kernel-fxtec-pro1x/drivers/edac/i7core_edac.c

1740 lines
44 KiB
C
Raw Normal View History

/* Intel 7 core Memory Controller kernel module (Nehalem)
*
* This file may be distributed under the terms of the
* GNU General Public License version 2 only.
*
* Copyright (c) 2009 by:
* Mauro Carvalho Chehab <mchehab@redhat.com>
*
* Red Hat Inc. http://www.redhat.com
*
* Forked and adapted from the i5400_edac driver
*
* Based on the following public Intel datasheets:
* Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
* Datasheet, Volume 2:
* http://download.intel.com/design/processor/datashts/320835.pdf
* Intel Xeon Processor 5500 Series Datasheet Volume 2
* http://www.intel.com/Assets/PDF/datasheet/321322.pdf
* also available at:
* http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/edac_mce.h>
#include <linux/spinlock.h>
#include "edac_core.h"
/* To use the new pci_[read/write]_config_qword instead of two dword */
#define USE_QWORD 0
/*
* Alter this version for the module when modifications are made
*/
#define I7CORE_REVISION " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR "i7core_edac"
/* HACK: temporary, just to enable all logs, for now */
#undef debugf0
#define debugf0(fmt, arg...) edac_printk(KERN_INFO, "i7core", fmt, ##arg)
/*
* Debug macros
*/
#define i7core_printk(level, fmt, arg...) \
edac_printk(level, "i7core", fmt, ##arg)
#define i7core_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
/*
* i7core Memory Controller Registers
*/
/* OFFSETS for Device 0 Function 0 */
#define MC_CFG_CONTROL 0x90
/* OFFSETS for Device 3 Function 0 */
#define MC_CONTROL 0x48
#define MC_STATUS 0x4c
#define MC_MAX_DOD 0x64
/*
* OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
* http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
*/
#define MC_TEST_ERR_RCV1 0x60
#define DIMM2_COR_ERR(r) ((r) & 0x7fff)
#define MC_TEST_ERR_RCV0 0x64
#define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
#define DIMM0_COR_ERR(r) ((r) & 0x7fff)
/* OFFSETS for Devices 4,5 and 6 Function 0 */
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
#define THREE_DIMMS_PRESENT (1 << 24)
#define SINGLE_QUAD_RANK_PRESENT (1 << 23)
#define QUAD_RANK_PRESENT (1 << 22)
#define REGISTERED_DIMM (1 << 15)
#define MC_CHANNEL_MAPPER 0x60
#define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
#define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
#define MC_CHANNEL_RANK_PRESENT 0x7c
#define RANK_PRESENT_MASK 0xffff
#define MC_CHANNEL_ADDR_MATCH 0xf0
#define MC_CHANNEL_ERROR_MASK 0xf8
#define MC_CHANNEL_ERROR_INJECT 0xfc
#define INJECT_ADDR_PARITY 0x10
#define INJECT_ECC 0x08
#define MASK_CACHELINE 0x06
#define MASK_FULL_CACHELINE 0x06
#define MASK_MSB32_CACHELINE 0x04
#define MASK_LSB32_CACHELINE 0x02
#define NO_MASK_CACHELINE 0x00
#define REPEAT_EN 0x01
/* OFFSETS for Devices 4,5 and 6 Function 1 */
#define MC_DOD_CH_DIMM0 0x48
#define MC_DOD_CH_DIMM1 0x4c
#define MC_DOD_CH_DIMM2 0x50
#define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
#define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
#define DIMM_PRESENT_MASK (1 << 9)
#define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
#define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
#define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
#define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
#define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
#define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
#define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
#define MC_DOD_NUMCOL_MASK 3
#define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
#define MC_RANK_PRESENT 0x7c
#define MC_SAG_CH_0 0x80
#define MC_SAG_CH_1 0x84
#define MC_SAG_CH_2 0x88
#define MC_SAG_CH_3 0x8c
#define MC_SAG_CH_4 0x90
#define MC_SAG_CH_5 0x94
#define MC_SAG_CH_6 0x98
#define MC_SAG_CH_7 0x9c
#define MC_RIR_LIMIT_CH_0 0x40
#define MC_RIR_LIMIT_CH_1 0x44
#define MC_RIR_LIMIT_CH_2 0x48
#define MC_RIR_LIMIT_CH_3 0x4C
#define MC_RIR_LIMIT_CH_4 0x50
#define MC_RIR_LIMIT_CH_5 0x54
#define MC_RIR_LIMIT_CH_6 0x58
#define MC_RIR_LIMIT_CH_7 0x5C
#define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
#define MC_RIR_WAY_CH 0x80
#define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
#define MC_RIR_WAY_RANK_MASK 0x7
/*
* i7core structs
*/
#define NUM_CHANS 3
#define MAX_DIMMS 3 /* Max DIMMS per channel */
#define NUM_SOCKETS 2 /* Max number of MC sockets */
#define MAX_MCR_FUNC 4
#define MAX_CHAN_FUNC 3
struct i7core_info {
u32 mc_control;
u32 mc_status;
u32 max_dod;
u32 ch_map;
};
struct i7core_inject {
int enable;
u8 socket;
u32 section;
u32 type;
u32 eccmask;
/* Error address mask */
int channel, dimm, rank, bank, page, col;
};
struct i7core_channel {
u32 ranks;
u32 dimms;
};
struct pci_id_descr {
int dev;
int func;
int dev_id;
struct pci_dev *pdev[NUM_SOCKETS];
};
struct i7core_pvt {
struct pci_dev *pci_noncore[NUM_SOCKETS];
struct pci_dev *pci_mcr[NUM_SOCKETS][MAX_MCR_FUNC + 1];
struct pci_dev *pci_ch[NUM_SOCKETS][NUM_CHANS][MAX_CHAN_FUNC + 1];
struct i7core_info info;
struct i7core_inject inject;
struct i7core_channel channel[NUM_SOCKETS][NUM_CHANS];
int sockets; /* Number of sockets */
int channels; /* Number of active channels */
int ce_count_available[NUM_SOCKETS];
/* ECC corrected errors counts per dimm */
unsigned long ce_count[NUM_SOCKETS][MAX_DIMMS];
int last_ce_count[NUM_SOCKETS][MAX_DIMMS];
/* mcelog glue */
struct edac_mce edac_mce;
struct mce mce_entry[MCE_LOG_LEN];
unsigned mce_count;
spinlock_t mce_lock;
};
/* Device name and register DID (Device ID) */
struct i7core_dev_info {
const char *ctl_name; /* name for this device */
