net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
/*
|
|
|
|
* net/dsa/dsa.c - Hardware switch handling
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
* Copyright (c) 2008-2009 Marvell Semiconductor
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <net/dsa.h>
|
|
|
|
#include "dsa_priv.h"
|
|
|
|
|
|
|
|
char dsa_driver_version[] = "0.1";
|
|
|
|
|
|
|
|
|
|
|
|
/* switch driver registration ***********************************************/
|
|
|
|
static DEFINE_MUTEX(dsa_switch_drivers_mutex);
|
|
|
|
static LIST_HEAD(dsa_switch_drivers);
|
|
|
|
|
|
|
|
void register_switch_driver(struct dsa_switch_driver *drv)
|
|
|
|
{
|
|
|
|
mutex_lock(&dsa_switch_drivers_mutex);
|
|
|
|
list_add_tail(&drv->list, &dsa_switch_drivers);
|
|
|
|
mutex_unlock(&dsa_switch_drivers_mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
void unregister_switch_driver(struct dsa_switch_driver *drv)
|
|
|
|
{
|
|
|
|
mutex_lock(&dsa_switch_drivers_mutex);
|
|
|
|
list_del_init(&drv->list);
|
|
|
|
mutex_unlock(&dsa_switch_drivers_mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dsa_switch_driver *
|
|
|
|
dsa_switch_probe(struct mii_bus *bus, int sw_addr, char **_name)
|
|
|
|
{
|
|
|
|
struct dsa_switch_driver *ret;
|
|
|
|
struct list_head *list;
|
|
|
|
char *name;
|
|
|
|
|
|
|
|
ret = NULL;
|
|
|
|
name = NULL;
|
|
|
|
|
|
|
|
mutex_lock(&dsa_switch_drivers_mutex);
|
|
|
|
list_for_each(list, &dsa_switch_drivers) {
|
|
|
|
struct dsa_switch_driver *drv;
|
|
|
|
|
|
|
|
drv = list_entry(list, struct dsa_switch_driver, list);
|
|
|
|
|
|
|
|
name = drv->probe(bus, sw_addr);
|
|
|
|
if (name != NULL) {
|
|
|
|
ret = drv;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mutex_unlock(&dsa_switch_drivers_mutex);
|
|
|
|
|
|
|
|
*_name = name;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* basic switch operations **************************************************/
|
|
|
|
static struct dsa_switch *
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
dsa_switch_setup(struct dsa_switch_tree *dst, int index,
|
|
|
|
struct device *parent, struct mii_bus *bus)
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
{
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
struct dsa_chip_data *pd = dst->pd->chip + index;
|
|
|
|
struct dsa_switch_driver *drv;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
struct dsa_switch *ds;
|
|
|
|
int ret;
|
|
|
|
char *name;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Probe for switch model.
|
|
|
|
*/
|
|
|
|
drv = dsa_switch_probe(bus, pd->sw_addr, &name);
|
|
|
|
if (drv == NULL) {
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
printk(KERN_ERR "%s[%d]: could not detect attached switch\n",
|
|
|
|
dst->master_netdev->name, index);
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
}
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
printk(KERN_INFO "%s[%d]: detected a %s switch\n",
|
|
|
|
dst->master_netdev->name, index, name);
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate and initialise switch state.
|
|
|
|
*/
|
|
|
|
ds = kzalloc(sizeof(*ds) + drv->priv_size, GFP_KERNEL);
|
|
|
|
if (ds == NULL)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
ds->dst = dst;
|
|
|
|
ds->index = index;
|
|
|
|
ds->pd = dst->pd->chip + index;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
ds->drv = drv;
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
ds->master_mii_bus = bus;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate supplied switch configuration.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < DSA_MAX_PORTS; i++) {
|
|
|
|
char *name;
|
|
|
|
|
|
|
|
name = pd->port_names[i];
|
|
|
|
if (name == NULL)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!strcmp(name, "cpu")) {
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
if (dst->cpu_switch != -1) {
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
printk(KERN_ERR "multiple cpu ports?!\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
dst->cpu_switch = index;
|
|
|
|
dst->cpu_port = i;
|
|
|
|
} else if (!strcmp(name, "dsa")) {
|
|
|
|
ds->dsa_port_mask |= 1 << i;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
} else {
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
ds->phys_port_mask |= 1 << i;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
* If the CPU connects to this switch, set the switch tree
|
|
|
|
* tagging protocol to the preferred tagging format of this
|
|
|
|
* switch.
