kernel-fxtec-pro1x/arch/x86/mm/amdtopology_64.c

293 lines
6.6 KiB
C
Raw Normal View History

/*
* AMD NUMA support.
* Discover the memory map and associated nodes.
*
* This version reads it directly from the AMD northbridge.
*
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/memblock.h>
#include <asm/io.h>
#include <linux/pci_ids.h>
#include <linux/acpi.h>
#include <asm/types.h>
#include <asm/mmzone.h>
#include <asm/proto.h>
#include <asm/e820.h>
#include <asm/pci-direct.h>
#include <asm/numa.h>
#include <asm/mpspec.h>
#include <asm/apic.h>
#include <asm/amd_nb.h>
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
static struct bootnode __initdata nodes[8];
static unsigned char __initdata nodeids[8];
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
static __init int find_northbridge(void)
{
int num;
for (num = 0; num < 32; num++) {
u32 header;
header = read_pci_config(0, num, 0, 0x00);
if (header != (PCI_VENDOR_ID_AMD | (0x1100<<16)) &&
header != (PCI_VENDOR_ID_AMD | (0x1200<<16)) &&
header != (PCI_VENDOR_ID_AMD | (0x1300<<16)))
continue;
header = read_pci_config(0, num, 1, 0x00);
if (header != (PCI_VENDOR_ID_AMD | (0x1101<<16)) &&
header != (PCI_VENDOR_ID_AMD | (0x1201<<16)) &&
header != (PCI_VENDOR_ID_AMD | (0x1301<<16)))
continue;
return num;
}
return -ENOENT;
}
static __init void early_get_boot_cpu_id(void)
{
/*
* need to get the APIC ID of the BSP so can use that to
* create apicid_to_node in amd_scan_nodes()
*/
#ifdef CONFIG_X86_MPPARSE
/*
* get boot-time SMP configuration:
*/
if (smp_found_config)
early_get_smp_config();
#endif
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
}
int __init amd_numa_init(void)
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
{
unsigned long start = PFN_PHYS(0);
unsigned long end = PFN_PHYS(max_pfn);
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
unsigned numnodes;
unsigned long prevbase;
int i, nb;
u32 nodeid, reg;
if (!early_pci_allowed())
return -EINVAL;
nb = find_northbridge();
if (nb < 0)
return nb;
pr_info("Scanning NUMA topology in Northbridge %d\n", nb);
reg = read_pci_config(0, nb, 0, 0x60);
numnodes = ((reg >> 4) & 0xF) + 1;
if (numnodes <= 1)
return -ENOENT;
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
pr_info("Number of physical nodes %d\n", numnodes);
prevbase = 0;
for (i = 0; i < 8; i++) {
unsigned long base, limit;
base = read_pci_config(0, nb, 1, 0x40 + i*8);
limit = read_pci_config(0, nb, 1, 0x44 + i*8);
nodeids[i] = nodeid = limit & 7;
if ((base & 3) == 0) {
if (i < numnodes)
pr_info("Skipping disabled node %d\n", i);
continue;
}
if (nodeid >= numnodes) {
pr_info("Ignoring excess node %d (%lx:%lx)\n", nodeid,
base, limit);
continue;
}
if (!limit) {
pr_info("Skipping node entry %d (base %lx)\n",
i, base);
continue;
}
if ((base >> 8) & 3 || (limit >> 8) & 3) {
pr_err("Node %d using interleaving mode %lx/%lx\n",
nodeid, (base >> 8) & 3, (limit >> 8) & 3);
return -EINVAL;
}
if (node_isset(nodeid, mem_nodes_parsed)) {
pr_info("Node %d already present, skipping\n",
nodeid);
continue;
}
limit >>= 16;
limit <<= 24;
limit |= (1<<24)-1;
limit++;
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
if (limit > end)
limit = end;
if (limit <= base)
continue;
base >>= 16;
base <<= 24;
if (base < start)
base = start;
if (limit > end)
limit = end;
if (limit == base) {
pr_err("Empty node %d\n", nodeid);
continue;
}
if (limit < base) {
pr_err("Node %d bogus settings %lx-%lx.\n",
nodeid, base, limit);
continue;
}
/* Could sort here, but pun for now. Should not happen anyroads. */
if (prevbase > base) {
pr_err("Node map not sorted %lx,%lx\n",
prevbase, base);
return -EINVAL;
}
pr_info("Node %d MemBase %016lx Limit %016lx\n",
nodeid, base, limit);
nodes[nodeid].start = base;
nodes[nodeid].end = limit;
prevbase = base;
node_set(nodeid, mem_nodes_parsed);
node_set(nodeid, cpu_nodes_parsed);
}
if (!nodes_weight(mem_nodes_parsed))
return -ENOENT;
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
return 0;
}
#ifdef CONFIG_NUMA_EMU
static s16 fake_apicid_to_node[MAX_LOCAL_APIC] __initdata = {
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};
