that we keep waiting
* on transition from wanted -> needed caps. This is needed
* for WRBUFFER|WR -> WR to avoid a new WR sync write from
* going before a prior buffered writeback happens.
*/
int not = want & ~(have & need);
int revoking = implemented & ~have;
dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
inode, ceph_cap_string(have), ceph_cap_string(not),
ceph_cap_string(revoking));
if ((revoking & not) == 0) {
*got = need | (have & want);
__take_cap_refs(ci, *got);
ret = 1;
}
} else {
dout("get_cap_refs %p have %s needed %s\n", inode,
ceph_cap_string(have), ceph_cap_string(need));
}
out:
spin_unlock(&ci->i_ceph_lock);
dout("get_cap_refs %p ret %d got %s\n", inode,
ret, ceph_cap_string(*got));
return ret;
}
/*
* Check the offset we are writing up to against our current
* max_size. If necessary, tell the MDS we want to write to
* a larger offset.
*/
static void check_max_size(struct inode *inode, loff_t endoff)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int check = 0;
/* do we need to explicitly request a larger max_size? */
spin_lock(&ci->i_ceph_lock);
if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
dout("write %p at large endoff %llu, req max_size\n",
inode, endoff);
ci->i_wanted_max_size = endoff;
}
/* duplicate ceph_check_caps()'s logic */
if (ci->i_auth_cap &&
(ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
ci->i_wanted_max_size > ci->i_max_size &&
ci->i_wanted_max_size > ci->i_requested_max_size)
check = 1;
spin_unlock(&ci->i_ceph_lock);
if (check)
ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
}
/*
* Wait for caps, and take cap references. If we can't get a WR cap
* due to a small max_size, make sure we check_max_size (and possibly
* ask the mds) so we don't get hung up indefinitely.
*/
int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
loff_t endoff)
{
int check_max, ret, err;
retry:
if (endoff > 0)
check_max_size(&ci->vfs_inode, endoff);
check_max = 0;
err = 0;
ret = wait_event_interruptible(ci->i_cap_wq,
try_get_cap_refs(ci, need, want,
got, endoff,
&check_max, &err));
if (err)
ret = err;
if (check_max)
goto retry;
return ret;
}
/*
* Take cap refs. Caller must already know we hold at least one ref
* on the caps in question or we don't know this is safe.
*/
void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
{
spin_lock(&ci->i_ceph_lock);
__take_cap_refs(ci, caps);
spin_unlock(&ci->i_ceph_lock);
}
/*
* Release cap refs.
*
* If we released the last ref on any given cap, call ceph_check_caps
* to release (or schedule a release).
*
* If we are releasing a WR cap (from a sync write), finalize any affected
* cap_snap, and wake up any waiters.
*/
void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
{
struct inode *inode = &ci->vfs_inode;
int last = 0, put = 0, flushsnaps = 0, wake = 0;
struct ceph_cap_snap *capsnap;
spin_lock(&ci->i_ceph_lock);
if (had & CEPH_CAP_PIN)
--ci->i_pin_ref;
if (had & CEPH_CAP_FILE_RD)
if (--ci->i_rd_ref == 0)
last++;
if (had & CEPH_CAP_FILE_CACHE)
if (--ci->i_rdcache_ref == 0)
last++;
if (had & CEPH_CAP_FILE_BUFFER) {
if (--ci->i_wb_ref == 0) {
last++;
put++;
}
dout("put_cap_refs %p wb %d -> %d (?)\n",
inode, ci->i_wb_ref+1, ci->i_wb_ref);
}
if (had & CEPH_CAP_FILE_WR)
if (--ci->i_wr_ref == 0) {
last++;
if (!list_empty(&ci->i_cap_snaps)) {
capsnap = list_first_entry(&ci->i_cap_snaps,
struct ceph_cap_snap,
ci_item);
if (capsnap->writing) {
capsnap->writing = 0;
flushsnaps =
__ceph_finish_cap_snap(ci,
capsnap);
wake = 1;
}
}
}
spin_unlock(&ci->i_ceph_lock);
dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
last ? " last" : "", put ? " put" : "");
if (last && !flushsnaps)
ceph_check_caps(ci, 0, NULL);
else if (flushsnaps)
ceph_flush_snaps(ci);
if (wake)
wake_up_all(&ci->i_cap_wq);
if (put)
iput(inode);
}
/*
* Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
* context. Adjust per-snap dirty page accounting as appropriate.
* Once all dirty data for a cap_snap is flushed, flush snapped file
* metadata back to the MDS. If we dropped the last ref, call
* ceph_check_caps.
