kernel-fxtec-pro1x/drivers/serial/v850e_uart.c

549 lines
15 KiB
C
Raw Normal View History

/*
* drivers/serial/v850e_uart.c -- Serial I/O using V850E on-chip UART or UARTB
*
* Copyright (C) 2001,02,03 NEC Electronics Corporation
* Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org>
*
* This file is subject to the terms and conditions of the GNU General
* Public License. See the file COPYING in the main directory of this
* archive for more details.
*
* Written by Miles Bader <miles@gnu.org>
*/
/* This driver supports both the original V850E UART interface (called
merely `UART' in the docs) and the newer `UARTB' interface, which is
roughly a superset of the first one. The selection is made at
configure time -- if CONFIG_V850E_UARTB is defined, then UARTB is
presumed, otherwise the old UART -- as these are on-CPU UARTS, a system
can never have both.
The UARTB interface also has a 16-entry FIFO mode, which is not
yet supported by this driver. */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/console.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <asm/v850e_uart.h>
/* Initial UART state. This may be overridden by machine-dependent headers. */
#ifndef V850E_UART_INIT_BAUD
#define V850E_UART_INIT_BAUD 115200
#endif
#ifndef V850E_UART_INIT_CFLAGS
#define V850E_UART_INIT_CFLAGS (B115200 | CS8 | CREAD)
#endif
/* A string used for prefixing printed descriptions; since the same UART
macro is actually used on other chips than the V850E. This must be a
constant string. */
#ifndef V850E_UART_CHIP_NAME
#define V850E_UART_CHIP_NAME "V850E"
#endif
#define V850E_UART_MINOR_BASE 64 /* First tty minor number */
/* Low-level UART functions. */
/* Configure and turn on uart channel CHAN, using the termios `control
modes' bits in CFLAGS, and a baud-rate of BAUD. */
void v850e_uart_configure (unsigned chan, unsigned cflags, unsigned baud)
{
int flags;
v850e_uart_speed_t old_speed;
v850e_uart_config_t old_config;
v850e_uart_speed_t new_speed = v850e_uart_calc_speed (baud);
v850e_uart_config_t new_config = v850e_uart_calc_config (cflags);
/* Disable interrupts while we're twiddling the hardware. */
local_irq_save (flags);
#ifdef V850E_UART_PRE_CONFIGURE
V850E_UART_PRE_CONFIGURE (chan, cflags, baud);
#endif
old_config = V850E_UART_CONFIG (chan);
old_speed = v850e_uart_speed (chan);
if (! v850e_uart_speed_eq (old_speed, new_speed)) {
/* The baud rate has changed. First, disable the UART. */
V850E_UART_CONFIG (chan) = V850E_UART_CONFIG_FINI;
old_config = 0; /* Force the uart to be re-initialized. */
/* Reprogram the baud-rate generator. */
v850e_uart_set_speed (chan, new_speed);
}
if (! (old_config & V850E_UART_CONFIG_ENABLED)) {
/* If we are using the uart for the first time, start by
enabling it, which must be done before turning on any
other bits. */
V850E_UART_CONFIG (chan) = V850E_UART_CONFIG_INIT;
/* See the initial state. */
old_config = V850E_UART_CONFIG (chan);
}
if (new_config != old_config) {
/* Which of the TXE/RXE bits we'll temporarily turn off
before changing other control bits. */
unsigned temp_disable = 0;
/* Which of the TXE/RXE bits will be enabled. */
unsigned enable = 0;
unsigned changed_bits = new_config ^ old_config;
/* Which of RX/TX will be enabled in the new configuration. */
if (new_config & V850E_UART_CONFIG_RX_BITS)
enable |= (new_config & V850E_UART_CONFIG_RX_ENABLE);
if (new_config & V850E_UART_CONFIG_TX_BITS)
enable |= (new_config & V850E_UART_CONFIG_TX_ENABLE);
/* Figure out which of RX/TX needs to be disabled; note
that this will only happen if they're not already
disabled. */
if (changed_bits & V850E_UART_CONFIG_RX_BITS)
temp_disable
|= (old_config & V850E_UART_CONFIG_RX_ENABLE);
