2009-10-09 20:13:08 -06:00
|
|
|
/*****************************************************************************
|
|
|
|
* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
|
|
|
|
*
|
|
|
|
* Unless you and Broadcom execute a separate written software license
|
|
|
|
* agreement governing use of this software, this software is licensed to you
|
|
|
|
* under the terms of the GNU General Public License version 2, available at
|
|
|
|
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
|
|
|
|
*
|
|
|
|
* Notwithstanding the above, under no circumstances may you combine this
|
|
|
|
* software in any way with any other Broadcom software provided under a
|
|
|
|
* license other than the GPL, without Broadcom's express prior written
|
|
|
|
* consent.
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/* ---- Include Files ---------------------------------------------------- */
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/kernel.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
|
|
|
#include <linux/slab.h>
|
2009-10-09 20:13:08 -06:00
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/ioport.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
|
|
#include <linux/mtd/nand.h>
|
|
|
|
#include <linux/mtd/nand_ecc.h>
|
|
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
|
|
|
|
#include <asm/mach-types.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
|
|
|
|
#include <mach/reg_nand.h>
|
|
|
|
#include <mach/reg_umi.h>
|
|
|
|
|
|
|
|
#include "nand_bcm_umi.h"
|
|
|
|
|
|
|
|
#include <mach/memory_settings.h>
|
|
|
|
|
|
|
|
#define USE_DMA 1
|
|
|
|
#include <mach/dma.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/completion.h>
|
|
|
|
|
|
|
|
/* ---- External Variable Declarations ----------------------------------- */
|
|
|
|
/* ---- External Function Prototypes ------------------------------------- */
|
|
|
|
/* ---- Public Variables ------------------------------------------------- */
|
|
|
|
/* ---- Private Constants and Types -------------------------------------- */
|
|
|
|
static const __devinitconst char gBanner[] = KERN_INFO \
|
|
|
|
"BCM UMI MTD NAND Driver: 1.00\n";
|
|
|
|
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
|
|
const char *part_probes[] = { "cmdlinepart", NULL };
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if NAND_ECC_BCH
|
|
|
|
static uint8_t scan_ff_pattern[] = { 0xff };
|
|
|
|
|
|
|
|
static struct nand_bbt_descr largepage_bbt = {
|
|
|
|
.options = 0,
|
|
|
|
.offs = 0,
|
|
|
|
.len = 1,
|
|
|
|
.pattern = scan_ff_pattern
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Preallocate a buffer to avoid having to do this every dma operation.
|
|
|
|
** This is the size of the preallocated coherent DMA buffer.
|
|
|
|
*/
|
|
|
|
#if USE_DMA
|
|
|
|
#define DMA_MIN_BUFLEN 512
|
|
|
|
#define DMA_MAX_BUFLEN PAGE_SIZE
|
|
|
|
#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \
|
|
|
|
((len) > DMA_MAX_BUFLEN))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The current NAND data space goes from 0x80001900 to 0x80001FFF,
|
|
|
|
* which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
|
|
|
|
* size NAND flash. Need to break the DMA down to multiple 1Ks.