*/
void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
struct ceph_snap_context *snapc)
{
struct inode *inode = &ci->vfs_inode;
int last = 0;
int complete_capsnap = 0;
int drop_capsnap = 0;
int found = 0;
struct ceph_cap_snap *capsnap = NULL;
spin_lock(&ci->i_ceph_lock);
ci->i_wrbuffer_ref -= nr;
last = !ci->i_wrbuffer_ref;
if (ci->i_head_snapc == snapc) {
ci->i_wrbuffer_ref_head -= nr;
if (ci->i_wrbuffer_ref_head == 0 &&
ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
BUG_ON(!ci->i_head_snapc);
ceph_put_snap_context(ci->i_head_snapc);
ci->i_head_snapc = NULL;
}
dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
inode,
ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
last ? " LAST" : "");
} else {
list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
if (capsnap->context == snapc) {
found = 1;
break;
}
}
BUG_ON(!found);
capsnap->dirty_pages -= nr;
if (capsnap->dirty_pages == 0) {
complete_capsnap = 1;
if (capsnap->dirty == 0)
/* cap writeback completed before we created
* the cap_snap; no FLUSHSNAP is needed */
drop_capsnap = 1;
}
dout("put_wrbuffer_cap_refs on %p cap_snap %p "
" snap %lld %d/%d -> %d/%d %s%s%s\n",
inode, capsnap, capsnap->context->seq,
ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
ci->i_wrbuffer_ref, capsnap->dirty_pages,
last ? " (wrbuffer last)" : "",
complete_capsnap ? " (complete capsnap)" : "",
drop_capsnap ? " (drop capsnap)" : "");
if (drop_capsnap) {
ceph_put_snap_context(capsnap->context);
list_del(&capsnap->ci_item);
list_del(&capsnap->flushing_item);
ceph_put_cap_snap(capsnap);
}
}
spin_unlock(&ci->i_ceph_lock);
if (last) {
ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
iput(inode);
} else if (complete_capsnap) {
ceph_flush_snaps(ci);
wake_up_all(&ci->i_cap_wq);
}
if (drop_capsnap)
iput(inode);
}
/*
* Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
*/
static void invalidate_aliases(struct inode *inode)
{
struct dentry *dn, *prev = NULL;
dout("invalidate_aliases inode %p\n", inode);
d_prune_aliases(inode);
/*
* For non-directory inode, d_find_alias() only returns
* hashed dentry. After calling d_invalidate(), the
* dentry becomes unhashed.
*
* For directory inode, d_find_alias() can return
* unhashed dentry. But directory inode should have
* one alias at most.
*/
while ((dn = d_find_alias(inode))) {
if (dn == prev) {
dput(dn);
break;
}
d_invalidate(dn);
if (prev)
dput(prev);
prev = dn;
}
if (prev)
dput(prev);
}
/*
* Handle a cap GRANT message from the MDS. (Note that a GRANT may
* actually be a revocation if it specifies a smaller cap set.)
*
* caller holds s_mutex and i_ceph_lock, we drop both.
*/
static void handle_cap_grant(struct ceph_mds_client *mdsc,
struct inode *inode, struct ceph_mds_caps *grant,
void *snaptrace, int snaptrace_len,
struct ceph_buffer *xattr_buf,
struct ceph_mds_session *session,
struct ceph_cap *cap, int issued)
__releases(ci->i_ceph_lock)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int mds = session->s_mds;
int seq = le32_to_cpu(grant->seq);
int newcaps = le32_to_cpu(grant->caps);
int used, wanted, dirty;
u64 size = le64_to_cpu(grant->size);
u64 max_size = le64_to_cpu(grant->max_size);
struct timespec mtime, atime, ctime;
int check_caps = 0;
bool wake = 0;
bool writeback = 0;
bool queue_trunc = 0;
bool queue_invalidate = 0;
bool queue_revalidate = 0;
bool deleted_inode = 0;
dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
inode, cap, mds, seq, ceph_cap_string(newcaps));
dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
inode->i_size);
/*
* auth mds of the inode changed. we received the cap export message,
* but still haven't received the cap import message. handle_cap_export
* updated the new auth MDS' cap.
*
* "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
* that was sent before the cap import message. So don't remove caps.
*/
if (ceph_seq_cmp(seq, cap->seq) <= 0) {
WARN_ON(cap != ci->i_auth_cap);
WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
seq = cap->seq;
newcaps |= cap->issued;
}
/*
* If CACHE is being revoked, and we have no dirty buffers,
* try to invalidate (once). (If there are dirty buffers, we
* will invalidate _after_ writeback.)