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
*/
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
if (ds->dst->cpu_switch == index)
|
|
|
|
ds->dst->tag_protocol = drv->tag_protocol;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Do basic register setup.
|
|
|
|
*/
|
|
|
|
ret = drv->setup(ds);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
ret = drv->set_addr(ds, dst->master_netdev->dev_addr);
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ds->slave_mii_bus = mdiobus_alloc();
|
|
|
|
if (ds->slave_mii_bus == NULL) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
dsa_slave_mii_bus_init(ds);
|
|
|
|
|
|
|
|
ret = mdiobus_register(ds->slave_mii_bus);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create network devices for physical switch ports.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < DSA_MAX_PORTS; i++) {
|
|
|
|
struct net_device *slave_dev;
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
if (!(ds->phys_port_mask & (1 << i)))
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
continue;
|
|
|
|
|
|
|
|
slave_dev = dsa_slave_create(ds, parent, i, pd->port_names[i]);
|
|
|
|
if (slave_dev == NULL) {
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
printk(KERN_ERR "%s[%d]: can't create dsa "
|
|
|
|
"slave device for port %d(%s)\n",
|
|
|
|
dst->master_netdev->name,
|
|
|
|
index, i, pd->port_names[i]);
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
ds->ports[i] = slave_dev;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ds;
|
|
|
|
|
|
|
|
out_free:
|
|
|
|
mdiobus_free(ds->slave_mii_bus);
|
|
|
|
out:
|
|
|
|
kfree(ds);
|
|
|
|
return ERR_PTR(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dsa_switch_destroy(struct dsa_switch *ds)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2008-10-07 07:45:02 -06:00
|
|
|
/* hooks for ethertype-less tagging formats *********************************/
|
|
|
|
/*
|
|
|
|
* The original DSA tag format and some other tag formats have no
|
|
|
|
* ethertype, which means that we need to add a little hack to the
|
|
|
|
* networking receive path to make sure that received frames get
|
|
|
|
* the right ->protocol assigned to them when one of those tag
|
|
|
|
* formats is in use.
|
|
|
|
*/
|
|
|
|
bool dsa_uses_dsa_tags(void *dsa_ptr)
|
|
|
|
{
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
struct dsa_switch_tree *dst = dsa_ptr;
|
2008-10-07 07:45:02 -06:00
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
return !!(dst->tag_protocol == htons(ETH_P_DSA));
|
2008-10-07 07:45:02 -06:00
|
|
|
}
|
|
|
|
|
2008-10-07 07:46:07 -06:00
|
|
|
bool dsa_uses_trailer_tags(void *dsa_ptr)
|
|
|
|
{
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
struct dsa_switch_tree *dst = dsa_ptr;
|
2008-10-07 07:46:07 -06:00
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
return !!(dst->tag_protocol == htons(ETH_P_TRAILER));
|
2008-10-07 07:46:07 -06:00
|
|
|
}
|
|
|
|
|
2008-10-07 07:45:02 -06:00
|
|
|
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
/* link polling *************************************************************/
|
|
|
|
static void dsa_link_poll_work(struct work_struct *ugly)
|
|
|
|
{
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
struct dsa_switch_tree *dst;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
dst = container_of(ugly, struct dsa_switch_tree, link_poll_work);
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
for (i = 0; i < dst->pd->nr_chips; i++) {
|
|
|
|
struct dsa_switch *ds = dst->ds[i];
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
if (ds != NULL && ds->drv->poll_link != NULL)
|
|
|
|
ds->drv->poll_link(ds);
|
|
|
|
}
|
|
|
|
|
|
|
|
mod_timer(&dst->link_poll_timer, round_jiffies(jiffies + HZ));
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
}
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
static void dsa_link_poll_timer(unsigned long _dst)
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
{
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
struct dsa_switch_tree *dst = (void *)_dst;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
schedule_work(&dst->link_poll_work);
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* platform driver init and cleanup *****************************************/
|
|
|
|
static int dev_is_class(struct device *dev, void *class)
|
|
|
|
{
|
|
|
|
if (dev->class != NULL && !strcmp(dev->class->name, class))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct device *dev_find_class(struct device *parent, char *class)
|
|
|
|
{
|
|
|
|
if (dev_is_class(parent, class)) {
|
|
|
|
get_device(parent);
|
|
|
|
return parent;
|
|
|
|
}
|
|
|
|
|
|
|
|
return device_find_child(parent, class, dev_is_class);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mii_bus *dev_to_mii_bus(struct device *dev)
|
|
|
|
{
|
|
|
|
struct device *d;
|
|
|
|
|
|
|
|
d = dev_find_class(dev, "mdio_bus");
|
|
|
|
if (d != NULL) {
|
|
|
|
struct mii_bus *bus;
|
|
|
|
|
|
|
|
bus = to_mii_bus(d);
|
|
|
|
put_device(d);
|
|
|
|
|
|
|
|
return bus;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct net_device *dev_to_net_device(struct device *dev)
