kernel-fxtec-pro1x/arch/s390/kernel/smp.c

1114 lines
27 KiB
C
Raw Normal View History

/*
* arch/s390/kernel/smp.c
*
* Copyright IBM Corp. 1999, 2009
* Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
* Heiko Carstens (heiko.carstens@de.ibm.com)
*
* based on other smp stuff by
* (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
* (c) 1998 Ingo Molnar
*
* We work with logical cpu numbering everywhere we can. The only
* functions using the real cpu address (got from STAP) are the sigp
* functions. For all other functions we use the identity mapping.
* That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
* used e.g. to find the idle task belonging to a logical cpu. Every array
* in the kernel is sorted by the logical cpu number and not by the physical
* one which is causing all the confusion with __cpu_logical_map and
* cpu_number_map in other architectures.
*/
#define KMSG_COMPONENT "cpu"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/workqueue.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mm.h>
Remove fs.h from mm.h Remove fs.h from mm.h. For this, 1) Uninline vma_wants_writenotify(). It's pretty huge anyway. 2) Add back fs.h or less bloated headers (err.h) to files that need it. As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files rebuilt down to 3444 (-12.3%). Cross-compile tested without regressions on my two usual configs and (sigh): alpha arm-mx1ads mips-bigsur powerpc-ebony alpha-allnoconfig arm-neponset mips-capcella powerpc-g5 alpha-defconfig arm-netwinder mips-cobalt powerpc-holly alpha-up arm-netx mips-db1000 powerpc-iseries arm arm-ns9xxx mips-db1100 powerpc-linkstation arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200 arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2 arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads arm-ep93xx i386-up mips-pb1100 powerpc-pasemi arm-footbridge ia64 mips-pb1500 powerpc-pmac32 arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64 arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800 arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3 arm-h7202 ia64-gensparse mips-qemu powerpc-pseries arm-hackkit ia64-sim mips-rbhma4200 powerpc-up arm-integrator ia64-sn2 mips-rbhma4500 s390 arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig arm-iop33x ia64-zx1 mips-sead s390-up arm-ixp2000 m68k mips-tb0219 sparc arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig arm-jornada720 m68k-atari mips-workpad sparc-up arm-kafa m68k-bvme6000 mips-wrppmc sparc64 arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig arm-ks8695 m68k-mac parisc sparc64-defconfig arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64 arm-lpd7a400 m68k-q40 parisc-up x86_64 arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig arm-lusl7200 mips powerpc-celleb x86_64-up arm-mainstone mips-atlas powerpc-chrp32 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-29 16:36:13 -06:00
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/irqflags.h>
#include <linux/cpu.h>
#include <linux/timex.h>
#include <linux/bootmem.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <asm/asm-offsets.h>
#include <asm/ipl.h>
#include <asm/setup.h>
#include <asm/sigp.h>
#include <asm/pgalloc.h>
#include <asm/irq.h>
#include <asm/s390_ext.h>
#include <asm/cpcmd.h>
#include <asm/tlbflush.h>
#include <asm/timer.h>
#include <asm/lowcore.h>
#include <asm/sclp.h>
#include <asm/cputime.h>
#include <asm/vdso.h>
#include <asm/cpu.h>
#include "entry.h"
/* logical cpu to cpu address */
unsigned short __cpu_logical_map[NR_CPUS];
static struct task_struct *current_set[NR_CPUS];
static u8 smp_cpu_type;
static int smp_use_sigp_detection;
enum s390_cpu_state {
CPU_STATE_STANDBY,
CPU_STATE_CONFIGURED,
};
DEFINE_MUTEX(smp_cpu_state_mutex);
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
int smp_cpu_polarization[NR_CPUS];
static int smp_cpu_state[NR_CPUS];
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
static int cpu_management;