*/
if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
(newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
!ci->i_wrbuffer_ref) {
if (try_nonblocking_invalidate(inode)) {
/* there were locked pages.. invalidate later
in a separate thread. */
if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
queue_invalidate = 1;
ci->i_rdcache_revoking = ci->i_rdcache_gen;
}
}
ceph_fscache_invalidate(inode);
}
/* side effects now are allowed */
cap->cap_gen = session->s_cap_gen;
cap->seq = seq;
__check_cap_issue(ci, cap, newcaps);
if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
(issued & CEPH_CAP_AUTH_EXCL) == 0) {
inode->i_mode = le32_to_cpu(grant->mode);
inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
from_kuid(&init_user_ns, inode->i_uid),
from_kgid(&init_user_ns, inode->i_gid));
}
if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
(issued & CEPH_CAP_LINK_EXCL) == 0) {
set_nlink(inode, le32_to_cpu(grant->nlink));
if (inode->i_nlink == 0 &&
(newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
deleted_inode = 1;
}
if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
int len = le32_to_cpu(grant->xattr_len);
u64 version = le64_to_cpu(grant->xattr_version);
if (version > ci->i_xattrs.version) {
dout(" got new xattrs v%llu on %p len %d\n",
version, inode, len);
if (ci->i_xattrs.blob)
ceph_buffer_put(ci->i_xattrs.blob);
ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
ci->i_xattrs.version = version;
ceph_forget_all_cached_acls(inode);
}
}
/* Do we need to revalidate our fscache cookie. Don't bother on the
* first cache cap as we already validate at cookie creation time. */
if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
queue_revalidate = 1;
if (newcaps & CEPH_CAP_ANY_RD) {
/* ctime/mtime/atime? */
ceph_decode_timespec(&mtime, &grant->mtime);
ceph_decode_timespec(&atime, &grant->atime);
ceph_decode_timespec(&ctime, &grant->ctime);
ceph_fill_file_time(inode, issued,
le32_to_cpu(grant->time_warp_seq),
&ctime, &mtime, &atime);
}
if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) {
/* file layout may have changed */
ci->i_layout = grant->layout;
/* size/truncate_seq? */
queue_trunc = ceph_fill_file_size(inode, issued,
le32_to_cpu(grant->truncate_seq),
le64_to_cpu(grant->truncate_size),
size);
/* max size increase? */
if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
dout("max_size %lld -> %llu\n",
ci->i_max_size, max_size);
ci->i_max_size = max_size;
if (max_size >= ci->i_wanted_max_size) {
ci->i_wanted_max_size = 0; /* reset */
ci->i_requested_max_size = 0;
}
wake = 1;
}
}
/* check cap bits */
wanted = __ceph_caps_wanted(ci);
used = __ceph_caps_used(ci);
dirty = __ceph_caps_dirty(ci);
dout(" my wanted = %s, used = %s, dirty %s\n",
ceph_cap_string(wanted),
ceph_cap_string(used),
ceph_cap_string(dirty));
if (wanted != le32_to_cpu(grant->wanted)) {
dout("mds wanted %s -> %s\n",
ceph_cap_string(le32_to_cpu(grant->wanted)),
ceph_cap_string(wanted));
/* imported cap may not have correct mds_wanted */
if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
check_caps = 1;
}
/* revocation, grant, or no-op? */
if (cap->issued & ~newcaps) {
int revoking = cap->issued & ~newcaps;
dout("revocation: %s -> %s (revoking %s)\n",
ceph_cap_string(cap->issued),
ceph_cap_string(newcaps),
ceph_cap_string(revoking));
if (revoking & used & CEPH_CAP_FILE_BUFFER)
writeback = 1; /* initiate writeback; will delay ack */
else if (revoking == CEPH_CAP_FILE_CACHE &&
(newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
queue_invalidate)
; /* do nothing yet, invalidation will be queued */
else if (cap == ci->i_auth_cap)
check_caps = 1; /* check auth cap only */
else
check_caps = 2; /* check all caps */
cap->issued = newcaps;
cap->implemented |= newcaps;
} else if (cap->issued == newcaps) {
dout("caps unchanged: %s -> %s\n",
ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
} else {
dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
ceph_cap_string(newcaps));
/* non-auth MDS is revoking the newly grant caps ? */
if (cap == ci->i_auth_cap &&
__ceph_caps_revoking_other(ci, cap, newcaps))
check_caps = 2;
cap->issued = newcaps;
cap->implemented |= newcaps; /* add bits only, to
* avoid stepping on a
* pending revocation */
wake = 1;
}
BUG_ON(cap->issued & ~cap->implemented);
spin_unlock(&ci->i_ceph_lock);
if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) {
down_write(&mdsc->snap_rwsem);
ceph_update_snap_trace(mdsc, snaptrace,
snaptrace + snaptrace_len, false);
downgrade_write(&mdsc->snap_rwsem);
kick_flushing_inode_caps(mdsc, session, inode);
up_read(&mdsc->snap_rwsem);
if (newcaps & ~issued)
wake = 1;
}
if (queue_trunc) {
ceph_queue_vmtruncate(inode);
ceph_queue_revalidate(inode);
} else if (queue_revalidate)
ceph_queue_revalidate(inode);
if (writeback)
/*
* queue inode for writeback: we can't actually call
* filemap_write_and_wait, etc. from message handler
* context.