|
|
|
|
*
|
|
|
|
* Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
|
|
|
|
*/
|
|
|
|
#define DMA_MAX_LEN 1024
|
|
|
|
|
|
|
|
#else /* !USE_DMA */
|
|
|
|
#define DMA_MIN_BUFLEN 0
|
|
|
|
#define DMA_MAX_BUFLEN 0
|
|
|
|
#define USE_DIRECT_IO(len) 1
|
|
|
|
#endif
|
|
|
|
/* ---- Private Function Prototypes -------------------------------------- */
|
|
|
|
static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
|
|
|
|
static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
|
|
|
|
int len);
|
|
|
|
|
|
|
|
/* ---- Private Variables ------------------------------------------------ */
|
|
|
|
static struct mtd_info *board_mtd;
|
|
|
|
static void __iomem *bcm_umi_io_base;
|
|
|
|
static void *virtPtr;
|
|
|
|
static dma_addr_t physPtr;
|
|
|
|
static struct completion nand_comp;
|
|
|
|
|
|
|
|
/* ---- Private Functions ------------------------------------------------ */
|
|
|
|
#if NAND_ECC_BCH
|
|
|
|
#include "bcm_umi_bch.c"
|
|
|
|
#else
|
|
|
|
#include "bcm_umi_hamming.c"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if USE_DMA
|
|
|
|
|
|
|
|
/* Handler called when the DMA finishes. */
|
|
|
|
static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
|
|
|
|
{
|
|
|
|
complete(&nand_comp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nand_dma_init(void)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
|
|
|
|
nand_dma_handler, NULL);
|
|
|
|
if (rc != 0) {
|
|
|
|
printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtPtr =
|
|
|
|
dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
|
|
|
|
if (virtPtr == NULL) {
|
|
|
|
printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nand_dma_term(void)
|
|
|
|
{
|
|
|
|
if (virtPtr != NULL)
|
|
|
|
dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nand_dma_read(void *buf, int len)
|
|
|
|
{
|
|
|
|
int offset = 0;
|
|
|
|
int tmp_len = 0;
|
|
|
|
int len_left = len;
|
|
|
|
DMA_Handle_t hndl;
|
|
|
|
|
|
|
|
if (virtPtr == NULL)
|
|
|
|
panic("nand_dma_read: virtPtr == NULL\n");
|
|
|
|
|
|
|
|
if ((void *)physPtr == NULL)
|
|
|
|
panic("nand_dma_read: physPtr == NULL\n");
|
|
|
|
|
|
|
|
hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
|
|
|
|
if (hndl < 0) {
|
|
|
|
printk(KERN_ERR
|
|
|
|
"nand_dma_read: unable to allocate dma channel: %d\n",
|
|
|
|
(int)hndl);
|
|
|
|
panic("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
while (len_left > 0) {
|
|
|
|
if (len_left > DMA_MAX_LEN) {
|
|
|
|
tmp_len = DMA_MAX_LEN;
|
|
|
|
len_left -= DMA_MAX_LEN;
|
|
|
|
} else {
|
|
|
|
tmp_len = len_left;
|
|
|
|
len_left = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
init_completion(&nand_comp);
|
|
|
|
dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
|
|
|
|
physPtr + offset, tmp_len);
|
|
|
|
wait_for_completion(&nand_comp);
|
|
|
|
|
|
|
|
offset += tmp_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
dma_free_channel(hndl);
|
|
|
|
|
|
|
|
if (buf != NULL)
|
|
|
|
memcpy(buf, virtPtr, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void nand_dma_write(const void *buf, int len)
|
|
|
|
{
|
|
|
|
int offset = 0;
|
|
|
|
int tmp_len = 0;
|
|
|
|
int len_left = len;
|
|
|
|
DMA_Handle_t hndl;
|
|
|
|
|
|
|
|
if (buf == NULL)
|
|
|
|
panic("nand_dma_write: buf == NULL\n");
|
|
|
|
|
|
|
|
if (virtPtr == NULL)
|
|
|
|
panic("nand_dma_write: virtPtr == NULL\n");
|
|
|
|
|
|
|
|
if ((void *)physPtr == NULL)
|
|
|
|
panic("nand_dma_write: physPtr == NULL\n");
|
|
|
|
|
|
|
|
memcpy(virtPtr, buf, len);
|
|
|
|
|
|
|
|
|
|
|
|
hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
|
|
|
|
if (hndl < 0) {
|
|
|
|
printk(KERN_ERR
|
|
|
|
"nand_dma_write: unable to allocate dma channel: %d\n",
|
|
|
|
(int)hndl);
|
|
|
|
panic("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
while (len_left > 0) {
|
|
|
|
if (len_left > DMA_MAX_LEN) {
|
|
|
|
tmp_len = DMA_MAX_LEN;
|
|
|
|
len_left -= DMA_MAX_LEN;
|
|
|
|
} else {
|
|
|
|
tmp_len = len_left;
|
|
|
|
len_left = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
init_completion(&nand_comp);
|
|
|
|
dma_transfer_mem_to_mem(hndl, physPtr + offset,
|
|
|
|
REG_NAND_DATA_PADDR, tmp_len);
|
|
|
|
wait_for_completion(&nand_comp);
|
|
|
|
|
|
|
|
offset += tmp_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
dma_free_channel(hndl);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int nand_dev_ready(struct mtd_info *mtd)
|
|
|
|
{
|
|
|
|
return nand_bcm_umi_dev_ready();
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* bcm_umi_nand_inithw
|
|
|
|
*
|
|
|
|
* This routine does the necessary hardware (board-specific)
|
|
|
|
* initializations. This includes setting up the timings, etc.