static DEFINE_PER_CPU(struct cpu, cpu_devices);
static void smp_ext_bitcall(int, int);
static int raw_cpu_stopped(int cpu)
{
u32 status;
switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
case sigp_status_stored:
/* Check for stopped and check stop state */
if (status & 0x50)
return 1;
break;
default:
break;
}
return 0;
}
static inline int cpu_stopped(int cpu)
{
return raw_cpu_stopped(cpu_logical_map(cpu));
}
void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
{
struct _lowcore *lc, *current_lc;
struct stack_frame *sf;
struct pt_regs *regs;
unsigned long sp;
if (smp_processor_id() == 0)
func(data);
__load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
/* Disable lowcore protection */
__ctl_clear_bit(0, 28);
current_lc = lowcore_ptr[smp_processor_id()];
lc = lowcore_ptr[0];
if (!lc)
lc = current_lc;
lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
if (!cpu_online(0))
smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
cpu_relax();
sp = lc->panic_stack;
sp -= sizeof(struct pt_regs);
regs = (struct pt_regs *) sp;
memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
regs->psw = lc->psw_save_area;
sp -= STACK_FRAME_OVERHEAD;
sf = (struct stack_frame *) sp;
sf->back_chain = regs->gprs[15];
smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
}
void smp_send_stop(void)
{
int cpu, rc;
/* Disable all interrupts/machine checks */
__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
trace_hardirqs_off();
/* stop all processors */
for_each_online_cpu(cpu) {
if (cpu == smp_processor_id())
continue;
do {
rc = sigp(cpu, sigp_stop);
} while (rc == sigp_busy);
while (!cpu_stopped(cpu))
cpu_relax();
}
}
/*
* This is the main routine where commands issued by other
* cpus are handled.
*/
static void do_ext_call_interrupt(unsigned int ext_int_code,
unsigned int param32, unsigned long param64)
{
unsigned long bits;
kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
/*
* handle bit signal external calls
*
* For the ec_schedule signal we have to do nothing. All the work
* is done automatically when we return from the interrupt.
*/
bits = xchg(&S390_lowcore.ext_call_fast, 0);
if (test_bit(ec_call_function, &bits))
generic_smp_call_function_interrupt();
if (test_bit(ec_call_function_single, &bits))
generic_smp_call_function_single_interrupt();
}
/*
* Send an external call sigp to another cpu and return without waiting
* for its completion.
*/
static void smp_ext_bitcall(int cpu, int sig)
{
/*
* Set signaling bit in lowcore of target cpu and kick it
*/
set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
udelay(10);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
int cpu;
for_each_cpu(cpu, mask)
smp_ext_bitcall(cpu, ec_call_function);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_ext_bitcall(cpu, ec_call_function_single);
}
#ifndef CONFIG_64BIT
/*
* this function sends a 'purge tlb' signal to another CPU.
*/
static void smp_ptlb_callback(void *info)
{
[S390] tlb flush fix. The current tlb flushing code for page table entries violates the s390 architecture in a small detail. The relevant section from the principles of operation (SA22-7832-02 page 3-47): "A valid table entry must not be changed while it is attached to any CPU and may be used for translation by that CPU except to (1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table entry, or (3) make a change by means of a COMPARE AND SWAP AND PURGE instruction that purges the TLB." That means if one thread of a multithreaded applciation uses a vma while another thread does an unmap on it, the page table entries of that vma needs to get removed with IPTE, IDTE or CSP. In some strange and rare situations a cpu could check-stop (die) because a entry has been pushed out of the TLB that is still needed to complete a (milli-coded) instruction. I've never seen it happen with the current code on any of the supported machines, so right now this is a theoretical problem. But I want to fix it nevertheless, to avoid headaches in the futures. To get this implemented