*/
ceph_queue_writeback(inode);
if (queue_invalidate)
ceph_queue_invalidate(inode);
if (deleted_inode)
invalidate_aliases(inode);
if (wake)
wake_up_all(&ci->i_cap_wq);
if (check_caps == 1)
ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
session);
else if (check_caps == 2)
ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
else
mutex_unlock(&session->s_mutex);
}
/*
* Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
* MDS has been safely committed.
*/
static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
struct ceph_mds_caps *m,
struct ceph_mds_session *session,
struct ceph_cap *cap)
__releases(ci->i_ceph_lock)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
unsigned seq = le32_to_cpu(m->seq);
int dirty = le32_to_cpu(m->dirty);
int cleaned = 0;
int drop = 0;
int i;
for (i = 0; i < CEPH_CAP_BITS; i++)
if ((dirty & (1 << i)) &&
flush_tid == ci->i_cap_flush_tid[i])
cleaned |= 1 << i;
dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
" flushing %s -> %s\n",
inode, session->s_mds, seq, ceph_cap_string(dirty),
ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
ceph_cap_string(ci->i_flushing_caps & ~cleaned));
if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
goto out;
ci->i_flushing_caps &= ~cleaned;
spin_lock(&mdsc->cap_dirty_lock);
if (ci->i_flushing_caps == 0) {
list_del_init(&ci->i_flushing_item);
if (!list_empty(&session->s_cap_flushing))
dout(" mds%d still flushing cap on %p\n",
session->s_mds,
&list_entry(session->s_cap_flushing.next,
struct ceph_inode_info,
i_flushing_item)->vfs_inode);
mdsc->num_cap_flushing--;
wake_up_all(&mdsc->cap_flushing_wq);
dout(" inode %p now !flushing\n", inode);
if (ci->i_dirty_caps == 0) {
dout(" inode %p now clean\n", inode);
BUG_ON(!list_empty(&ci->i_dirty_item));
drop = 1;
if (ci->i_wrbuffer_ref_head == 0) {
BUG_ON(!ci->i_head_snapc);
ceph_put_snap_context(ci->i_head_snapc);
ci->i_head_snapc = NULL;
}
} else {
BUG_ON(list_empty(&ci->i_dirty_item));
}
}
spin_unlock(&mdsc->cap_dirty_lock);
wake_up_all(&ci->i_cap_wq);
out:
spin_unlock(&ci->i_ceph_lock);
if (drop)
iput(inode);
}
/*
* Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
* throw away our cap_snap.
*
* Caller hold s_mutex.
*/
static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
struct ceph_mds_caps *m,
struct ceph_mds_session *session)
{
struct ceph_inode_info *ci = ceph_inode(inode);
u64 follows = le64_to_cpu(m->snap_follows);
struct ceph_cap_snap *capsnap;
int drop = 0;
dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
inode, ci, session->s_mds, follows);
spin_lock(&ci->i_ceph_lock);
list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
if (capsnap->follows == follows) {
if (capsnap->flush_tid != flush_tid) {
dout(" cap_snap %p follows %lld tid %lld !="
" %lld\n", capsnap, follows,
flush_tid, capsnap->flush_tid);
break;
}
WARN_ON(capsnap->dirty_pages || capsnap->writing);
dout(" removing %p cap_snap %p follows %lld\n",
inode, capsnap, follows);
ceph_put_snap_context(capsnap->context);
list_del(&capsnap->ci_item);
list_del(&capsnap->flushing_item);
ceph_put_cap_snap(capsnap);
drop = 1;
break;
} else {
dout(" skipping cap_snap %p follows %lld\n",
capsnap, capsnap->follows);
}
}
spin_unlock(&ci->i_ceph_lock);
if (drop)
iput(inode);
}
/*
* Handle TRUNC from MDS, indicating file truncation.