u16 fsb_mapping_errors; /* DID for the branchmap,control */
};
#define PCI_DESCR(device, function, device_id) \
.dev = (device), \
.func = (function), \
.dev_id = (device_id)
struct pci_id_descr pci_devs[] = {
/* Memory controller */
{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS) }, /* if RDIMM is supported */
{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
/* Channel 0 */
{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
/* Channel 1 */
{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
/* Channel 2 */
{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
/* Generic Non-core registers */
/*
* This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
* On Xeon 55xx, however, it has a different id (8086:2c40). So,
* the probing code needs to test for the other address in case of
* failure of this one
*/
{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NOCORE) },
};
#define N_DEVS ARRAY_SIZE(pci_devs)
/*
* pci_device_id table for which devices we are looking for
* This should match the first device at pci_devs table
*/
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
{0,} /* 0 terminated list. */
};
/* Table of devices attributes supported by this driver */
static const struct i7core_dev_info i7core_devs[] = {
{
.ctl_name = "i7 Core",
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7_MCR,
},
};
static struct edac_pci_ctl_info *i7core_pci;
/****************************************************************************
Anciliary status routines
****************************************************************************/
/* MC_CONTROL bits */
#define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
/* MC_STATUS bits */
#define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 3))
#define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
/* MC_MAX_DOD read functions */
static inline int numdimms(u32 dimms)
{
return (dimms & 0x3) + 1;
}
static inline int numrank(u32 rank)
{
static int ranks[4] = { 1, 2, 4, -EINVAL };
return ranks[rank & 0x3];
}
static inline int numbank(u32 bank)
{
static int banks[4] = { 4, 8, 16, -EINVAL };
return banks[bank & 0x3];
}
static inline int numrow(u32 row)
{
static int rows[8] = {
1 << 12, 1 << 13, 1 << 14, 1 << 15,
1 << 16, -EINVAL, -EINVAL, -EINVAL,
};
return rows[row & 0x7];
}
static inline int numcol(u32 col)
{
static int cols[8] = {
1 << 10, 1 << 11, 1 << 12, -EINVAL,
};
return cols[col & 0x3];
}
/****************************************************************************
Memory check routines
****************************************************************************/
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
unsigned func)
{
int i;
for (i = 0; i < N_DEVS; i++) {
if (!pci_devs[i].pdev[socket])
continue;
if (PCI_SLOT(pci_devs[i].pdev[socket]->devfn) == slot &&
PCI_FUNC(pci_devs[i].pdev[socket]->devfn) == func) {
return pci_devs[i].pdev[socket];
}
}
return NULL;
}
static int i7core_get_active_channels(u8 socket, unsigned *channels,
unsigned *csrows)
{
struct pci_dev *pdev = NULL;
int i, j;
u32 status, control;
*channels = 0;
*csrows = 0;
pdev = get_pdev_slot_func(socket, 3, 0);
if (!pdev) {
i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
socket);
return -ENODEV;
}
/* Device 3 function 0 reads */
pci_read_config_dword(pdev, MC_STATUS, &status);
pci_read_config_dword(pdev, MC_CONTROL, &control);
for (i = 0; i < NUM_CHANS; i++) {
u32 dimm_dod[3];
/* Check if the channel is active */
if (!(control & (1 << (8 + i))))
continue;
/* Check if the channel is disabled */
if (status & (1 << i))
continue;
pdev = get_pdev_slot_func(socket, i + 4, 1);
if (!pdev) {
i7core_printk(KERN_ERR, "Couldn't find socket %d "
"fn %d.%d!!!\n",
socket, i + 4, 1);
return -ENODEV;
}
/* Devices 4-6 function 1 */
pci_read_config_dword(pdev,
MC_DOD_CH_DIMM0, &dimm_dod[0]);
pci_read_config_dword(pdev,
MC_DOD_CH_DIMM1, &dimm_dod[1]);
pci_read_config_dword(pdev,
MC_DOD_CH_DIMM2, &dimm_dod[2]);
(*channels)++;
for (j = 0; j < 3; j++) {
if (!DIMM_PRESENT(dimm_dod[j]))
continue;
(*csrows)++;
}
}
debugf0("Number of active channels on socked %d: %d\n",
socket, *channels);
return 0;
}
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow, u8 socket)
{
struct i7core_pvt *pvt = mci->pvt_info;
struct csrow_info *csr;
struct pci_dev *pdev;
int i, j;
unsigned long last_page = 0;
enum edac_type mode;
enum mem_type mtype;
/* Get data from the MC register, function 0 */
pdev = pvt->pci_mcr[socket][0];
if (!pdev)
return -ENODEV;
/* Device 3 function 0 reads */
pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
debugf0("MC control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
pvt->info.mc_control, pvt->info.mc_status,
pvt->info.max_dod, pvt->info.ch_map);
if (ECC_ENABLED(pvt)) {
debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
if (ECCx8(pvt))
mode = EDAC_S8ECD8ED;
else
mode = EDAC_S4ECD4ED;
} else {
debugf0("ECC disabled\n");
mode = EDAC_NONE;
}
/* FIXME: need to handle the error codes */
debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked\n",
numdimms(pvt->info.max_dod),
numrank(pvt->info.max_dod >> 2),
numbank(pvt->info.max_dod >> 4));
debugf0("DOD Max rows x colums = 0x%x x 0x%x\n",
numrow(pvt->info.max_dod >> 6),
numcol(pvt->info.max_dod >> 9));
debugf0("Memory channel configuration:\n");
for (i = 0; i < NUM_CHANS; i++) {
u32 data, dimm_dod[3], value[8];
if (!CH_ACTIVE(pvt, i)) {
debugf0("Channel %i is not active\n", i);
continue;
}
if (CH_DISABLED(pvt, i)) {
debugf0("Channel %i is disabled\n", i);
continue;
}
/* Devices 4-6 function 0 */
pci_read_config_dword(pvt->pci_ch[socket][i][0],
MC_CHANNEL_DIMM_INIT_PARAMS, &data);
pvt->channel[socket][i].ranks = (data & QUAD_RANK_PRESENT) ?