|
|
|
|
*
|
|
|
|
***************************************************************************/
|
|
|
|
int bcm_umi_nand_inithw(void)
|
|
|
|
{
|
|
|
|
/* Configure nand timing parameters */
|
|
|
|
REG_UMI_NAND_TCR &= ~0x7ffff;
|
|
|
|
REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
|
|
|
|
|
|
|
|
#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
|
|
|
|
/* enable software control of CS */
|
|
|
|
REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* keep NAND chip select asserted */
|
|
|
|
REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
|
|
|
|
|
|
|
|
REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
|
|
|
|
/* enable writes to flash */
|
|
|
|
REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
|
|
|
|
|
|
|
|
writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
|
|
|
|
nand_bcm_umi_wait_till_ready();
|
|
|
|
|
|
|
|
#if NAND_ECC_BCH
|
|
|
|
nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Used to turn latch the proper register for access. */
|
|
|
|
static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
|
|
|
|
unsigned int ctrl)
|
|
|
|
{
|
|
|
|
/* send command to hardware */
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
|
|
if (ctrl & NAND_CLE) {
|
|
|
|
chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
|
|
|
|
goto CMD;
|
|
|
|
}
|
|
|
|
if (ctrl & NAND_ALE) {
|
|
|
|
chip->IO_ADDR_W =
|
|
|
|
bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
|
|
|
|
goto CMD;
|
|
|
|
}
|
|
|
|
chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
|
|
|
|
}
|
|
|
|
|
|
|
|
CMD:
|
|
|
|
/* Send command to chip directly */
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
|
|
writeb(cmd, chip->IO_ADDR_W);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
|
|
|
|
int len)
|
|
|
|
{
|
|
|
|
if (USE_DIRECT_IO(len)) {
|
|
|
|
/* Do it the old way if the buffer is small or too large.
|
|
|
|
* Probably quicker than starting and checking dma. */
|
|
|
|
int i;
|
|
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
writeb(buf[i], this->IO_ADDR_W);
|
|
|
|
}
|
|
|
|
#if USE_DMA
|
|
|
|
else
|
|
|
|
nand_dma_write(buf, len);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
|
|
|
|
{
|
|
|
|
if (USE_DIRECT_IO(len)) {
|
|
|
|
int i;
|
|
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
buf[i] = readb(this->IO_ADDR_R);
|
|
|
|
}
|
|
|
|
#if USE_DMA
|
|
|
|
else
|
|
|
|
nand_dma_read(buf, len);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
|
|
|
|
static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
|
|
|
|
int len)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Try to readback page with ECC correction. This is necessary
|
|
|
|
* for MLC parts which may have permanently stuck bits.
|
|
|
|
*/
|
|
|
|
struct nand_chip *chip = mtd->priv;
|
|
|
|
int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0);
|
|
|
|
if (ret < 0)
|
|
|
|
return -EFAULT;
|
|
|
|
else {
|
|
|
|
if (memcmp(readbackbuf, buf, len) == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
struct nand_chip *this;
|
|
|
|
struct resource *r;
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
printk(gBanner);
|
|
|
|
|
|
|
|
/* Allocate memory for MTD device structure and private data */
|
|
|
|
board_mtd =
|
|
|
|
kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!board_mtd) {
|
|
|
|
printk(KERN_WARNING
|
|
|
|
"Unable to allocate NAND MTD device structure.\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
|
|
|
|
|
|
if (!r)
|
|
|
|
return -ENXIO;
|
|
|
|
|
tree-wide: Assorted spelling fixes
In particular, several occurances of funny versions of 'success',
'unknown', 'therefore', 'acknowledge', 'argument', 'achieve', 'address',
'beginning', 'desirable', 'separate' and 'necessary' are fixed.