*
* caller hold s_mutex.
*/
static void handle_cap_trunc(struct inode *inode,
struct ceph_mds_caps *trunc,
struct ceph_mds_session *session)
__releases(ci->i_ceph_lock)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int mds = session->s_mds;
int seq = le32_to_cpu(trunc->seq);
u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
u64 truncate_size = le64_to_cpu(trunc->truncate_size);
u64 size = le64_to_cpu(trunc->size);
int implemented = 0;
int dirty = __ceph_caps_dirty(ci);
int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
int queue_trunc = 0;
issued |= implemented | dirty;
dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
inode, mds, seq, truncate_size, truncate_seq);
queue_trunc = ceph_fill_file_size(inode, issued,
truncate_seq, truncate_size, size);
spin_unlock(&ci->i_ceph_lock);
if (queue_trunc) {
ceph_queue_vmtruncate(inode);
ceph_fscache_invalidate(inode);
}
}
/*
* Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
* different one. If we are the most recent migration we've seen (as
* indicated by mseq), make note of the migrating cap bits for the
* duration (until we see the corresponding IMPORT).
*
* caller holds s_mutex
*/
static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
struct ceph_mds_cap_peer *ph,
struct ceph_mds_session *session)
{
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
struct ceph_mds_session *tsession = NULL;
struct ceph_cap *cap, *tcap, *new_cap = NULL;
struct ceph_inode_info *ci = ceph_inode(inode);
u64 t_cap_id;
unsigned mseq = le32_to_cpu(ex->migrate_seq);
unsigned t_seq, t_mseq;
int target, issued;
int mds = session->s_mds;
if (ph) {
t_cap_id = le64_to_cpu(ph->cap_id);
t_seq = le32_to_cpu(ph->seq);
t_mseq = le32_to_cpu(ph->mseq);
target = le32_to_cpu(ph->mds);
} else {
t_cap_id = t_seq = t_mseq = 0;
target = -1;
}
dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
inode, ci, mds, mseq, target);
retry:
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id))
goto out_unlock;
if (target < 0) {
__ceph_remove_cap(cap, false);
goto out_unlock;
}
/*
* now we know we haven't received the cap import message yet
* because the exported cap still exist.
*/
issued = cap->issued;
WARN_ON(issued != cap->implemented);
tcap = __get_cap_for_mds(ci, target);
if (tcap) {
/* already have caps from the target */
if (tcap->cap_id != t_cap_id ||
ceph_seq_cmp(tcap->seq, t_seq) < 0) {
dout(" updating import cap %p mds%d\n", tcap, target);
tcap->cap_id = t_cap_id;
tcap->seq = t_seq - 1;
tcap->issue_seq = t_seq - 1;
tcap->mseq = t_mseq;
tcap->issued |= issued;
tcap->implemented |= issued;
if (cap == ci->i_auth_cap)
ci->i_auth_cap = tcap;
if (ci->i_flushing_caps && ci->i_auth_cap == tcap) {
spin_lock(&mdsc->cap_dirty_lock);
list_move_tail(&ci->i_flushing_item,
&tcap->session->s_cap_flushing);
spin_unlock(&mdsc->cap_dirty_lock);
}
}
__ceph_remove_cap(cap, false);
goto out_unlock;
} else if (tsession) {
/* add placeholder for the export tagert */
int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0,
t_seq - 1, t_mseq, (u64)-1, flag, &new_cap);
__ceph_remove_cap(cap, false);
goto out_unlock;
}
spin_unlock(&ci->i_ceph_lock);
mutex_unlock(&session->s_mutex);
/* open target session */
tsession = ceph_mdsc_open_export_target_session(mdsc, target);
if (!IS_ERR(tsession)) {
if (mds > target) {
mutex_lock(&session->s_mutex);
mutex_lock_nested(&tsession->s_mutex,
SINGLE_DEPTH_NESTING);
} else {
mutex_lock(&tsession->s_mutex);
mutex_lock_nested(&session->s_mutex,
SINGLE_DEPTH_NESTING);
}
ceph_add_cap_releases(mdsc, tsession);
new_cap = ceph_get_cap(mdsc, NULL);
} else {
WARN_ON(1);
tsession = NULL;
target = -1;
}
goto retry;
out_unlock:
spin_unlock(&ci->i_ceph_lock);
mutex_unlock(&session->s_mutex);
if (tsession) {
mutex_unlock(&tsession->s_mutex);
ceph_put_mds_session(tsession);
}
if (new_cap)
ceph_put_cap(mdsc, new_cap);
}
/*
* Handle cap IMPORT.