x86, numa: Fix cpu to node mapping for sparse node ids NUMA boot code assumes that physical node ids start at 0, but the DIMMs that the apic id represents may not be reachable. If this is the case, node 0 is never online and cpus never end up getting appropriately assigned to a node. This causes the cpumask of all online nodes to be empty and machines crash with kernel code assuming online nodes have valid cpus. The fix is to appropriately map all the address ranges for physical nodes and ensure the cpu to node mapping function checks all possible nodes (up to MAX_NUMNODES) instead of simply checking nodes 0-N, where N is the number of physical nodes, for valid address ranges. This requires no longer "compressing" the address ranges of nodes in the physical node map from 0-N, but rather leave indices in physnodes[] to represent the actual node id of the physical node. Accordingly, the topology exported by both amd_get_nodes() and acpi_get_nodes() no longer must return the number of nodes to iterate through; all such iterations will now be to MAX_NUMNODES. This change also passes the end address of system RAM (which may be different from normal operation if mem= is specified on the command line) before the physnodes[] array is populated. ACPI parsed nodes are truncated to fit within the address range that respect the mem= boundaries and even some physical nodes may become unreachable in such cases. When NUMA emulation does succeed, any apicid to node mapping that exists for unreachable nodes are given default values so that proximity domains can still be assigned. This is important for node_distance() to function as desired. Signed-off-by: David Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1012221702090.3701@chino.kir.corp.google.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-12-22 18:23:56 -07:00
void __init amd_get_nodes(struct bootnode *physnodes)
{
int i;
for_each_node_mask(i, mem_nodes_parsed) {
x86, numa: Fix cpu to node mapping for sparse node ids NUMA boot code assumes that physical node ids start at 0, but the DIMMs that the apic id represents may not be reachable. If this is the case, node 0 is never online and cpus never end up getting appropriately assigned to a node. This causes the cpumask of all online nodes to be empty and machines crash with kernel code assuming online nodes have valid cpus. The fix is to appropriately map all the address ranges for physical nodes and ensure the cpu to node mapping function checks all possible nodes (up to MAX_NUMNODES) instead of simply checking nodes 0-N, where N is the number of physical nodes, for valid address ranges. This requires no longer "compressing" the address ranges of nodes in the physical node map from 0-N, but rather leave indices in physnodes[] to represent the actual node id of the physical node. Accordingly, the topology exported by both amd_get_nodes() and acpi_get_nodes() no longer must return the number of nodes to iterate through; all such iterations will now be to MAX_NUMNODES. This change also passes the end address of system RAM (which may be different from normal operation if mem= is specified on the command line) before the physnodes[] array is populated. ACPI parsed nodes are truncated to fit within the address range that respect the mem= boundaries and even some physical nodes may become unreachable in such cases. When NUMA emulation does succeed, any apicid to node mapping that exists for unreachable nodes are given default values so that proximity domains can still be assigned. This is important for node_distance() to function as desired. Signed-off-by: David Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1012221702090.3701@chino.kir.corp.google.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-12-22 18:23:56 -07:00
physnodes[i].start = nodes[i].start;
physnodes[i].end = nodes[i].end;
}
}
static int __init find_node_by_addr(unsigned long addr)
{
int ret = NUMA_NO_NODE;
int i;
for (i = 0; i < 8; i++)
if (addr >= nodes[i].start && addr < nodes[i].end) {
ret = i;
break;
}
return ret;
}
/*
* For NUMA emulation, fake proximity domain (_PXM) to node id mappings must be
* setup to represent the physical topology but reflect the emulated
* environment. For each emulated node, the real node which it appears on is
* found and a fake pxm to nid mapping is created which mirrors the actual
* locality. node_distance() then represents the correct distances between
* emulated nodes by using the fake acpi mappings to pxms.