correctly without changing common code the primitives ptep_get_and_clear, ptep_get_and_clear_full and ptep_set_wrprotect need to use the IPTE instruction to invalidate the pte before the new pte value gets stored. If IPTE is always used for the three primitives three important operations will have a performace hit: fork, mprotect and exit_mmap. Time for some workarounds: * 1: ptep_get_and_clear_full is used in unmap_vmas to remove page tables entries in a batched tlb gather operation. If the mmu_gather context passed to unmap_vmas has been started with full_mm_flush==1 or if only one cpu is online or if the only user of a mm_struct is the current process then the fullmm indication in the mmu_gather context is set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu call. No new TLBs can be created while the unmap is in progress. In this case ptep_get_and_clear_full clears the ptes with a simple store. * 2: ptep_get_and_clear is used in change_protection to clear the ptes from the page tables before they are reentered with the new access flags. At the end of the update flush_tlb_range clears the remaining TLBs. In general the ptep_get_and_clear has to issue IPTE for each pte and flush_tlb_range is a nop. But if there is only one user of the mm_struct then ptep_get_and_clear uses simple stores to do the update and flush_tlb_range will flush the TLBs. * 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range for a fork to make all ptes of a cow mapping read-only. At the end of of copy_page_range dup_mmap will flush the TLBs with a call to flush_tlb_mm. Check for mm->mm_users and if there is only one user avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the TLBs. Overall for single threaded programs the tlb flush code now performs better, for multi threaded programs it is slightly worse. In particular exit_mmap() now does a single IDTE for the mm and then just frees every page cache reference and every page table page directly without a delay over the mmu_gather structure. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 04:52:44 -06:00
__tlb_flush_local();
}
void smp_ptlb_all(void)
{
on_each_cpu(smp_ptlb_callback, NULL, 1);
}
EXPORT_SYMBOL(smp_ptlb_all);
#endif /* ! CONFIG_64BIT */
/*
* this function sends a 'reschedule' IPI to another CPU.
* it goes straight through and wastes no time serializing
* anything. Worst case is that we lose a reschedule ...
*/
void smp_send_reschedule(int cpu)
{
smp_ext_bitcall(cpu, ec_schedule);
}
/*
* parameter area for the set/clear control bit callbacks
*/
struct ec_creg_mask_parms {
unsigned long orvals[16];
unsigned long andvals[16];
};
/*
* callback for setting/clearing control bits
*/
static void smp_ctl_bit_callback(void *info)
{
struct ec_creg_mask_parms *pp = info;
unsigned long cregs[16];
int i;
__ctl_store(cregs, 0, 15);
for (i = 0; i <= 15; i++)
cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
__ctl_load(cregs, 0, 15);
}
/*
* Set a bit in a control register of all cpus
*/
void smp_ctl_set_bit(int cr, int bit)
{
struct ec_creg_mask_parms parms;
memset(&parms.orvals, 0, sizeof(parms.orvals));
memset(&parms.andvals, 0xff, sizeof(parms.andvals));
parms.orvals[cr] = 1 << bit;
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
}
EXPORT_SYMBOL(smp_ctl_set_bit);
/*
* Clear a bit in a control register of all cpus
*/
void smp_ctl_clear_bit(int cr, int bit)
{
struct ec_creg_mask_parms parms;
memset(&parms.orvals, 0, sizeof(parms.orvals));
memset(&parms.andvals, 0xff, sizeof(parms.andvals));
parms.andvals[cr] = ~(1L << bit);
on_each_cpu(smp_ctl_bit_callback, &parms, 1);
}
EXPORT_SYMBOL(smp_ctl_clear_bit);
#ifdef CONFIG_ZFCPDUMP
static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
{
if (ipl_info.type != IPL_TYPE_FCP_DUMP)
return;
if (cpu >= NR_CPUS) {
pr_warning("CPU %i exceeds the maximum %i and is excluded from "
"the dump\n", cpu, NR_CPUS - 1);
return;
}
zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
cpu_relax();
memcpy_real(zfcpdump_save_areas[cpu],