*
* caller holds s_mutex. acquires i_ceph_lock
*/
static void handle_cap_import(struct ceph_mds_client *mdsc,
struct inode *inode, struct ceph_mds_caps *im,
struct ceph_mds_cap_peer *ph,
struct ceph_mds_session *session,
struct ceph_cap **target_cap, int *old_issued)
__acquires(ci->i_ceph_lock)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap *cap, *ocap, *new_cap = NULL;
int mds = session->s_mds;
int issued;
unsigned caps = le32_to_cpu(im->caps);
unsigned wanted = le32_to_cpu(im->wanted);
unsigned seq = le32_to_cpu(im->seq);
unsigned mseq = le32_to_cpu(im->migrate_seq);
u64 realmino = le64_to_cpu(im->realm);
u64 cap_id = le64_to_cpu(im->cap_id);
u64 p_cap_id;
int peer;
if (ph) {
p_cap_id = le64_to_cpu(ph->cap_id);
peer = le32_to_cpu(ph->mds);
} else {
p_cap_id = 0;
peer = -1;
}
dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
inode, ci, mds, mseq, peer);
retry:
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
if (!cap) {
if (!new_cap) {
spin_unlock(&ci->i_ceph_lock);
new_cap = ceph_get_cap(mdsc, NULL);
goto retry;
}
cap = new_cap;
} else {
if (new_cap) {
ceph_put_cap(mdsc, new_cap);
new_cap = NULL;
}
}
__ceph_caps_issued(ci, &issued);
issued |= __ceph_caps_dirty(ci);
ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq,
realmino, CEPH_CAP_FLAG_AUTH, &new_cap);
ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
if (ocap && ocap->cap_id == p_cap_id) {
dout(" remove export cap %p mds%d flags %d\n",
ocap, peer, ph->flags);
if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
(ocap->seq != le32_to_cpu(ph->seq) ||
ocap->mseq != le32_to_cpu(ph->mseq))) {
pr_err("handle_cap_import: mismatched seq/mseq: "
"ino (%llx.%llx) mds%d seq %d mseq %d "
"importer mds%d has peer seq %d mseq %d\n",
ceph_vinop(inode), peer, ocap->seq,
ocap->mseq, mds, le32_to_cpu(ph->seq),
le32_to_cpu(ph->mseq));
}
__ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
}
/* make sure we re-request max_size, if necessary */
ci->i_wanted_max_size = 0;
ci->i_requested_max_size = 0;
*old_issued = issued;
*target_cap = cap;
}
/*
* Handle a caps message from the MDS.
*
* Identify the appropriate session, inode, and call the right handler
* based on the cap op.
*/
void ceph_handle_caps(struct ceph_mds_session *session,
struct ceph_msg *msg)
{
struct ceph_mds_client *mdsc = session->s_mdsc;
struct super_block *sb = mdsc->fsc->sb;
struct inode *inode;
struct ceph_inode_info *ci;
struct ceph_cap *cap;
struct ceph_mds_caps *h;
struct ceph_mds_cap_peer *peer = NULL;
int mds = session->s_mds;
int op, issued;
u32 seq, mseq;
struct ceph_vino vino;
u64 cap_id;
u64 size, max_size;
u64 tid;
void *snaptrace;
size_t snaptrace_len;
void *flock;
void *end;
u32 flock_len;
dout("handle_caps from mds%d\n", mds);
/* decode */
end = msg->front.iov_base + msg->front.iov_len;
tid = le64_to_cpu(msg->hdr.tid);
if (msg->front.iov_len < sizeof(*h))
goto bad;
h = msg->front.iov_base;
op = le32_to_cpu(h->op);
vino.ino = le64_to_cpu(h->ino);
vino.snap = CEPH_NOSNAP;
cap_id = le64_to_cpu(h->cap_id);
seq = le32_to_cpu(h->seq);
mseq = le32_to_cpu(h->migrate_seq);
size = le64_to_cpu(h->size);
max_size = le64_to_cpu(h->max_size);
snaptrace = h + 1;
snaptrace_len = le32_to_cpu(h->snap_trace_len);
if (le16_to_cpu(msg->hdr.version) >= 2) {
void *p = snaptrace + snaptrace_len;
ceph_decode_32_safe(&p, end, flock_len, bad);
if (p + flock_len > end)
goto bad;
flock = p;
} else {
flock = NULL;
flock_len = 0;
}
if (le16_to_cpu(msg->hdr.version) >= 3) {
if (op == CEPH_CAP_OP_IMPORT) {
void *p = flock + flock_len;
if (p + sizeof(*peer) > end)
goto bad;
peer = p;
} else if (op == CEPH_CAP_OP_EXPORT) {
/* recorded in unused fields */
peer = (void *)&h->size;
}
}
mutex_lock(&session->s_mutex);