*/
void __init amd_fake_nodes(const struct bootnode *nodes, int nr_nodes)
{
unsigned int bits;
unsigned int cores;
unsigned int apicid_base = 0;
int i;
bits = boot_cpu_data.x86_coreid_bits;
cores = 1 << bits;
early_get_boot_cpu_id();
if (boot_cpu_physical_apicid > 0)
apicid_base = boot_cpu_physical_apicid;
for (i = 0; i < nr_nodes; i++) {
int index;
int nid;
int j;
nid = find_node_by_addr(nodes[i].start);
if (nid == NUMA_NO_NODE)
continue;
index = nodeids[nid] << bits;
if (fake_apicid_to_node[index + apicid_base] == NUMA_NO_NODE)
for (j = apicid_base; j < cores + apicid_base; j++)
fake_apicid_to_node[index + j] = i;
#ifdef CONFIG_ACPI_NUMA
__acpi_map_pxm_to_node(nid, i);
#endif
}
memcpy(__apicid_to_node, fake_apicid_to_node, sizeof(__apicid_to_node));
}
#endif /* CONFIG_NUMA_EMU */
int __init amd_scan_nodes(void)
x86: Export k8 physical topology To eventually interleave emulated nodes over physical nodes, we need to know the physical topology of the machine without actually registering it. This does the k8 node setup in two parts: detection and registration. NUMA emulation can then used the physical topology detected to setup the address ranges of emulated nodes accordingly. If emulation isn't used, the k8 nodes are registered as normal. Two formals are added to the x86 NUMA setup functions: `acpi' and `k8'. These represent whether ACPI or K8 NUMA has been detected; both cannot be true at the same time. This specifies to the NUMA emulation code whether an underlying physical NUMA topology exists and which interface to use. This patch deals solely with separating the k8 setup path into Northbridge detection and registration steps and leaves the ACPI changes for a subsequent patch. The `acpi' formal is added here, however, to avoid touching all the header files again in the next patch. This approach also ensures emulated nodes will not span physical nodes so the true memory latency is not misrepresented. k8_get_nodes() may now be used to export the k8 physical topology of the machine for NUMA emulation. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Ankita Garg <ankita@in.ibm.com> Cc: Len Brown <len.brown@intel.com> LKML-Reference: <alpine.DEB.1.00.0909251518400.14754@chino.kir.corp.google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-25 16:20:00 -06:00
{
unsigned int bits;
unsigned int cores;
unsigned int apicid_base;
int i;
memnode_shift = compute_hash_shift(nodes, 8, NULL);
if (memnode_shift < 0) {
pr_err("No NUMA node hash function found. Contact maintainer\n");
return -1;
}
pr_info("Using node hash shift of %d\n", memnode_shift);
/* use the coreid bits from early_identify_cpu */
bits = boot_cpu_data.x86_coreid_bits;
cores = (1<<bits);
apicid_base = 0;
/* get the APIC ID of the BSP early for systems with apicid lifting */
early_get_boot_cpu_id();
if (boot_cpu_physical_apicid > 0) {
pr_info("BSP APIC ID: %02x\n", boot_cpu_physical_apicid);
apicid_base = boot_cpu_physical_apicid;
}