4 : 2;
if (data & REGISTERED_DIMM)
mtype = MEM_RDDR3;
else
mtype = MEM_DDR3;
#if 0
if (data & THREE_DIMMS_PRESENT)
pvt->channel[i].dimms = 3;
else if (data & SINGLE_QUAD_RANK_PRESENT)
pvt->channel[i].dimms = 1;
else
pvt->channel[i].dimms = 2;
#endif
/* Devices 4-6 function 1 */
pci_read_config_dword(pvt->pci_ch[socket][i][1],
MC_DOD_CH_DIMM0, &dimm_dod[0]);
pci_read_config_dword(pvt->pci_ch[socket][i][1],
MC_DOD_CH_DIMM1, &dimm_dod[1]);
pci_read_config_dword(pvt->pci_ch[socket][i][1],
MC_DOD_CH_DIMM2, &dimm_dod[2]);
debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
"%d ranks, %cDIMMs\n",
i,
RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
data,
pvt->channel[socket][i].ranks,
(data & REGISTERED_DIMM) ? 'R' : 'U');
for (j = 0; j < 3; j++) {
u32 banks, ranks, rows, cols;
u32 size, npages;
if (!DIMM_PRESENT(dimm_dod[j]))
continue;
banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
/* DDR3 has 8 I/O banks */
size = (rows * cols * banks * ranks) >> (20 - 3);
pvt->channel[socket][i].dimms++;
debugf0("\tdimm %d (0x%08x) %d Mb offset: %x, "
"numbank: %d,\n\t\t"
"numrank: %d, numrow: %#x, numcol: %#x\n",
j, dimm_dod[j], size,
RANKOFFSET(dimm_dod[j]),
banks, ranks, rows, cols);
#if PAGE_SHIFT > 20
npages = size >> (PAGE_SHIFT - 20);
#else
npages = size << (20 - PAGE_SHIFT);
#endif
csr = &mci->csrows[*csrow];
csr->first_page = last_page + 1;
last_page += npages;
csr->last_page = last_page;
csr->nr_pages = npages;
csr->page_mask = 0;
csr->grain = 8;
csr->csrow_idx = *csrow;
csr->nr_channels = 1;
csr->channels[0].chan_idx = i;
csr->channels[0].ce_count = 0;
switch (banks) {
case 4:
csr->dtype = DEV_X4;
break;
case 8:
csr->dtype = DEV_X8;
break;
case 16:
csr->dtype = DEV_X16;
break;
default:
csr->dtype = DEV_UNKNOWN;
}
csr->edac_mode = mode;
csr->mtype = mtype;
(*csrow)++;
}
pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
debugf0("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
for (j = 0; j < 8; j++)
debugf0("\t\t%#x\t%#x\t%#x\n",
(value[j] >> 27) & 0x1,
(value[j] >> 24) & 0x7,
(value[j] && ((1 << 24) - 1)));
}
return 0;
}
/****************************************************************************
Error insertion routines
****************************************************************************/
/* The i7core has independent error injection features per channel.
However, to have a simpler code, we don't allow enabling error injection
on more than one channel.
Also, since a change at an inject parameter will be applied only at enable,
we're disabling error injection on all write calls to the sysfs nodes that
controls the error code injection.