(void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
sizeof(struct save_area));
}
struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
#else
static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
#endif /* CONFIG_ZFCPDUMP */
static int cpu_known(int cpu_id)
{
int cpu;
for_each_present_cpu(cpu) {
if (__cpu_logical_map[cpu] == cpu_id)
return 1;
}
return 0;
}
static int smp_rescan_cpus_sigp(cpumask_t avail)
{
int cpu_id, logical_cpu;
logical_cpu = cpumask_first(&avail);
if (logical_cpu >= nr_cpu_ids)
return 0;
for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
if (cpu_known(cpu_id))
continue;
__cpu_logical_map[logical_cpu] = cpu_id;
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
if (!cpu_stopped(logical_cpu))
continue;
cpu_set(logical_cpu, cpu_present_map);
smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
logical_cpu = cpumask_next(logical_cpu, &avail);
if (logical_cpu >= nr_cpu_ids)
break;
}
return 0;
}
static int smp_rescan_cpus_sclp(cpumask_t avail)
{
struct sclp_cpu_info *info;
int cpu_id, logical_cpu, cpu;
int rc;
logical_cpu = cpumask_first(&avail);
if (logical_cpu >= nr_cpu_ids)
return 0;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
rc = sclp_get_cpu_info(info);
if (rc)
goto out;
for (cpu = 0; cpu < info->combined; cpu++) {
if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
continue;
cpu_id = info->cpu[cpu].address;
if (cpu_known(cpu_id))
continue;
__cpu_logical_map[logical_cpu] = cpu_id;
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
cpu_set(logical_cpu, cpu_present_map);
if (cpu >= info->configured)
smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
else
smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
logical_cpu = cpumask_next(logical_cpu, &avail);
if (logical_cpu >= nr_cpu_ids)
break;
}
out:
kfree(info);
return rc;
}
static int __smp_rescan_cpus(void)
{
cpumask_t avail;
cpus_xor(avail, cpu_possible_map, cpu_present_map);
if (smp_use_sigp_detection)
return smp_rescan_cpus_sigp(avail);
else
return smp_rescan_cpus_sclp(avail);
}
static void __init smp_detect_cpus(void)
{
unsigned int cpu, c_cpus, s_cpus;
struct sclp_cpu_info *info;
u16 boot_cpu_addr, cpu_addr;
c_cpus = 1;
s_cpus = 0;
boot_cpu_addr = __cpu_logical_map[0];
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
panic("smp_detect_cpus failed to allocate memory\n");
/* Use sigp detection algorithm if sclp doesn't work. */
if (sclp_get_cpu_info(info)) {
smp_use_sigp_detection = 1;
for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
if (cpu == boot_cpu_addr)
continue;
if (!raw_cpu_stopped(cpu))
continue;
smp_get_save_area(c_cpus, cpu);
c_cpus++;
}
goto out;
}
if (info->has_cpu_type) {
for (cpu = 0; cpu < info->combined; cpu++) {
if (info->cpu[cpu].address == boot_cpu_addr) {
smp_cpu_type = info->cpu[cpu].type;
break;
}
}
}
for (cpu = 0; cpu < info->combined; cpu++) {
if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
continue;
cpu_addr = info->cpu[cpu].address;
if (cpu_addr == boot_cpu_addr)
continue;
if (!raw_cpu_stopped(cpu_addr)) {
s_cpus++;
continue;
}
smp_get_save_area(c_cpus, cpu_addr);
c_cpus++;
}
out:
kfree(info);
pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
get_online_cpus();
__smp_rescan_cpus();
put_online_cpus();
}
/*
* Activate a secondary processor.
*/
int __cpuinit start_secondary(void *cpuvoid)
{
/* Setup the cpu */
cpu_init();
preempt_disable();
/* Enable TOD clock interrupts on the secondary cpu. */
init_cpu_timer();
/* Enable cpu timer interrupts on the secondary cpu. */
init_cpu_vtimer();
/* Enable pfault pseudo page faults on this cpu. */
pfault_init();
/* call cpu notifiers */
notify_cpu_starting(smp_processor_id());
/* Mark this cpu as online */
ipi_call_lock();
cpu_set(smp_processor_id(), cpu_online_map);
ipi_call_unlock();
/* Switch on interrupts */
local_irq_enable();
/* cpu_idle will call schedule for us */
cpu_idle();
return 0;
}
struct create_idle {
struct work_struct work;
struct task_struct *idle;
struct completion done;
int cpu;
};