x86-64, numa: Put pgtable to local node memory Introduce init_memory_mapping_high(), and use it with 64bit. It will go with every memory segment above 4g to create page table to the memory range itself. before this patch all page tables was on one node. with this patch, one RED-PEN is killed debug out for 8 sockets system after patch [ 0.000000] initial memory mapped : 0 - 20000000 [ 0.000000] init_memory_mapping: [0x00000000000000-0x0000007f74ffff] [ 0.000000] 0000000000 - 007f600000 page 2M [ 0.000000] 007f600000 - 007f750000 page 4k [ 0.000000] kernel direct mapping tables up to 7f750000 @ [0x7f74c000-0x7f74ffff] [ 0.000000] RAMDISK: 7bc84000 - 7f745000 .... [ 0.000000] Adding active range (0, 0x10, 0x95) 0 entries of 3200 used [ 0.000000] Adding active range (0, 0x100, 0x7f750) 1 entries of 3200 used [ 0.000000] Adding active range (0, 0x100000, 0x1080000) 2 entries of 3200 used [ 0.000000] Adding active range (1, 0x1080000, 0x2080000) 3 entries of 3200 used [ 0.000000] Adding active range (2, 0x2080000, 0x3080000) 4 entries of 3200 used [ 0.000000] Adding active range (3, 0x3080000, 0x4080000) 5 entries of 3200 used [ 0.000000] Adding active range (4, 0x4080000, 0x5080000) 6 entries of 3200 used [ 0.000000] Adding active range (5, 0x5080000, 0x6080000) 7 entries of 3200 used [ 0.000000] Adding active range (6, 0x6080000, 0x7080000) 8 entries of 3200 used [ 0.000000] Adding active range (7, 0x7080000, 0x8080000) 9 entries of 3200 used [ 0.000000] init_memory_mapping: [0x00000100000000-0x0000107fffffff] [ 0.000000] 0100000000 - 1080000000 page 2M [ 0.000000] kernel direct mapping tables up to 1080000000 @ [0x107ffbd000-0x107fffffff] [ 0.000000] memblock_x86_reserve_range: [0x107ffc2000-0x107fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00001080000000-0x0000207fffffff] [ 0.000000] 1080000000 - 2080000000 page 2M [ 0.000000] kernel direct mapping tables up to 2080000000 @ [0x207ff7d000-0x207fffffff] [ 0.000000] memblock_x86_reserve_range: [0x207ffc0000-0x207fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00002080000000-0x0000307fffffff] [ 0.000000] 2080000000 - 3080000000 page 2M [ 0.000000] kernel direct mapping tables up to 3080000000 @ [0x307ff3d000-0x307fffffff] [ 0.000000] memblock_x86_reserve_range: [0x307ffc0000-0x307fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00003080000000-0x0000407fffffff] [ 0.000000] 3080000000 - 4080000000 page 2M [ 0.000000] kernel direct mapping tables up to 4080000000 @ [0x407fefd000-0x407fffffff] [ 0.000000] memblock_x86_reserve_range: [0x407ffc0000-0x407fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00004080000000-0x0000507fffffff] [ 0.000000] 4080000000 - 5080000000 page 2M [ 0.000000] kernel direct mapping tables up to 5080000000 @ [0x507febd000-0x507fffffff] [ 0.000000] memblock_x86_reserve_range: [0x507ffc0000-0x507fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00005080000000-0x0000607fffffff] [ 0.000000] 5080000000 - 6080000000 page 2M [ 0.000000] kernel direct mapping tables up to 6080000000 @ [0x607fe7d000-0x607fffffff] [ 0.000000] memblock_x86_reserve_range: [0x607ffc0000-0x607fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00006080000000-0x0000707fffffff] [ 0.000000] 6080000000 - 7080000000 page 2M [ 0.000000] kernel direct mapping tables up to 7080000000 @ [0x707fe3d000-0x707fffffff] [ 0.000000] memblock_x86_reserve_range: [0x707ffc0000-0x707fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00007080000000-0x0000807fffffff] [ 0.000000] 7080000000 - 8080000000 page 2M [ 0.000000] kernel direct mapping tables up to 