*/
static int disable_inject(struct mem_ctl_info *mci)
{
struct i7core_pvt *pvt = mci->pvt_info;
pvt->inject.enable = 0;
if (!pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0])
return -ENODEV;
pci_write_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ERROR_MASK, 0);
return 0;
}
/*
* i7core inject inject.socket
*
* accept and store error injection inject.socket value
*/
static ssize_t i7core_inject_socket_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct i7core_pvt *pvt = mci->pvt_info;
unsigned long value;
int rc;
rc = strict_strtoul(data, 10, &value);
if ((rc < 0) || (value > pvt->sockets))
return 0;
pvt->inject.section = (u32) value;
return count;
}
static ssize_t i7core_inject_socket_show(struct mem_ctl_info *mci,
char *data)
{
struct i7core_pvt *pvt = mci->pvt_info;
return sprintf(data, "%d\n", pvt->inject.socket);
}
/*
* i7core inject inject.section
*
* accept and store error injection inject.section value
* bit 0 - refers to the lower 32-byte half cacheline
* bit 1 - refers to the upper 32-byte half cacheline
*/
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct i7core_pvt *pvt = mci->pvt_info;
unsigned long value;
int rc;
if (pvt->inject.enable)
disable_inject(mci);
rc = strict_strtoul(data, 10, &value);
if ((rc < 0) || (value > 3))
return 0;
pvt->inject.section = (u32) value;
return count;
}
static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
char *data)
{
struct i7core_pvt *pvt = mci->pvt_info;
return sprintf(data, "0x%08x\n", pvt->inject.section);
}
/*
* i7core inject.type
*
* accept and store error injection inject.section value
* bit 0 - repeat enable - Enable error repetition
* bit 1 - inject ECC error
* bit 2 - inject parity error
*/
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct i7core_pvt *pvt = mci->pvt_info;
unsigned long value;
int rc;
if (pvt->inject.enable)
disable_inject(mci);
rc = strict_strtoul(data, 10, &value);
if ((rc < 0) || (value > 7))
return 0;
pvt->inject.type = (u32) value;
return count;
}
static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
char *data)
{
struct i7core_pvt *pvt = mci->pvt_info;
return sprintf(data, "0x%08x\n", pvt->inject.type);
}
/*
* i7core_inject_inject.eccmask_store
*
* The type of error (UE/CE) will depend on the inject.eccmask value:
* Any bits set to a 1 will flip the corresponding ECC bit
* Correctable errors can be injected by flipping 1 bit or the bits within
* a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
* 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
* uncorrectable error to be injected.
*/
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct i7core_pvt *pvt = mci->pvt_info;
unsigned long value;
int rc;
if (pvt->inject.enable)
disable_inject(mci);
rc = strict_strtoul(data, 10, &value);
if (rc < 0)
return 0;
pvt->inject.eccmask = (u32) value;
return count;
}
static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
char *data)
{
struct i7core_pvt *pvt = mci->pvt_info;
return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}
/*
* i7core_addrmatch
*
* The type of error (UE/CE) will depend on the inject.eccmask value:
* Any bits set to a 1 will flip the corresponding ECC bit
* Correctable errors can be injected by flipping 1 bit or the bits within
* a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
* 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
* uncorrectable error to be injected.
*/
static ssize_t i7core_inject_addrmatch_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct i7core_pvt *pvt = mci->pvt_info;
char *cmd, *val;
long value;
int rc;
if (pvt->inject.enable)
disable_inject(mci);
do {
cmd = strsep((char **) &data, ":");
if (!cmd)
break;
val = strsep((char **) &data, " \n\t");
if (!val)
return cmd - data;
if (!strcasecmp(val, "any"))
value = -1;
else {
rc = strict_strtol(val, 10, &value);
if ((rc < 0) || (value < 0))
return cmd - data;
}
if (!strcasecmp(cmd, "channel")) {
if (value < 3)
pvt->inject.channel = value;
else
return cmd - data;
} else if (!strcasecmp(cmd, "dimm")) {
if (value < 4)
pvt->inject.dimm = value;
else
return cmd - data;
} else if (!strcasecmp(cmd, "rank")) {
if (value < 4)
pvt->inject.rank = value;
else
return cmd - data;
} else if (!strcasecmp(cmd, "bank")) {
if (value < 4)
pvt->inject.bank = value;
else
return cmd - data;
} else if (!strcasecmp(cmd, "page")) {
if (value <= 0xffff)
pvt->inject.page = value;
else
return cmd - data;
} else if (!strcasecmp(cmd, "col") ||
!strcasecmp(cmd, "column")) {
if (value <= 0x3fff)
pvt->inject.col = value;
else
return cmd - data;
}
} while (1);
return count;
}
static ssize_t i7core_inject_addrmatch_show(struct mem_ctl_info *mci,
char *data)
{
struct i7core_pvt *pvt = mci->pvt_info;
char channel[4], dimm[4], bank[4], rank[4], page[7], col[7];
if (pvt->inject.channel < 0)
sprintf(channel, "any");
else
sprintf(channel, "%d", pvt->inject.channel);
if (pvt->inject.dimm < 0)
sprintf(dimm, "any");
else
sprintf(dimm, "%d", pvt->inject.dimm);
if (pvt->inject.bank < 0)
sprintf(bank, "any");
else
sprintf(bank, "%d", pvt->inject.bank);
if (pvt->inject.rank < 0)
sprintf(rank, "any");
else
sprintf(rank, "%d", pvt->inject.rank);
if (pvt->inject.page < 0)
sprintf(page, "any");
else
sprintf(page, "0x%04x", pvt->inject.page);
if (pvt->inject.col < 0)
sprintf(col, "any");
else
sprintf(col, "0x%04x", pvt->inject.col);
return sprintf(data, "channel: %s\ndimm: %s\nbank: %s\n"
"rank: %s\npage: %s\ncolumn: %s\n",
channel, dimm, bank, rank, page, col);
}
/*
* This routine prepares the Memory Controller for error injection.
* The error will be injected when some process tries to write to the
* memory that matches the given criteria.
* The criteria can be set in terms of a mask where dimm, rank, bank, page
* and col can be specified.
* A -1 value for any of the mask items will make the MCU to ignore
* that matching criteria for error injection.
*
* It should be noticed that the error will only happen after a write operation
* on a memory that matches the condition. if REPEAT_EN is not enabled at
* inject mask, then it will produce just one error. Otherwise, it will repeat
* until the injectmask would be cleaned.
*
* FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
* is reliable enough to check if the MC is using the
* three channels. However, this is not clear at the datasheet.