static void __cpuinit smp_fork_idle(struct work_struct *work)
{
struct create_idle *c_idle;
c_idle = container_of(work, struct create_idle, work);
c_idle->idle = fork_idle(c_idle->cpu);
complete(&c_idle->done);
}
static int __cpuinit smp_alloc_lowcore(int cpu)
{
unsigned long async_stack, panic_stack;
struct _lowcore *lowcore;
lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
if (!lowcore)
return -ENOMEM;
async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
panic_stack = __get_free_page(GFP_KERNEL);
if (!panic_stack || !async_stack)
goto out;
memcpy(lowcore, &S390_lowcore, 512);
memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
lowcore->async_stack = async_stack + ASYNC_SIZE;
lowcore->panic_stack = panic_stack + PAGE_SIZE;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE) {
unsigned long save_area;
save_area = get_zeroed_page(GFP_KERNEL);
if (!save_area)
goto out;
lowcore->extended_save_area_addr = (u32) save_area;
}
#else
if (vdso_alloc_per_cpu(cpu, lowcore))
goto out;
#endif
lowcore_ptr[cpu] = lowcore;
return 0;
out:
free_page(panic_stack);
free_pages(async_stack, ASYNC_ORDER);
free_pages((unsigned long) lowcore, LC_ORDER);
return -ENOMEM;
}
static void smp_free_lowcore(int cpu)
{
struct _lowcore *lowcore;
lowcore = lowcore_ptr[cpu];
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE)
free_page((unsigned long) lowcore->extended_save_area_addr);
#else
vdso_free_per_cpu(cpu, lowcore);
#endif
free_page(lowcore->panic_stack - PAGE_SIZE);
free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
free_pages((unsigned long) lowcore, LC_ORDER);
lowcore_ptr[cpu] = NULL;
}
/* Upping and downing of CPUs */
int __cpuinit __cpu_up(unsigned int cpu)
{
struct _lowcore *cpu_lowcore;
struct create_idle c_idle;
struct task_struct *idle;
struct stack_frame *sf;
u32 lowcore;
int ccode;
if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
return -EIO;
idle = current_set[cpu];
if (!idle) {
c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
c_idle.cpu = cpu;
schedule_work(&c_idle.work);
wait_for_completion(&c_idle.done);
if (IS_ERR(c_idle.idle))
return PTR_ERR(c_idle.idle);
idle = c_idle.idle;
current_set[cpu] = c_idle.idle;
}
init_idle(idle, cpu);
if (smp_alloc_lowcore(cpu))
return -ENOMEM;
do {
ccode = sigp(cpu, sigp_initial_cpu_reset);
if (ccode == sigp_busy)
udelay(10);
if (ccode == sigp_not_operational)
goto err_out;
} while (ccode == sigp_busy);
lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
udelay(10);
cpu_lowcore = lowcore_ptr[cpu];
cpu_lowcore->kernel_stack = (unsigned long)
task_stack_page(idle) + THREAD_SIZE;
cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
- sizeof(struct pt_regs)
- sizeof(struct stack_frame));
memset(sf, 0, sizeof(struct stack_frame));
sf->gprs[9] = (unsigned long) sf;
cpu_lowcore->save_area[15] = (unsigned long) sf;
__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
atomic_inc(&init_mm.context.attach_count);
asm volatile(
" stam 0,15,0(%0)"
: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
cpu_lowcore->current_task = (unsigned long) idle;
cpu_lowcore->cpu_nr = cpu;
cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
MAX_FACILITY_BIT/8);
eieio();
while (sigp(cpu, sigp_restart) == sigp_busy)
udelay(10);
while (!cpu_online(cpu))
cpu_relax();
return 0;
err_out:
smp_free_lowcore(cpu);
return -EIO;
}
static int __init setup_possible_cpus(char *s)
{
int pcpus, cpu;
pcpus = simple_strtoul(s, NULL, 0);
init_cpu_possible(cpumask_of(0));
for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
set_cpu_possible(cpu, true);
return 0;
}
early_param("possible_cpus", setup_possible_cpus);
#ifdef CONFIG_HOTPLUG_CPU
int __cpu_disable(void)
{
struct ec_creg_mask_parms cr_parms;
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 15:54:50 -06:00
int cpu = smp_processor_id();