8080000000 @ [0x807fdfc000-0x807fffffff] [ 0.000000] memblock_x86_reserve_range: [0x807ffbf000-0x807fffffff] PGTABLE [ 0.000000] Initmem setup node 0 [0000000000000000-000000107fffffff] [ 0.000000] NODE_DATA [0x0000107ffbd000-0x0000107ffc1fff] [ 0.000000] Initmem setup node 1 [0000001080000000-000000207fffffff] [ 0.000000] NODE_DATA [0x0000207ffbb000-0x0000207ffbffff] [ 0.000000] Initmem setup node 2 [0000002080000000-000000307fffffff] [ 0.000000] NODE_DATA [0x0000307ffbb000-0x0000307ffbffff] [ 0.000000] Initmem setup node 3 [0000003080000000-000000407fffffff] [ 0.000000] NODE_DATA [0x0000407ffbb000-0x0000407ffbffff] [ 0.000000] Initmem setup node 4 [0000004080000000-000000507fffffff] [ 0.000000] NODE_DATA [0x0000507ffbb000-0x0000507ffbffff] [ 0.000000] Initmem setup node 5 [0000005080000000-000000607fffffff] [ 0.000000] NODE_DATA [0x0000607ffbb000-0x0000607ffbffff] [ 0.000000] Initmem setup node 6 [0000006080000000-000000707fffffff] [ 0.000000] NODE_DATA [0x0000707ffbb000-0x0000707ffbffff] [ 0.000000] Initmem setup node 7 [0000007080000000-000000807fffffff] [ 0.000000] NODE_DATA [0x0000807ffba000-0x0000807ffbefff] Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4D1933D1.9020609@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-12-27 17:48:17 -07:00
for_each_node_mask(i, node_possible_map)
memblock_x86_register_active_regions(i,
nodes[i].start >> PAGE_SHIFT,
nodes[i].end >> PAGE_SHIFT);
x86-64, numa: Put pgtable to local node memory Introduce init_memory_mapping_high(), and use it with 64bit. It will go with every memory segment above 4g to create page table to the memory range itself. before this patch all page tables was on one node. with this patch, one RED-PEN is killed debug out for 8 sockets system after patch [ 0.000000] initial memory mapped : 0 - 20000000 [ 0.000000] init_memory_mapping: [0x00000000000000-0x0000007f74ffff] [ 0.000000] 0000000000 - 007f600000 page 2M [ 0.000000] 007f600000 - 007f750000 page 4k [ 0.000000] kernel direct mapping tables up to 7f750000 @ [0x7f74c000-0x7f74ffff] [ 0.000000] RAMDISK: 7bc84000 - 7f745000 .... [ 0.000000] Adding active range (0, 0x10, 0x95) 0 entries of 3200 used [ 0.000000] Adding active range (0, 0x100, 0x7f750) 1 entries of 3200 used [ 0.000000] Adding active range (0, 0x100000, 0x1080000) 2 entries of 3200 used [ 0.000000] Adding active range (1, 0x1080000, 0x2080000) 3 entries of 3200 used [ 0.000000] Adding active range (2, 0x2080000, 0x3080000) 4 entries of 3200 used [ 0.000000] Adding active range (3, 0x3080000, 0x4080000) 5 entries of 3200 used [ 0.000000] Adding active range (4, 0x4080000, 0x5080000) 6 entries of 3200 used [ 0.000000] Adding active range (5, 0x5080000, 0x6080000) 7 entries of 3200 used [ 0.000000] Adding active range (6, 0x6080000, 0x7080000) 8 entries of 3200 used [ 0.000000] Adding active range (7, 0x7080000, 0x8080000) 9 entries of 3200 used [ 0.000000] init_memory_mapping: [0x00000100000000-0x0000107fffffff] [ 0.000000] 0100000000 - 1080000000 page 2M [ 0.000000] kernel direct mapping tables up to 1080000000 @ [0x107ffbd000-0x107fffffff] [ 0.000000] memblock_x86_reserve_range: [0x107ffc2000-0x107fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00001080000000-0x0000207fffffff] [ 0.000000] 1080000000 - 2080000000 