*/
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
const char *data, size_t count)
{
struct i7core_pvt *pvt = mci->pvt_info;
u32 injectmask;
u64 mask = 0;
int rc;
long enable;
if (!pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0])
return 0;
rc = strict_strtoul(data, 10, &enable);
if ((rc < 0))
return 0;
if (enable) {
pvt->inject.enable = 1;
} else {
disable_inject(mci);
return count;
}
/* Sets pvt->inject.dimm mask */
if (pvt->inject.dimm < 0)
mask |= 1L << 41;
else {
if (pvt->channel[pvt->inject.socket][pvt->inject.channel].dimms > 2)
mask |= (pvt->inject.dimm & 0x3L) << 35;
else
mask |= (pvt->inject.dimm & 0x1L) << 36;
}
/* Sets pvt->inject.rank mask */
if (pvt->inject.rank < 0)
mask |= 1L << 40;
else {
if (pvt->channel[pvt->inject.socket][pvt->inject.channel].dimms > 2)
mask |= (pvt->inject.rank & 0x1L) << 34;
else
mask |= (pvt->inject.rank & 0x3L) << 34;
}
/* Sets pvt->inject.bank mask */
if (pvt->inject.bank < 0)
mask |= 1L << 39;
else
mask |= (pvt->inject.bank & 0x15L) << 30;
/* Sets pvt->inject.page mask */
if (pvt->inject.page < 0)
mask |= 1L << 38;
else
mask |= (pvt->inject.page & 0xffffL) << 14;
/* Sets pvt->inject.column mask */
if (pvt->inject.col < 0)
mask |= 1L << 37;
else
mask |= (pvt->inject.col & 0x3fffL);
/* Unlock writes to registers */
pci_write_config_dword(pvt->pci_noncore[pvt->inject.socket],
MC_CFG_CONTROL, 0x2);
msleep(100);
/* Zeroes error count registers */
pci_write_config_dword(pvt->pci_mcr[pvt->inject.socket][4],
MC_TEST_ERR_RCV1, 0);
pci_write_config_dword(pvt->pci_mcr[pvt->inject.socket][4],
MC_TEST_ERR_RCV0, 0);
pvt->ce_count_available[pvt->inject.socket] = 0;
#if USE_QWORD
pci_write_config_qword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ADDR_MATCH, mask);
#else
pci_write_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ADDR_MATCH, mask);
pci_write_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
#endif
#if 1
#if USE_QWORD
u64 rdmask;
pci_read_config_qword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ADDR_MATCH, &rdmask);
debugf0("Inject addr match write 0x%016llx, read: 0x%016llx\n",
mask, rdmask);
#else
u32 rdmask1, rdmask2;
pci_read_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ADDR_MATCH, &rdmask1);
pci_read_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ADDR_MATCH + 4, &rdmask2);
debugf0("Inject addr match write 0x%016llx, read: 0x%08x 0x%08x\n",
mask, rdmask1, rdmask2);
#endif
#endif
pci_write_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
/*
* bit 0: REPEAT_EN
* bits 1-2: MASK_HALF_CACHELINE
* bit 3: INJECT_ECC
* bit 4: INJECT_ADDR_PARITY
*/
injectmask = (pvt->inject.type & 1) |
(pvt->inject.section & 0x3) << 1 |
(pvt->inject.type & 0x6) << (3 - 1);
pci_write_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ERROR_MASK, injectmask);
#if 0
/* lock writes to registers */
pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 0);
#endif
debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
" inject 0x%08x\n",
mask, pvt->inject.eccmask, injectmask);
return count;
}
static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
char *data)
{
struct i7core_pvt *pvt = mci->pvt_info;
u32 injectmask;
pci_read_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
MC_CHANNEL_ERROR_MASK, &injectmask);
debugf0("Inject error read: 0x%018x\n", injectmask);
if (injectmask & 0x0c)
pvt->inject.enable = 1;
return sprintf(data, "%d\n", pvt->inject.enable);
}
static ssize_t i7core_ce_regs_show(struct mem_ctl_info *mci, char *data)
{
unsigned i, count, total = 0;
struct i7core_pvt *pvt = mci->pvt_info;
for (i = 0; i < pvt->sockets; i++) {
if (!pvt->ce_count_available[i])
count = sprintf(data, "socket 0 data unavailable\n");
else
count = sprintf(data, "socket %d, dimm0: %lu\n"
"dimm1: %lu\ndimm2: %lu\n",
i,
pvt->ce_count[i][0],
pvt->ce_count[i][1],
pvt->ce_count[i][2]);
data += count;
total += count;
}
return total;
}
/*
* Sysfs struct
*/
static struct mcidev_sysfs_attribute i7core_inj_attrs[] = {
{
.attr = {
.name = "inject_socket",
.mode = (S_IRUGO | S_IWUSR)
},
.show = i7core_inject_socket_show,
.store = i7core_inject_socket_store,
}, {
.attr = {
.name = "inject_section",
.mode = (S_IRUGO | S_IWUSR)
},
.show = i7core_inject_section_show,
.store = i7core_inject_section_store,
}, {
.attr = {
.name = "inject_type",
.mode = (S_IRUGO | S_IWUSR)
},
.show = i7core_inject_type_show,
.store = i7core_inject_type_store,
}, {
.attr = {
.name = "inject_eccmask",
.mode = (S_IRUGO | S_IWUSR)
},
.show = i7core_inject_eccmask_show,
.store = i7core_inject_eccmask_store,
}, {
.attr = {
.name = "inject_addrmatch",
.mode = (S_IRUGO | S_IWUSR)
},
.show = i7core_inject_addrmatch_show,
.store = i7core_inject_addrmatch_store,
}, {
.attr = {
.name = "inject_enable",
.mode = (S_IRUGO | S_IWUSR)
},
.show = i7core_inject_enable_show,
.store = i7core_inject_enable_store,
}, {
.attr = {
.name = "corrected_error_counts",
.mode = (S_IRUGO | S_IWUSR)
},
.show = i7core_ce_regs_show,
.store = NULL,
},
};
/****************************************************************************
Device initialization routines: put/get, init/exit
****************************************************************************/
/*
* i7core_put_devices 'put' all the devices that we have
* reserved via 'get'
*/
static void i7core_put_devices(void)
{
int i, j;