[PATCH] i386 CPU hotplug (The i386 CPU hotplug patch provides infrastructure for some work which Pavel is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua <shaohua.li@intel.com> is doing) The following provides i386 architecture support for safely unregistering and registering processors during runtime, updated for the current -mm tree. In order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being that on cpu offline, fixup_irqs() is called before we clear the cpu from cpu_online_map and a long delay in order to ensure that we never have any queued external interrupts on the APICs. There are additional changes to s390 and ppc64 to account for this change. 1) Add CONFIG_HOTPLUG_CPU 2) disable local APIC timer on dead cpus. 3) Disable preempt around irq balancing to prevent CPUs going down. 4) Print irq stats for all possible cpus. 5) Debugging check for interrupts on offline cpus. 6) Hacky fixup_irqs() to redirect irqs when cpus go off/online. 7) play_dead() for offline cpus to spin inside. 8) Handle offline cpus set in flush_tlb_others(). 9) Grab lock earlier in smp_call_function() to prevent CPUs going down. 10) Implement __cpu_disable() and __cpu_die(). 11) Enable local interrupts in cpu_enable() after fixup_irqs() 12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus. 13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline. Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 15:54:50 -06:00
cpu_clear(cpu, cpu_online_map);
/* Disable pfault pseudo page faults on this cpu. */
pfault_fini();
memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
/* disable all external interrupts */
cr_parms.orvals[0] = 0;
cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
/* disable all I/O interrupts */
cr_parms.orvals[6] = 0;
cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
/* disable most machine checks */
cr_parms.orvals[14] = 0;
cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
1 << 25 | 1 << 24);
smp_ctl_bit_callback(&cr_parms);
return 0;
}
void __cpu_die(unsigned int cpu)
{
/* Wait until target cpu is down */
while (!cpu_stopped(cpu))
cpu_relax();
while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
udelay(10);
smp_free_lowcore(cpu);
atomic_dec(&init_mm.context.attach_count);
}
void cpu_die(void)
{
idle_task_exit();
while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
cpu_relax();
for (;;);
}
#endif /* CONFIG_HOTPLUG_CPU */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
#ifndef CONFIG_64BIT
unsigned long save_area = 0;
#endif
unsigned long async_stack, panic_stack;
struct _lowcore *lowcore;
smp_detect_cpus();
/* request the 0x1201 emergency signal external interrupt */
if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
panic("Couldn't request external interrupt 0x1201");
/* Reallocate current lowcore, but keep its contents. */
lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
panic_stack = __get_free_page(GFP_KERNEL);
async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
BUG_ON(!lowcore || !panic_stack || !async_stack);
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE)
save_area = get_zeroed_page(GFP_KERNEL);
#endif
local_irq_disable();
local_mcck_disable();
lowcore_ptr[smp_processor_id()] = lowcore;
*lowcore = S390_lowcore;
lowcore->panic_stack = panic_stack + PAGE_SIZE;
lowcore->async_stack = async_stack + ASYNC_SIZE;
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE)
lowcore->extended_save_area_addr = (u32) save_area;
#endif
set_prefix((u32)(unsigned long) lowcore);
local_mcck_enable();
local_irq_enable();
#ifdef CONFIG_64BIT
if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
BUG();
#endif
}
void __init smp_prepare_boot_cpu(void)
{
BUG_ON(smp_processor_id() != 0);
current_thread_info()->cpu = 0;
cpu_set(0, cpu_present_map);
cpu_set(0, cpu_online_map);
S390_lowcore.percpu_offset = __per_cpu_offset[0];
current_set[0] = current;
smp_cpu_state[0] = CPU_STATE_CONFIGURED;
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
}
void __init smp_setup_processor_id(void)
{
S390_lowcore.cpu_nr = 0;
__cpu_logical_map[0] = stap();
}
/*
* the frequency of the profiling timer can be changed
* by writing a multiplier value into /proc/profile.