page 2M [ 0.000000] kernel direct mapping tables up to 2080000000 @ [0x207ff7d000-0x207fffffff] [ 0.000000] memblock_x86_reserve_range: [0x207ffc0000-0x207fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00002080000000-0x0000307fffffff] [ 0.000000] 2080000000 - 3080000000 page 2M [ 0.000000] kernel direct mapping tables up to 3080000000 @ [0x307ff3d000-0x307fffffff] [ 0.000000] memblock_x86_reserve_range: [0x307ffc0000-0x307fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00003080000000-0x0000407fffffff] [ 0.000000] 3080000000 - 4080000000 page 2M [ 0.000000] kernel direct mapping tables up to 4080000000 @ [0x407fefd000-0x407fffffff] [ 0.000000] memblock_x86_reserve_range: [0x407ffc0000-0x407fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00004080000000-0x0000507fffffff] [ 0.000000] 4080000000 - 5080000000 page 2M [ 0.000000] kernel direct mapping tables up to 5080000000 @ [0x507febd000-0x507fffffff] [ 0.000000] memblock_x86_reserve_range: [0x507ffc0000-0x507fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00005080000000-0x0000607fffffff] [ 0.000000] 5080000000 - 6080000000 page 2M [ 0.000000] kernel direct mapping tables up to 6080000000 @ [0x607fe7d000-0x607fffffff] [ 0.000000] memblock_x86_reserve_range: [0x607ffc0000-0x607fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00006080000000-0x0000707fffffff] [ 0.000000] 6080000000 - 7080000000 page 2M [ 0.000000] kernel direct mapping tables up to 7080000000 @ [0x707fe3d000-0x707fffffff] [ 0.000000] memblock_x86_reserve_range: [0x707ffc0000-0x707fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00007080000000-0x0000807fffffff] [ 0.000000] 7080000000 - 8080000000 page 2M [ 0.000000] kernel direct mapping tables up to 8080000000 @ [0x807fdfc000-0x807fffffff] [ 0.000000] memblock_x86_reserve_range: [0x807ffbf000-0x807fffffff] PGTABLE [ 0.000000] Initmem setup node 0 [0000000000000000-000000107fffffff] [ 0.000000] NODE_DATA [0x0000107ffbd000-0x0000107ffc1fff] [ 0.000000] Initmem setup node 1 [0000001080000000-000000207fffffff] [ 0.000000] NODE_DATA [0x0000207ffbb000-0x0000207ffbffff] [ 0.000000] Initmem setup node 2 [0000002080000000-000000307fffffff] [ 0.000000] NODE_DATA [0x0000307ffbb000-0x0000307ffbffff] [ 0.000000] Initmem setup node 3 [0000003080000000-000000407fffffff] [ 0.000000] NODE_DATA [0x0000407ffbb000-0x0000407ffbffff] [ 0.000000] Initmem setup node 4 [0000004080000000-000000507fffffff] [ 0.000000] NODE_DATA [0x0000507ffbb000-0x0000507ffbffff] [ 0.000000] Initmem setup node 5 [0000005080000000-000000607fffffff] [ 0.000000] NODE_DATA [0x0000607ffbb000-0x0000607ffbffff] [ 0.000000] Initmem setup node 6 [0000006080000000-000000707fffffff] [ 0.000000] NODE_DATA [0x0000707ffbb000-0x0000707ffbffff] [ 0.000000] Initmem setup node 7 [0000007080000000-000000807fffffff] [ 0.000000] NODE_DATA [0x0000807ffba000-0x0000807ffbefff] Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4D1933D1.9020609@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-12-27 17:48:17 -07:00
init_memory_mapping_high();
for_each_node_mask(i, node_possible_map) {
int j;
for (j = apicid_base; j < cores + apicid_base; j++)
set_apicid_to_node((i << bits) + j, i);
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
}
numa_init_array();
return 0;
}