if (changed_bits & V850E_UART_CONFIG_TX_BITS)
temp_disable
|= (old_config & V850E_UART_CONFIG_TX_ENABLE);
/* We have to turn off RX and/or TX mode before changing
any associated control bits. */
if (temp_disable)
V850E_UART_CONFIG (chan) = old_config & ~temp_disable;
/* Write the new control bits, while RX/TX are disabled. */
if (changed_bits & ~enable)
V850E_UART_CONFIG (chan) = new_config & ~enable;
v850e_uart_config_delay (new_config, new_speed);
/* Write the final version, with enable bits turned on. */
V850E_UART_CONFIG (chan) = new_config;
}
local_irq_restore (flags);
}
/* Low-level console. */
#ifdef CONFIG_V850E_UART_CONSOLE
static void v850e_uart_cons_write (struct console *co,
const char *s, unsigned count)
{
if (count > 0) {
unsigned chan = co->index;
unsigned irq = V850E_UART_TX_IRQ (chan);
int irq_was_enabled, irq_was_pending, flags;
/* We don't want to get `transmission completed'
interrupts, since we're busy-waiting, so we disable them
while sending (we don't disable interrupts entirely
because sending over a serial line is really slow). We
save the status of the tx interrupt and restore it when
we're done so that using printk doesn't interfere with
normal serial transmission (other than interleaving the
output, of course!). This should work correctly even if
this function is interrupted and the interrupt printks
something. */
/* Disable interrupts while fiddling with tx interrupt. */
local_irq_save (flags);
/* Get current tx interrupt status. */
irq_was_enabled = v850e_intc_irq_enabled (irq);
irq_was_pending = v850e_intc_irq_pending (irq);
/* Disable tx interrupt if necessary. */
if (irq_was_enabled)
v850e_intc_disable_irq (irq);
/* Turn interrupts back on. */
local_irq_restore (flags);
/* Send characters. */
while (count > 0) {
int ch = *s++;
if (ch == '\n') {
/* We don't have the benefit of a tty
driver, so translate NL into CR LF. */
v850e_uart_wait_for_xmit_ok (chan);
v850e_uart_putc (chan, '\r');
}
v850e_uart_wait_for_xmit_ok (chan);
v850e_uart_putc (chan, ch);
count--;
}
/* Restore saved tx interrupt status. */
if (irq_was_enabled) {
/* Wait for the last character we sent to be
completely transmitted (as we'll get an
interrupt interrupt at that point). */
v850e_uart_wait_for_xmit_done (chan);
/* Clear pending interrupts received due
to our transmission, unless there was already
one pending, in which case we want the
handler to be called. */
if (! irq_was_pending)
v850e_intc_clear_pending_irq (irq);
/* ... and then turn back on handling. */
v850e_intc_enable_irq (irq);
}
}
}
extern struct uart_driver v850e_uart_driver;
static struct console v850e_uart_cons =
{
.name = "ttyS",
.write = v850e_uart_cons_write,
.device = uart_console_device,
.flags = CON_PRINTBUFFER,
.cflag = V850E_UART_INIT_CFLAGS,
.index = -1,
.data = &v850e_uart_driver,
};
void v850e_uart_cons_init (unsigned chan)
{
v850e_uart_configure (chan, V850E_UART_INIT_CFLAGS,
V850E_UART_INIT_BAUD);
v850e_uart_cons.index = chan;
register_console (&v850e_uart_cons);
printk ("Console: %s on-chip UART channel %d\n",
V850E_UART_CHIP_NAME, chan);
}
/* This is what the init code actually calls. */
static int v850e_uart_console_init (void)
{
v850e_uart_cons_init (V850E_UART_CONSOLE_CHANNEL);
return 0;
}
console_initcall(v850e_uart_console_init);
#define V850E_UART_CONSOLE &v850e_uart_cons
#else /* !CONFIG_V850E_UART_CONSOLE */
#define V850E_UART_CONSOLE 0
#endif /* CONFIG_V850E_UART_CONSOLE */
/* TX/RX interrupt handlers. */
static void v850e_uart_stop_tx (struct uart_port *port);
void v850e_uart_tx (struct uart_port *port)
{
struct circ_buf *xmit = &port->info->xmit;
int stopped = uart_tx_stopped (port);
if (v850e_uart_xmit_ok (port->line)) {