for (i = 0; i < NUM_SOCKETS; i++)
for (j = 0; j < N_DEVS; j++)
pci_dev_put(pci_devs[j].pdev[i]);
}
/*
* i7core_get_devices Find and perform 'get' operation on the MCH's
* device/functions we want to reference for this driver
*
* Need to 'get' device 16 func 1 and func 2
*/
static int i7core_get_devices(void)
{
int rc, i;
struct pci_dev *pdev = NULL;
u8 bus = 0;
u8 socket = 0;
for (i = 0; i < N_DEVS; i++) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
pci_devs[i].dev_id, NULL);
if (!pdev && !i) {
pcibios_scan_specific_bus(254);
pcibios_scan_specific_bus(255);
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
pci_devs[i].dev_id, NULL);
}
/*
* On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
* is at addr 8086:2c40, instead of 8086:2c41. So, we need
* to probe for the alternate address in case of failure
*/
if (pci_devs[i].dev_id == PCI_DEVICE_ID_INTEL_I7_NOCORE
&& !pdev)
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I7_NOCORE_ALT, NULL);
if (likely(pdev)) {
bus = pdev->bus->number;
if (bus == 0x3f)
socket = 0;
else
socket = 255 - bus;
if (socket >= NUM_SOCKETS) {
i7core_printk(KERN_ERR,
"Found unexpected socket for "
"dev %02x:%02x.%d PCI ID %04x:%04x\n",
bus, pci_devs[i].dev, pci_devs[i].func,
PCI_VENDOR_ID_INTEL, pci_devs[i].dev_id);
rc = -ENODEV;
goto error;
}
pci_devs[i].pdev[socket] = pdev;
} else {
i7core_printk(KERN_ERR,
"Device not found: "
"dev %02x:%02x.%d PCI ID %04x:%04x\n",
bus, pci_devs[i].dev, pci_devs[i].func,
PCI_VENDOR_ID_INTEL, pci_devs[i].dev_id);
/* Dev 3 function 2 only exists on chips with RDIMMs */
if ((pci_devs[i].dev == 3) && (pci_devs[i].func == 2))
continue;
/* End of list, leave */
rc = -ENODEV;
goto error;
}
/* Sanity check */
if (unlikely(PCI_SLOT(pdev->devfn) != pci_devs[i].dev ||
PCI_FUNC(pdev->devfn) != pci_devs[i].func)) {
i7core_printk(KERN_ERR,
"Device PCI ID %04x:%04x "
"has fn %d.%d instead of fn %d.%d\n",
PCI_VENDOR_ID_INTEL, pci_devs[i].dev_id,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pci_devs[i].dev, pci_devs[i].func);
rc = -EINVAL;
goto error;
}
/* Be sure that the device is enabled */
rc = pci_enable_device(pdev);
if (unlikely(rc < 0)) {
i7core_printk(KERN_ERR,
"Couldn't enable PCI ID %04x:%04x "
"fn %d.%d\n",
PCI_VENDOR_ID_INTEL, pci_devs[i].dev_id,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
goto error;
}
i7core_printk(KERN_INFO,
"Registered socket %d "
"dev %02x:%02x.%d PCI ID %04x:%04x\n",
socket, bus, pci_devs[i].dev, pci_devs[i].func,
PCI_VENDOR_ID_INTEL, pci_devs[i].dev_id);
}
return 0;
error:
i7core_put_devices();
return -EINVAL;
}
static int mci_bind_devs(struct mem_ctl_info *mci)
{
struct i7core_pvt *pvt = mci->pvt_info;
struct pci_dev *pdev;
int i, j, func, slot;
for (i = 0; i < pvt->sockets; i++) {
for (j = 0; j < N_DEVS; j++) {
pdev = pci_devs[j].pdev[i];
if (!pdev)
continue;
func = PCI_FUNC(pdev->devfn);
slot = PCI_SLOT(pdev->devfn);
if (slot == 3) {
if (unlikely(func > MAX_MCR_FUNC))
goto error;
pvt->pci_mcr[i][func] = pdev;
} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
if (unlikely(func > MAX_CHAN_FUNC))
goto error;
pvt->pci_ch[i][slot - 4][func] = pdev;
} else if (!slot && !func)
pvt->pci_noncore[i] = pdev;
else
goto error;
debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
pdev, i);
}
}
return 0;
error:
i7core_printk(KERN_ERR, "Device %d, function %d "
"is out of the expected range\n",
slot, func);
return -EINVAL;
}
/****************************************************************************
Error check routines
****************************************************************************/
/* This function is based on the device 3 function 4 registers as described on:
* Intel Xeon Processor 5500 Series Datasheet Volume 2
* http://www.intel.com/Assets/PDF/datasheet/321322.pdf
* also available at:
* http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
*/
static void check_mc_test_err(struct mem_ctl_info *mci, u8 socket)
{
struct i7core_pvt *pvt = mci->pvt_info;
u32 rcv1, rcv0;
int new0, new1, new2;
if (!pvt->pci_mcr[socket][4]) {
debugf0("%s MCR registers not found\n",__func__);
return;
}
/* Corrected error reads */
pci_read_config_dword(pvt->pci_mcr[socket][4], MC_TEST_ERR_RCV1, &rcv1);
pci_read_config_dword(pvt->pci_mcr[socket][4], MC_TEST_ERR_RCV0, &rcv0);
/* Store the new values */
new2 = DIMM2_COR_ERR(rcv1);
new1 = DIMM1_COR_ERR(rcv0);
new0 = DIMM0_COR_ERR(rcv0);
#if 0
debugf2("%s CE rcv1=0x%08x rcv0=0x%08x, %d %d %d\n",
(pvt->ce_count_available ? "UPDATE" : "READ"),
rcv1, rcv0, new0, new1, new2);
#endif
/* Updates CE counters if it is not the first time here */
if (pvt->ce_count_available[socket]) {
/* Updates CE counters */
int add0, add1, add2;
add2 = new2 - pvt->last_ce_count[socket][2];
add1 = new1 - pvt->last_ce_count[socket][1];
add0 = new0 - pvt->last_ce_count[socket][0];
if (add2 < 0)
add2 += 0x7fff;
pvt->ce_count[socket][2] += add2;
if (add1 < 0)
add1 += 0x7fff;
pvt->ce_count[socket][1] += add1;
if (add0 < 0)
add0 += 0x7fff;
pvt->ce_count[socket][0] += add0;
} else
pvt->ce_count_available[socket] = 1;
/* Store the new values */
pvt->last_ce_count[socket][2] = new2;
pvt->last_ce_count[socket][1] = new1;
pvt->last_ce_count[socket][0] = new0;
}
/*
* According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
* Architectures Software Developers Manual Volume 3B.