Signed-off-by: Daniel Mack <daniel@caiaq.de>
Cc: Joe Perches <joe@perches.com>
Cc: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-02-02 17:01:28 -07:00
|
|
|
/* map physical address */
|
2009-10-09 20:13:08 -06:00
|
|
|
bcm_umi_io_base = ioremap(r->start, r->end - r->start + 1);
|
|
|
|
|
|
|
|
if (!bcm_umi_io_base) {
|
|
|
|
printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
|
|
|
|
kfree(board_mtd);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get pointer to private data */
|
|
|
|
this = (struct nand_chip *)(&board_mtd[1]);
|
|
|
|
|
|
|
|
/* Initialize structures */
|
|
|
|
memset((char *)board_mtd, 0, sizeof(struct mtd_info));
|
|
|
|
memset((char *)this, 0, sizeof(struct nand_chip));
|
|
|
|
|
|
|
|
/* Link the private data with the MTD structure */
|
|
|
|
board_mtd->priv = this;
|
|
|
|
|
|
|
|
/* Initialize the NAND hardware. */
|
|
|
|
if (bcm_umi_nand_inithw() < 0) {
|
|
|
|
printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
|
|
|
|
iounmap(bcm_umi_io_base);
|
|
|
|
kfree(board_mtd);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set address of NAND IO lines */
|
|
|
|
this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
|
|
|
|
this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
|
|
|
|
|
|
|
|
/* Set command delay time, see datasheet for correct value */
|
|
|
|
this->chip_delay = 0;
|
|
|
|
/* Assign the device ready function, if available */
|
|
|
|
this->dev_ready = nand_dev_ready;
|
|
|
|
this->options = 0;
|
|
|
|
|
|
|
|
this->write_buf = bcm_umi_nand_write_buf;
|
|
|
|
this->read_buf = bcm_umi_nand_read_buf;
|
|
|
|
this->verify_buf = bcm_umi_nand_verify_buf;
|
|
|
|
|
|
|
|
this->cmd_ctrl = bcm_umi_nand_hwcontrol;
|
|
|
|
this->ecc.mode = NAND_ECC_HW;
|
|
|
|
this->ecc.size = 512;
|
|
|
|
this->ecc.bytes = NAND_ECC_NUM_BYTES;
|
|
|
|
#if NAND_ECC_BCH
|
|
|
|
this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
|
|
|
|
this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
|
|
|
|
#else
|
|
|
|
this->ecc.correct = nand_correct_data512;
|
|
|
|
this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
|
|
|
|
this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if USE_DMA
|
|
|
|
err = nand_dma_init();
|
|
|
|
if (err != 0)
|
|
|
|
return err;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Figure out the size of the device that we have.
|
|
|
|
* We need to do this to figure out which ECC
|
|
|
|
* layout we'll be using.