int tx_ch;
if (port->x_char) {
tx_ch = port->x_char;
port->x_char = 0;
} else if (!uart_circ_empty (xmit) && !stopped) {
tx_ch = xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
} else
goto no_xmit;
v850e_uart_putc (port->line, tx_ch);
port->icount.tx++;
if (uart_circ_chars_pending (xmit) < WAKEUP_CHARS)
uart_write_wakeup (port);
}
no_xmit:
if (uart_circ_empty (xmit) || stopped)
v850e_uart_stop_tx (port, stopped);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
static irqreturn_t v850e_uart_tx_irq(int irq, void *data)
{
struct uart_port *port = data;
v850e_uart_tx (port);
return IRQ_HANDLED;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
static irqreturn_t v850e_uart_rx_irq(int irq, void *data)
{
struct uart_port *port = data;
unsigned ch_stat = TTY_NORMAL;
unsigned ch = v850e_uart_getc (port->line);
unsigned err = v850e_uart_err (port->line);
if (err) {
if (err & V850E_UART_ERR_OVERRUN) {
ch_stat = TTY_OVERRUN;
port->icount.overrun++;
} else if (err & V850E_UART_ERR_FRAME) {
ch_stat = TTY_FRAME;
port->icount.frame++;
} else if (err & V850E_UART_ERR_PARITY) {
ch_stat = TTY_PARITY;
port->icount.parity++;
}
}
port->icount.rx++;
tty_insert_flip_char (port->info->tty, ch, ch_stat);
tty_schedule_flip (port->info->tty);
return IRQ_HANDLED;
}
/* Control functions for the serial framework. */
static void v850e_uart_nop (struct uart_port *port) { }
static int v850e_uart_success (struct uart_port *port) { return 0; }
static unsigned v850e_uart_tx_empty (struct uart_port *port)
{
return TIOCSER_TEMT; /* Can't detect. */
}
static void v850e_uart_set_mctrl (struct uart_port *port, unsigned mctrl)
{
#ifdef V850E_UART_SET_RTS
V850E_UART_SET_RTS (port->line, (mctrl & TIOCM_RTS));
#endif
}
static unsigned v850e_uart_get_mctrl (struct uart_port *port)
{
/* We don't support DCD or DSR, so consider them permanently active. */
int mctrl = TIOCM_CAR | TIOCM_DSR;
/* We may support CTS. */
#ifdef V850E_UART_CTS
mctrl |= V850E_UART_CTS(port->line) ? TIOCM_CTS : 0;
#else
mctrl |= TIOCM_CTS;
#endif
return mctrl;
}
static void v850e_uart_start_tx (struct uart_port *port)
{
v850e_intc_disable_irq (V850E_UART_TX_IRQ (port->line));
v850e_uart_tx (port);
v850e_intc_enable_irq (V850E_UART_TX_IRQ (port->line));
}
static void v850e_uart_stop_tx (struct uart_port *port)
{
v850e_intc_disable_irq (V850E_UART_TX_IRQ (port->line));
}
static void v850e_uart_start_rx (struct uart_port *port)
{
v850e_intc_enable_irq (V850E_UART_RX_IRQ (port->line));
}
static void v850e_uart_stop_rx (struct uart_port *port)
{
v850e_intc_disable_irq (V850E_UART_RX_IRQ (port->line));
}
static void v850e_uart_break_ctl (struct uart_port *port, int break_ctl)
{
/* Umm, do this later. */
}
static int v850e_uart_startup (struct uart_port *port)
{
int err;
/* Alloc RX irq. */
err = request_irq (V850E_UART_RX_IRQ (port->line), v850e_uart_rx_irq,
IRQF_DISABLED, "v850e_uart", port);
if (err)
return err;
/* Alloc TX irq. */
err = request_irq (V850E_UART_TX_IRQ (port->line), v850e_uart_tx_irq,
IRQF_DISABLED, "v850e_uart", port);
if (err) {
free_irq (V850E_UART_RX_IRQ (port->line), port);
return err;
}
v850e_uart_start_rx (port);
return 0;
}
static void v850e_uart_shutdown (struct uart_port *port)
{
/* Disable port interrupts. */
free_irq (V850E_UART_TX_IRQ (port->line), port);
free_irq (V850E_UART_RX_IRQ (port->line), port);
/* Turn off xmit/recv enable bits. */
V850E_UART_CONFIG (port->line)
&= ~(V850E_UART_CONFIG_TX_ENABLE
| V850E_UART_CONFIG_RX_ENABLE);
/* Then reset the channel. */
V850E_UART_CONFIG (port->line) = 0;
}
static void
v850e_uart_set_termios (struct uart_port *port, struct termios *termios,
struct termios *old)
{