session->s_seq++;
dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
(unsigned)seq);
if (op == CEPH_CAP_OP_IMPORT)
ceph_add_cap_releases(mdsc, session);
/* lookup ino */
inode = ceph_find_inode(sb, vino);
ci = ceph_inode(inode);
dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
vino.snap, inode);
if (!inode) {
dout(" i don't have ino %llx\n", vino.ino);
if (op == CEPH_CAP_OP_IMPORT) {
spin_lock(&session->s_cap_lock);
__queue_cap_release(session, vino.ino, cap_id,
mseq, seq);
spin_unlock(&session->s_cap_lock);
}
goto flush_cap_releases;
}
/* these will work even if we don't have a cap yet */
switch (op) {
case CEPH_CAP_OP_FLUSHSNAP_ACK:
handle_cap_flushsnap_ack(inode, tid, h, session);
goto done;
case CEPH_CAP_OP_EXPORT:
handle_cap_export(inode, h, peer, session);
goto done_unlocked;
case CEPH_CAP_OP_IMPORT:
handle_cap_import(mdsc, inode, h, peer, session,
&cap, &issued);
handle_cap_grant(mdsc, inode, h, snaptrace, snaptrace_len,
msg->middle, session, cap, issued);
goto done_unlocked;
}
/* the rest require a cap */
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ceph_inode(inode), mds);
if (!cap) {
dout(" no cap on %p ino %llx.%llx from mds%d\n",
inode, ceph_ino(inode), ceph_snap(inode), mds);
spin_unlock(&ci->i_ceph_lock);
goto flush_cap_releases;
}
/* note that each of these drops i_ceph_lock for us */
switch (op) {
case CEPH_CAP_OP_REVOKE:
case CEPH_CAP_OP_GRANT:
__ceph_caps_issued(ci, &issued);
issued |= __ceph_caps_dirty(ci);
handle_cap_grant(mdsc, inode, h, NULL, 0, msg->middle,
session, cap, issued);
goto done_unlocked;
case CEPH_CAP_OP_FLUSH_ACK:
handle_cap_flush_ack(inode, tid, h, session, cap);
break;
case CEPH_CAP_OP_TRUNC:
handle_cap_trunc(inode, h, session);
break;
default:
spin_unlock(&ci->i_ceph_lock);
pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
ceph_cap_op_name(op));
}
goto done;
flush_cap_releases:
/*
* send any full release message to try to move things
* along for the mds (who clearly thinks we still have this
* cap).
*/
ceph_add_cap_releases(mdsc, session);
ceph_send_cap_releases(mdsc, session);
done:
mutex_unlock(&session->s_mutex);
done_unlocked:
if (inode)
iput(inode);
return;
bad:
pr_err("ceph_handle_caps: corrupt message\n");
ceph_msg_dump(msg);
return;
}
/*
* Delayed work handler to process end of delayed cap release LRU list.
*/
void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
{
struct ceph_inode_info *ci;
int flags = CHECK_CAPS_NODELAY;
dout("check_delayed_caps\n");
while (1) {
spin_lock(&mdsc->cap_delay_lock);
if (list_empty(&mdsc->cap_delay_list))
break;
ci = list_first_entry(&mdsc->cap_delay_list,
struct ceph_inode_info,
i_cap_delay_list);
if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
time_before(jiffies, ci->i_hold_caps_max))
break;
list_del_init(&ci->i_cap_delay_list);
spin_unlock(&mdsc->cap_delay_lock);
dout("check_delayed_caps on %p\n", &ci->vfs_inode);
ceph_check_caps(ci, flags, NULL);
}
spin_unlock(&mdsc->cap_delay_lock);
}
/*
* Flush all dirty caps to the mds
*/
void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
{
struct ceph_inode_info *ci;
struct inode *inode;
dout("flush_dirty_caps\n");
spin_lock(&mdsc->cap_dirty_lock);
while (!list_empty(&mdsc->cap_dirty)) {
ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
i_dirty_item);
inode = &ci->vfs_inode;
ihold(inode);
dout("flush_dirty_caps %p\n", inode);
spin_unlock(&mdsc->cap_dirty_lock);
ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
iput(inode);
spin_lock(&mdsc->cap_dirty_lock);
}
spin_unlock(&mdsc->cap_dirty_lock);
dout("flush_dirty_caps done\n");
}
/*
* Drop open file reference. If we were the last open file,
* we may need to release capabilities to the MDS (or schedule
* their delayed release).