* Nehalem are defined as family 0x06, model 0x1a
*
* The MCA registers used here are the following ones:
* struct mce field MCA Register
* m->status MSR_IA32_MC8_STATUS
* m->addr MSR_IA32_MC8_ADDR
* m->misc MSR_IA32_MC8_MISC
* In the case of Nehalem, the error information is masked at .status and .misc
* fields
*/
static void i7core_mce_output_error(struct mem_ctl_info *mci,
struct mce *m)
{
char *type, *optype, *err, *msg;
unsigned long error = m->status & 0x1ff0000l;
u32 optypenum = (m->status >> 4) & 0x07;
u32 core_err_cnt = (m->status >> 38) && 0x7fff;
u32 dimm = (m->misc >> 16) & 0x3;
u32 channel = (m->misc >> 18) & 0x3;
u32 syndrome = m->misc >> 32;
u32 errnum = find_first_bit(&error, 32);
if (m->mcgstatus & 1)
type = "FATAL";
else
type = "NON_FATAL";
switch (optypenum) {
case 0:
optype = "generic undef request";
break;
case 1:
optype = "read error";
break;
case 2:
optype = "write error";
break;
case 3:
optype = "addr/cmd error";
break;
case 4:
optype = "scrubbing error";
break;
default:
optype = "reserved";
break;
}
switch (errnum) {
case 16:
err = "read ECC error";
break;
case 17:
err = "RAS ECC error";
break;
case 18:
err = "write parity error";
break;
case 19:
err = "redundacy loss";
break;
case 20:
err = "reserved";
break;
case 21:
err = "memory range error";
break;
case 22:
err = "RTID out of range";
break;
case 23:
err = "address parity error";
break;
case 24:
err = "byte enable parity error";
break;
default:
err = "unknown";
}
/* FIXME: should convert addr into bank and rank information */
msg = kasprintf(GFP_ATOMIC,
"%s (addr = 0x%08llx, Dimm=%d, Channel=%d, "
"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
type, (long long) m->addr, dimm, channel,
syndrome, core_err_cnt, (long long)m->status,
(long long)m->misc, optype, err);
debugf0("%s", msg);
/* Call the helper to output message */
edac_mc_handle_fbd_ue(mci, 0 /* FIXME: should be rank here */,
0, 0 /* FIXME: should be channel here */, msg);
kfree(msg);
}
/*
* i7core_check_error Retrieve and process errors reported by the
* hardware. Called by the Core module.
*/
static void i7core_check_error(struct mem_ctl_info *mci)
{
struct i7core_pvt *pvt = mci->pvt_info;
int i;
unsigned count = 0;
struct mce *m = NULL;
unsigned long flags;
debugf0(__FILE__ ": %s()\n", __func__);
/* Copy all mce errors into a temporary buffer */
spin_lock_irqsave(&pvt->mce_lock, flags);
if (pvt->mce_count) {
m = kmalloc(sizeof(*m) * pvt->mce_count, GFP_ATOMIC);
if (m) {
count = pvt->mce_count;
memcpy(m, &pvt->mce_entry, sizeof(*m) * count);
}
pvt->mce_count = 0;
}
spin_unlock_irqrestore(&pvt->mce_lock, flags);
/* proccess mcelog errors */
for (i = 0; i < count; i++)
i7core_mce_output_error(mci, &m[i]);
kfree(m);
/* check memory count errors */
for (i = 0; i < pvt->sockets; i++)
check_mc_test_err(mci, i);
}
/*
* i7core_mce_check_error Replicates mcelog routine to get errors
* This routine simply queues mcelog errors, and
* return. The error itself should be handled later
* by i7core_check_error.
*/
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
struct mem_ctl_info *mci = priv;
struct i7core_pvt *pvt = mci->pvt_info;
unsigned long flags;
debugf0(__FILE__ ": %s()\n", __func__);
/*
* Just let mcelog handle it if the error is
* outside the memory controller
*/
if (((mce->status & 0xffff) >> 7) != 1)
return 0;
/* Bank 8 registers are the only ones that we know how to handle */
if (mce->bank != 8)
return 0;
spin_lock_irqsave(&pvt->mce_lock, flags);
if (pvt->mce_count < MCE_LOG_LEN) {
memcpy(&pvt->mce_entry[pvt->mce_count], mce, sizeof(*mce));
pvt->mce_count++;
}
spin_unlock_irqrestore(&pvt->mce_lock, flags);
/* Handle fatal errors immediately */
if (mce->mcgstatus & 1)
i7core_check_error(mci);
/* Advice mcelog that the error were handled */
return 1;
}
/*
* i7core_probe Probe for ONE instance of device to see if it is
* present.