|
|
|
|
{
|
|
|
|
struct device *d;
|
|
|
|
|
|
|
|
d = dev_find_class(dev, "net");
|
|
|
|
if (d != NULL) {
|
|
|
|
struct net_device *nd;
|
|
|
|
|
|
|
|
nd = to_net_dev(d);
|
|
|
|
dev_hold(nd);
|
|
|
|
put_device(d);
|
|
|
|
|
|
|
|
return nd;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_probe(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
static int dsa_version_printed;
|
|
|
|
struct dsa_platform_data *pd = pdev->dev.platform_data;
|
|
|
|
struct net_device *dev;
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
struct dsa_switch_tree *dst;
|
|
|
|
int i;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
|
|
|
if (!dsa_version_printed++)
|
|
|
|
printk(KERN_NOTICE "Distributed Switch Architecture "
|
|
|
|
"driver version %s\n", dsa_driver_version);
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
if (pd == NULL || pd->netdev == NULL)
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
dev = dev_to_net_device(pd->netdev);
|
|
|
|
if (dev == NULL)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (dev->dsa_ptr != NULL) {
|
|
|
|
dev_put(dev);
|
|
|
|
return -EEXIST;
|
|
|
|
}
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
|
|
|
|
if (dst == NULL) {
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
dev_put(dev);
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
return -ENOMEM;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
}
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
platform_set_drvdata(pdev, dst);
|
|
|
|
|
|
|
|
dst->pd = pd;
|
|
|
|
dst->master_netdev = dev;
|
|
|
|
dst->cpu_switch = -1;
|
|
|
|
dst->cpu_port = -1;
|
|
|
|
|
|
|
|
for (i = 0; i < pd->nr_chips; i++) {
|
|
|
|
struct mii_bus *bus;
|
|
|
|
struct dsa_switch *ds;
|
|
|
|
|
|
|
|
bus = dev_to_mii_bus(pd->chip[i].mii_bus);
|
|
|
|
if (bus == NULL) {
|
|
|
|
printk(KERN_ERR "%s[%d]: no mii bus found for "
|
|
|
|
"dsa switch\n", dev->name, i);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
ds = dsa_switch_setup(dst, i, &pdev->dev, bus);
|
|
|
|
if (IS_ERR(ds)) {
|
|
|
|
printk(KERN_ERR "%s[%d]: couldn't create dsa switch "
|
|
|
|
"instance (error %ld)\n", dev->name, i,
|
|
|
|
PTR_ERR(ds));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst->ds[i] = ds;
|
|
|
|
if (ds->drv->poll_link != NULL)
|
|
|
|
dst->link_poll_needed = 1;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
}
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
/*
|
|
|
|
* If we use a tagging format that doesn't have an ethertype
|
|
|
|
* field, make sure that all packets from this point on get
|
|
|
|
* sent to the tag format's receive function.
|
|
|
|
*/
|
|
|
|
wmb();
|
|
|
|
dev->dsa_ptr = (void *)dst;
|
|
|
|
|
|
|
|
if (dst->link_poll_needed) {
|
|
|
|
INIT_WORK(&dst->link_poll_work, dsa_link_poll_work);
|
|
|
|
init_timer(&dst->link_poll_timer);
|
|
|
|
dst->link_poll_timer.data = (unsigned long)dst;
|
|
|
|
dst->link_poll_timer.function = dsa_link_poll_timer;
|
|
|
|
dst->link_poll_timer.expires = round_jiffies(jiffies + HZ);
|
|
|
|
add_timer(&dst->link_poll_timer);
|
|
|
|
}
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dsa_remove(struct platform_device *pdev)
|
|
|
|
{
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
|
|
|
|
int i;
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
if (dst->link_poll_needed)
|
|
|
|
del_timer_sync(&dst->link_poll_timer);
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
|
|
|
flush_scheduled_work();
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
for (i = 0; i < dst->pd->nr_chips; i++) {
|
|
|
|
struct dsa_switch *ds = dst->ds[i];
|
|
|
|
|
|
|
|
if (ds != NULL)
|
|
|
|
dsa_switch_destroy(ds);
|
|
|
|
}
|
net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.
The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:
+-----------+ +-----------+
| | RGMII | |
| +-------+ +------ 1000baseT MDI ("WAN")
| | | 6-port +------ 1000baseT MDI ("LAN1")
| CPU | | ethernet +------ 1000baseT MDI ("LAN2")
| |MIImgmt| switch +------ 1000baseT MDI ("LAN3")
| +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4")
| | | |
+-----------+ +-----------+
The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.
This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.
(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one. The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 07:44:02 -06:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dsa_shutdown(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct platform_driver dsa_driver = {
|
|
|
|
.probe = dsa_probe,
|
|
|
|
.remove = dsa_remove,
|
|
|
|
.shutdown = dsa_shutdown,
|
|
|
|
.driver = {
|
|
|
|
.name = "dsa",
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init dsa_init_module(void)
|
|
|
|
{
|
|
|
|
return platform_driver_register(&dsa_driver);
|
|
|
|
}
|
|
|
|
module_init(dsa_init_module);
|
|
|
|
|
|
|
|
static void __exit dsa_cleanup_module(void)
|
|
|
|
{
|
|
|
|
platform_driver_unregister(&dsa_driver);
|
|
|
|
}
|
|
|
|
module_exit(dsa_cleanup_module);
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>")
|
|
|
|
MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_ALIAS("platform:dsa");
|