unsigned cflags = termios->c_cflag;
/* Restrict flags to legal values. */
if ((cflags & CSIZE) != CS7 && (cflags & CSIZE) != CS8)
/* The new value of CSIZE is invalid, use the old value. */
cflags = (cflags & ~CSIZE)
| (old ? (old->c_cflag & CSIZE) : CS8);
termios->c_cflag = cflags;
v850e_uart_configure (port->line, cflags,
uart_get_baud_rate (port, termios, old,
v850e_uart_min_baud(),
v850e_uart_max_baud()));
}
static const char *v850e_uart_type (struct uart_port *port)
{
return port->type == PORT_V850E_UART ? "v850e_uart" : 0;
}
static void v850e_uart_config_port (struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE)
port->type = PORT_V850E_UART;
}
static int
v850e_uart_verify_port (struct uart_port *port, struct serial_struct *ser)
{
if (ser->type != PORT_UNKNOWN && ser->type != PORT_V850E_UART)
return -EINVAL;
if (ser->irq != V850E_UART_TX_IRQ (port->line))
return -EINVAL;
return 0;
}
static struct uart_ops v850e_uart_ops = {
.tx_empty = v850e_uart_tx_empty,
.get_mctrl = v850e_uart_get_mctrl,
.set_mctrl = v850e_uart_set_mctrl,
.start_tx = v850e_uart_start_tx,
.stop_tx = v850e_uart_stop_tx,
.stop_rx = v850e_uart_stop_rx,
.enable_ms = v850e_uart_nop,
.break_ctl = v850e_uart_break_ctl,
.startup = v850e_uart_startup,
.shutdown = v850e_uart_shutdown,
.set_termios = v850e_uart_set_termios,
.type = v850e_uart_type,
.release_port = v850e_uart_nop,
.request_port = v850e_uart_success,
.config_port = v850e_uart_config_port,
.verify_port = v850e_uart_verify_port,
};
/* Initialization and cleanup. */
static struct uart_driver v850e_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "v850e_uart",
.dev_name = "ttyS",
.major = TTY_MAJOR,
.minor = V850E_UART_MINOR_BASE,
.nr = V850E_UART_NUM_CHANNELS,
.cons = V850E_UART_CONSOLE,
};
static struct uart_port v850e_uart_ports[V850E_UART_NUM_CHANNELS];
static int __init v850e_uart_init (void)
{
int rval;
printk (KERN_INFO "%s on-chip UART\n", V850E_UART_CHIP_NAME);
rval = uart_register_driver (&v850e_uart_driver);
if (rval == 0) {
unsigned chan;
for (chan = 0; chan < V850E_UART_NUM_CHANNELS; chan++) {
struct uart_port *port = &v850e_uart_ports[chan];
memset (port, 0, sizeof *port);
port->ops = &v850e_uart_ops;
port->line = chan;
port->iotype = UPIO_MEM;
port->flags = UPF_BOOT_AUTOCONF;
/* We actually use multiple IRQs, but the serial
framework seems to mainly use this for
informational purposes anyway. Here we use the TX
irq. */
port->irq = V850E_UART_TX_IRQ (chan);
/* The serial framework doesn't really use these
membase/mapbase fields for anything useful, but
it requires that they be something non-zero to
consider the port `valid', and also uses them
for informational purposes. */
port->membase = (void *)V850E_UART_BASE_ADDR (chan);
port->mapbase = V850E_UART_BASE_ADDR (chan);
/* The framework insists on knowing the uart's master
clock freq, though it doesn't seem to do anything
useful for us with it. We must make it at least
higher than (the maximum baud rate * 16), otherwise
the framework will puke during its internal
calculations, and force the baud rate to be 9600.
To be accurate though, just repeat the calculation
we use when actually setting the speed. */
port->uartclk = v850e_uart_max_clock() * 16;
uart_add_one_port (&v850e_uart_driver, port);
}
}
return rval;
}
static void __exit v850e_uart_exit (void)
{
unsigned chan;
for (chan = 0; chan < V850E_UART_NUM_CHANNELS; chan++)
uart_remove_one_port (&v850e_uart_driver,
&v850e_uart_ports[chan]);
uart_unregister_driver (&v850e_uart_driver);
}
module_init (v850e_uart_init);
module_exit (v850e_uart_exit);
MODULE_AUTHOR ("Miles Bader");
MODULE_DESCRIPTION ("NEC " V850E_UART_CHIP_NAME " on-chip UART");
MODULE_LICENSE ("GPL");