*
* usually you want to run this on all CPUs ;)
*/
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
static ssize_t cpu_configure_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
ssize_t count;
mutex_lock(&smp_cpu_state_mutex);
count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
mutex_unlock(&smp_cpu_state_mutex);
return count;
}
static ssize_t cpu_configure_store(struct sys_device *dev,
struct sysdev_attribute *attr,
const char *buf, size_t count)
{
int cpu = dev->id;
int val, rc;
char delim;
if (sscanf(buf, "%d %c", &val, &delim) != 1)
return -EINVAL;
if (val != 0 && val != 1)
return -EINVAL;
get_online_cpus();
mutex_lock(&smp_cpu_state_mutex);
rc = -EBUSY;
/* disallow configuration changes of online cpus and cpu 0 */
if (cpu_online(cpu) || cpu == 0)
goto out;
rc = 0;
switch (val) {
case 0:
if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
if (!rc) {
smp_cpu_state[cpu] = CPU_STATE_STANDBY;
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
}
}
break;
case 1:
if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
if (!rc) {
smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
}
}
break;
default:
break;
}
out:
mutex_unlock(&smp_cpu_state_mutex);
put_online_cpus();
return rc ? rc : count;
}
static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
#endif /* CONFIG_HOTPLUG_CPU */
static ssize_t cpu_polarization_show(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
{
int cpu = dev->id;
ssize_t count;
mutex_lock(&smp_cpu_state_mutex);
switch (smp_cpu_polarization[cpu]) {
case POLARIZATION_HRZ:
count = sprintf(buf, "horizontal\n");
break;
case POLARIZATION_VL:
count = sprintf(buf, "vertical:low\n");
break;
case POLARIZATION_VM:
count = sprintf(buf, "vertical:medium\n");
break;
case POLARIZATION_VH:
count = sprintf(buf, "vertical:high\n");
break;
default:
count = sprintf(buf, "unknown\n");
break;
}
mutex_unlock(&smp_cpu_state_mutex);
return count;
}
static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
static ssize_t show_cpu_address(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
}
static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
static struct attribute *cpu_common_attrs[] = {
#ifdef CONFIG_HOTPLUG_CPU
&attr_configure.attr,
#endif
&attr_address.attr,
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
&attr_polarization.attr,
NULL,
};
static struct attribute_group cpu_common_attr_group = {
.attrs = cpu_common_attrs,
};
static ssize_t show_capability(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
unsigned int capability;
int rc;
rc = get_cpu_capability(&capability);
if (rc)
return rc;
return sprintf(buf, "%u\n", capability);
}
static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
static ssize_t show_idle_count(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct s390_idle_data *idle;
unsigned long long idle_count;
unsigned int sequence;
idle = &per_cpu(s390_idle, dev->id);
repeat:
sequence = idle->sequence;
smp_rmb();
if (sequence & 1)
goto repeat;
idle_count = idle->idle_count;
if (idle->idle_enter)
idle_count++;
smp_rmb();
if (idle->sequence != sequence)
goto repeat;
return sprintf(buf, "%llu\n", idle_count);
}
static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
static ssize_t show_idle_time(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
struct s390_idle_data *idle;
unsigned long long now, idle_time, idle_enter;
unsigned int sequence;
idle = &per_cpu(s390_idle, dev->id);
now = get_clock();
repeat:
sequence = idle->sequence;
smp_rmb();
if (sequence & 1)
goto repeat;
idle_time = idle->idle_time;
idle_enter = idle->idle_enter;
if (idle_enter != 0ULL && idle_enter < now)
idle_time += now - idle_enter;
smp_rmb();
if (idle->sequence != sequence)
goto repeat;
return sprintf(buf, "%llu\n", idle_time >> 12);
}
static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
static struct attribute *cpu_online_attrs[] = {
&attr_capability.attr,
&attr_idle_count.attr,
&attr_idle_time_us.attr,
NULL,
};
static struct attribute_group cpu_online_attr_group = {
.attrs = cpu_online_attrs,
};
static int __cpuinit smp_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned int)(long)hcpu;
struct cpu *c = &per_cpu(cpu_devices, cpu);
struct sys_device *s = &c->sysdev;
struct s390_idle_data *idle;
int err = 0;
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
idle = &per_cpu(s390_idle, cpu);
memset(idle, 0, sizeof(struct s390_idle_data));
err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
break;
}
return notifier_from_errno(err);
}