* return:
* 0 for FOUND a device
* < 0 for error code
*/
static int __devinit i7core_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct mem_ctl_info *mci;
struct i7core_pvt *pvt;
int num_channels = 0;
int num_csrows = 0;
int csrow = 0;
int dev_idx = id->driver_data;
int rc, i;
u8 sockets;
if (unlikely(dev_idx >= ARRAY_SIZE(i7core_devs)))
return -EINVAL;
/* get the pci devices we want to reserve for our use */
rc = i7core_get_devices();
if (unlikely(rc < 0))
return rc;
sockets = 1;
for (i = NUM_SOCKETS - 1; i > 0; i--)
if (pci_devs[0].pdev[i]) {
sockets = i + 1;
break;
}
for (i = 0; i < sockets; i++) {
int channels;
int csrows;
/* Check the number of active and not disabled channels */
rc = i7core_get_active_channels(i, &channels, &csrows);
if (unlikely(rc < 0))
goto fail0;
num_channels += channels;
num_csrows += csrows;
}
/* allocate a new MC control structure */
mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
if (unlikely(!mci)) {
rc = -ENOMEM;
goto fail0;
}
debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
mci->dev = &pdev->dev; /* record ptr to the generic device */
pvt = mci->pvt_info;
memset(pvt, 0, sizeof(*pvt));
pvt->sockets = sockets;
mci->mc_idx = 0;
/*
* FIXME: how to handle RDDR3 at MCI level? It is possible to have
* Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
* memory channels
*/
mci->mtype_cap = MEM_FLAG_DDR3;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "i7core_edac.c";
mci->mod_ver = I7CORE_REVISION;
mci->ctl_name = i7core_devs[dev_idx].ctl_name;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
mci->mc_driver_sysfs_attributes = i7core_inj_attrs;
/* Set the function pointer to an actual operation function */
mci->edac_check = i7core_check_error;
/* Store pci devices at mci for faster access */
rc = mci_bind_devs(mci);
if (unlikely(rc < 0))
goto fail1;
/* Get dimm basic config */
for (i = 0; i < sockets; i++)
get_dimm_config(mci, &csrow, i);
/* add this new MC control structure to EDAC's list of MCs */
if (unlikely(edac_mc_add_mc(mci))) {
debugf0("MC: " __FILE__
": %s(): failed edac_mc_add_mc()\n", __func__);
/* FIXME: perhaps some code should go here that disables error
* reporting if we just enabled it
*/
rc = -EINVAL;
goto fail1;
}
/* allocating generic PCI control info */
i7core_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
if (unlikely(!i7core_pci)) {
printk(KERN_WARNING
"%s(): Unable to create PCI control\n",
__func__);
printk(KERN_WARNING
"%s(): PCI error report via EDAC not setup\n",
__func__);
}
/* Default error mask is any memory */
pvt->inject.channel = 0;
pvt->inject.dimm = -1;
pvt->inject.rank = -1;
pvt->inject.bank = -1;
pvt->inject.page = -1;
pvt->inject.col = -1;
/* Registers on edac_mce in order to receive memory errors */
pvt->edac_mce.priv = mci;
pvt->edac_mce.check_error = i7core_mce_check_error;
spin_lock_init(&pvt->mce_lock);
rc = edac_mce_register(&pvt->edac_mce);
if (unlikely (rc < 0)) {
debugf0("MC: " __FILE__
": %s(): failed edac_mce_register()\n", __func__);
goto fail1;
}
i7core_printk(KERN_INFO, "Driver loaded.\n");
return 0;
fail1:
edac_mc_free(mci);
fail0:
i7core_put_devices();
return rc;
}
/*
* i7core_remove destructor for one instance of device
*
*/
static void __devexit i7core_remove(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
struct i7core_pvt *pvt;
debugf0(__FILE__ ": %s()\n", __func__);
if (i7core_pci)
edac_pci_release_generic_ctl(i7core_pci);
mci = edac_mc_del_mc(&pdev->dev);
if (!mci)
return;
/* Unregisters on edac_mce in order to receive memory errors */
pvt = mci->pvt_info;
edac_mce_unregister(&pvt->edac_mce);
/* retrieve references to resources, and free those resources */
i7core_put_devices();
edac_mc_free(mci);
}
MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
/*
* i7core_driver pci_driver structure for this module
*
*/
static struct pci_driver i7core_driver = {
.name = "i7core_edac",
.probe = i7core_probe,
.remove = __devexit_p(i7core_remove),
.id_table = i7core_pci_tbl,
};
/*
* i7core_init Module entry function
* Try to initialize this module for its devices
*/
static int __init i7core_init(void)
{
int pci_rc;
debugf2("MC: " __FILE__ ": %s()\n", __func__);
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
pci_rc = pci_register_driver(&i7core_driver);
return (pci_rc < 0) ? pci_rc : 0;
}
/*
* i7core_exit() Module exit function
* Unregister the driver
*/
static void __exit i7core_exit(void)
{
debugf2("MC: " __FILE__ ": %s()\n", __func__);
pci_unregister_driver(&i7core_driver);
}
module_init(i7core_init);
module_exit(i7core_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
I7CORE_REVISION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");