|
|
|
|
*/
|
|
|
|
|
2010-02-26 11:32:56 -07:00
|
|
|
err = nand_scan_ident(board_mtd, 1, NULL);
|
2009-10-09 20:13:08 -06:00
|
|
|
if (err) {
|
|
|
|
printk(KERN_ERR "nand_scan failed: %d\n", err);
|
|
|
|
iounmap(bcm_umi_io_base);
|
|
|
|
kfree(board_mtd);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now that we know the nand size, we can setup the ECC layout */
|
|
|
|
|
|
|
|
switch (board_mtd->writesize) { /* writesize is the pagesize */
|
|
|
|
case 4096:
|
|
|
|
this->ecc.layout = &nand_hw_eccoob_4096;
|
|
|
|
break;
|
|
|
|
case 2048:
|
|
|
|
this->ecc.layout = &nand_hw_eccoob_2048;
|
|
|
|
break;
|
|
|
|
case 512:
|
|
|
|
this->ecc.layout = &nand_hw_eccoob_512;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
|
|
|
|
board_mtd->writesize);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if NAND_ECC_BCH
|
|
|
|
if (board_mtd->writesize > 512) {
|
|
|
|
if (this->options & NAND_USE_FLASH_BBT)
|
|
|
|
largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
|
|
|
|
this->badblock_pattern = &largepage_bbt;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Now finish off the scan, now that ecc.layout has been initialized. */
|
|
|
|
|
|
|
|
err = nand_scan_tail(board_mtd);
|
|
|
|
if (err) {
|
|
|
|
printk(KERN_ERR "nand_scan failed: %d\n", err);
|
|
|
|
iounmap(bcm_umi_io_base);
|
|
|
|
kfree(board_mtd);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Register the partitions */
|
|
|
|
{
|
|
|
|
int nr_partitions;
|
|
|
|
struct mtd_partition *partition_info;
|
|
|
|
|
|
|
|
board_mtd->name = "bcm_umi-nand";
|
|
|
|
nr_partitions =
|
|
|
|
parse_mtd_partitions(board_mtd, part_probes,
|
|
|
|
&partition_info, 0);
|
|
|
|
|
|
|
|
if (nr_partitions <= 0) {
|
|
|
|
printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n",
|
|
|
|
nr_partitions);
|
|
|
|
iounmap(bcm_umi_io_base);
|
|
|
|
kfree(board_mtd);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
add_mtd_partitions(board_mtd, partition_info, nr_partitions);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return happy */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm_umi_nand_remove(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
#if USE_DMA
|
|
|
|
nand_dma_term();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Release resources, unregister device */
|
|
|
|
nand_release(board_mtd);
|
|
|
|
|
tree-wide: Assorted spelling fixes
In particular, several occurances of funny versions of 'success',
'unknown', 'therefore', 'acknowledge', 'argument', 'achieve', 'address',
'beginning', 'desirable', 'separate' and 'necessary' are fixed.
Signed-off-by: Daniel Mack <daniel@caiaq.de>
Cc: Joe Perches <joe@perches.com>
Cc: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-02-02 17:01:28 -07:00
|
|
|
/* unmap physical address */
|
2009-10-09 20:13:08 -06:00
|
|
|
iounmap(bcm_umi_io_base);
|
|
|
|
|
|
|
|
/* Free the MTD device structure */
|
|
|
|
kfree(board_mtd);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int bcm_umi_nand_suspend(struct platform_device *pdev,
|
|
|
|
pm_message_t state)
|
|
|
|
{
|
|
|
|
printk(KERN_ERR "MTD NAND suspend is being called\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm_umi_nand_resume(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
printk(KERN_ERR "MTD NAND resume is being called\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define bcm_umi_nand_suspend NULL
|
|
|
|
#define bcm_umi_nand_resume NULL
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static struct platform_driver nand_driver = {
|
|
|
|
.driver = {
|
|
|
|
.name = "bcm-nand",
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
},
|
|
|
|
.probe = bcm_umi_nand_probe,
|
|
|
|
.remove = bcm_umi_nand_remove,
|
|
|
|
.suspend = bcm_umi_nand_suspend,
|
|
|
|
.resume = bcm_umi_nand_resume,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init nand_init(void)
|
|
|
|
{
|
|
|
|
return platform_driver_register(&nand_driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit nand_exit(void)
|
|
|
|
{
|
|
|
|
platform_driver_unregister(&nand_driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(nand_init);
|
|
|
|
module_exit(nand_exit);
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_AUTHOR("Broadcom");
|
|
|
|
MODULE_DESCRIPTION("BCM UMI MTD NAND driver");
|