static struct notifier_block __cpuinitdata smp_cpu_nb = {
.notifier_call = smp_cpu_notify,
};
static int __devinit smp_add_present_cpu(int cpu)
{
struct cpu *c = &per_cpu(cpu_devices, cpu);
struct sys_device *s = &c->sysdev;
int rc;
c->hotpluggable = 1;
rc = register_cpu(c, cpu);
if (rc)
goto out;
rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
if (rc)
goto out_cpu;
if (!cpu_online(cpu))
goto out;
rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
if (!rc)
return 0;
sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
out_cpu:
#ifdef CONFIG_HOTPLUG_CPU
unregister_cpu(c);
#endif
out:
return rc;
}
#ifdef CONFIG_HOTPLUG_CPU
int __ref smp_rescan_cpus(void)
{
cpumask_t newcpus;
int cpu;
int rc;
get_online_cpus();
mutex_lock(&smp_cpu_state_mutex);
newcpus = cpu_present_map;
rc = __smp_rescan_cpus();
if (rc)
goto out;
cpus_andnot(newcpus, cpu_present_map, newcpus);
for_each_cpu_mask(cpu, newcpus) {
rc = smp_add_present_cpu(cpu);
if (rc)
cpu_clear(cpu, cpu_present_map);
}
rc = 0;
out:
mutex_unlock(&smp_cpu_state_mutex);
put_online_cpus();
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
if (!cpus_empty(newcpus))
topology_schedule_update();
return rc;
}
static ssize_t __ref rescan_store(struct sysdev_class *class,
struct sysdev_class_attribute *attr,
const char *buf,
size_t count)
{
int rc;
rc = smp_rescan_cpus();
return rc ? rc : count;
}
static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
#endif /* CONFIG_HOTPLUG_CPU */
static ssize_t dispatching_show(struct sysdev_class *class,
struct sysdev_class_attribute *attr,
char *buf)
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
{
ssize_t count;
mutex_lock(&smp_cpu_state_mutex);
count = sprintf(buf, "%d\n", cpu_management);
mutex_unlock(&smp_cpu_state_mutex);
return count;
}
static ssize_t dispatching_store(struct sysdev_class *dev,
struct sysdev_class_attribute *attr,
const char *buf,
size_t count)
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
{
int val, rc;
char delim;
if (sscanf(buf, "%d %c", &val, &delim) != 1)
return -EINVAL;
if (val != 0 && val != 1)
return -EINVAL;
rc = 0;
get_online_cpus();
mutex_lock(&smp_cpu_state_mutex);
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
if (cpu_management == val)
goto out;
rc = topology_set_cpu_management(val);
if (!rc)
cpu_management = val;
out:
mutex_unlock(&smp_cpu_state_mutex);
put_online_cpus();
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
return rc ? rc : count;
}
static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
dispatching_store);
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
static int __init topology_init(void)
{
int cpu;
int rc;
register_cpu_notifier(&smp_cpu_nb);
#ifdef CONFIG_HOTPLUG_CPU
rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
if (rc)
return rc;
#endif
rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
[S390] Vertical cpu management. If vertical cpu polarization is active then the hypervisor will dispatch certain cpus for a longer time than other cpus for maximum performance. For example if a guest would have three virtual cpus, each of them with a share of 33 percent, then in case of vertical cpu polarization all of the processing time would be combined to a single cpu which would run all the time, while the other two cpus would get nearly no cpu time. There are three different types of vertical cpus: high, medium and low. Low cpus hardly get any real cpu time, while high cpus get a full real cpu. Medium cpus get something in between. In order to switch between the two possible modes (default is horizontal) a 0 for horizontal polarization or a 1 for vertical polarization must be written to the dispatching sysfs attribute: /sys/devices/system/cpu/dispatching The polarization of each single cpu can be figured out by the polarization sysfs attribute of each cpu: /sys/devices/system/cpu/cpuX/polarization horizontal, vertical:high, vertical:medium, vertical:low or unknown. When switching polarization the polarization attribute may contain the value unknown until the configuration change is done and the kernel has figured out the new polarization of each cpu. Note that running a system with different types of vertical cpus may result in significant performance regressions. If possible only one type of vertical cpus should be used. All other cpus should be offlined. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2008-04-16 23:46:13 -06:00
if (rc)
return rc;
for_each_present_cpu(cpu) {
rc = smp_add_present_cpu(cpu);
if (rc)
return rc;
}
return 0;
}
subsys_initcall(topology_init);