*/
void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
{
struct inode *inode = &ci->vfs_inode;
int last = 0;
spin_lock(&ci->i_ceph_lock);
dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
BUG_ON(ci->i_nr_by_mode[fmode] == 0);
if (--ci->i_nr_by_mode[fmode] == 0)
last++;
spin_unlock(&ci->i_ceph_lock);
if (last && ci->i_vino.snap == CEPH_NOSNAP)
ceph_check_caps(ci, 0, NULL);
}
/*
* Helpers for embedding cap and dentry lease releases into mds
* requests.
*
* @force is used by dentry_release (below) to force inclusion of a
* record for the directory inode, even when there aren't any caps to
* drop.
*/
int ceph_encode_inode_release(void **p, struct inode *inode,
int mds, int drop, int unless, int force)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap *cap;
struct ceph_mds_request_release *rel = *p;
int used, dirty;
int ret = 0;
spin_lock(&ci->i_ceph_lock);
used = __ceph_caps_used(ci);
dirty = __ceph_caps_dirty(ci);
dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
ceph_cap_string(unless));
/* only drop unused, clean caps */
drop &= ~(used | dirty);
cap = __get_cap_for_mds(ci, mds);
if (cap && __cap_is_valid(cap)) {
if (force ||
((cap->issued & drop) &&
(cap->issued & unless) == 0)) {
if ((cap->issued & drop) &&
(cap->issued & unless) == 0) {
int wanted = __ceph_caps_wanted(ci);
if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
wanted |= cap->mds_wanted;
dout("encode_inode_release %p cap %p "
"%s -> %s, wanted %s -> %s\n", inode, cap,
ceph_cap_string(cap->issued),
ceph_cap_string(cap->issued & ~drop),
ceph_cap_string(cap->mds_wanted),
ceph_cap_string(wanted));
cap->issued &= ~drop;
cap->implemented &= ~drop;
cap->mds_wanted = wanted;
} else {
dout("encode_inode_release %p cap %p %s"
" (force)\n", inode, cap,
ceph_cap_string(cap->issued));
}
rel->ino = cpu_to_le64(ceph_ino(inode));
rel->cap_id = cpu_to_le64(cap->cap_id);
rel->seq = cpu_to_le32(cap->seq);
rel->issue_seq = cpu_to_le32(cap->issue_seq),
rel->mseq = cpu_to_le32(cap->mseq);
rel->caps = cpu_to_le32(cap->implemented);
rel->wanted = cpu_to_le32(cap->mds_wanted);
rel->dname_len = 0;
rel->dname_seq = 0;
*p += sizeof(*rel);
ret = 1;
} else {
dout("encode_inode_release %p cap %p %s\n",
inode, cap, ceph_cap_string(cap->issued));
}
}
spin_unlock(&ci->i_ceph_lock);
return ret;
}
int ceph_encode_dentry_release(void **p, struct dentry *dentry,
int mds, int drop, int unless)
{
struct inode *dir = dentry->d_parent->d_inode;
struct ceph_mds_request_release *rel = *p;
struct ceph_dentry_info *di = ceph_dentry(dentry);
int force = 0;
int ret;
/*
* force an record for the directory caps if we have a dentry lease.
* this is racy (can't take i_ceph_lock and d_lock together), but it
* doesn't have to be perfect; the mds will revoke anything we don't
* release.
*/
spin_lock(&dentry->d_lock);
if (di->lease_session && di->lease_session->s_mds == mds)
force = 1;
spin_unlock(&dentry->d_lock);
ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
spin_lock(&dentry->d_lock);
if (ret && di->lease_session && di->lease_session->s_mds == mds) {
dout("encode_dentry_release %p mds%d seq %d\n",
dentry, mds, (int)di->lease_seq);
rel->dname_len = cpu_to_le32(dentry->d_name.len);
memcpy(*p, dentry->d_name.name, dentry->d_name.len);
*p += dentry->d_name.len;
rel->dname_seq = cpu_to_le32(di->lease_seq);
__ceph_mdsc_drop_dentry_lease(dentry);
}
spin_unlock(&dentry->d_lock);
return ret;
}