kernel-fxtec-pro1x/drivers/dma/ppc4xx/adma.c

4650 lines
125 KiB
C
Raw Normal View History

/*
* Copyright (C) 2006-2009 DENX Software Engineering.
*
* Author: Yuri Tikhonov <yur@emcraft.com>
*
* Further porting to arch/powerpc by
* Anatolij Gustschin <agust@denx.de>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called COPYING.
*/
/*
* This driver supports the asynchrounous DMA copy and RAID engines available
* on the AMCC PPC440SPe Processors.
* Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
* ADMA driver written by D.Williams.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/async_tx.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/proc_fs.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <asm/dcr.h>
#include <asm/dcr-regs.h>
#include "adma.h"
#include "../dmaengine.h"
enum ppc_adma_init_code {
PPC_ADMA_INIT_OK = 0,
PPC_ADMA_INIT_MEMRES,
PPC_ADMA_INIT_MEMREG,
PPC_ADMA_INIT_ALLOC,
PPC_ADMA_INIT_COHERENT,
PPC_ADMA_INIT_CHANNEL,
PPC_ADMA_INIT_IRQ1,
PPC_ADMA_INIT_IRQ2,
PPC_ADMA_INIT_REGISTER
};
static char *ppc_adma_errors[] = {
[PPC_ADMA_INIT_OK] = "ok",
[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
"structure",
[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
"hardware descriptors",
[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
};
static enum ppc_adma_init_code
ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
struct ppc_dma_chan_ref {
struct dma_chan *chan;
struct list_head node;
};
/* The list of channels exported by ppc440spe ADMA */
struct list_head
ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
/* This flag is set when want to refetch the xor chain in the interrupt
* handler
*/
static u32 do_xor_refetch;
/* Pointer to DMA0, DMA1 CP/CS FIFO */
static void *ppc440spe_dma_fifo_buf;
/* Pointers to last submitted to DMA0, DMA1 CDBs */
static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
/* Pointer to last linked and submitted xor CB */
static struct ppc440spe_adma_desc_slot *xor_last_linked;
static struct ppc440spe_adma_desc_slot *xor_last_submit;
/* This array is used in data-check operations for storing a pattern */
static char ppc440spe_qword[16];
static atomic_t ppc440spe_adma_err_irq_ref;
static dcr_host_t ppc440spe_mq_dcr_host;
static unsigned int ppc440spe_mq_dcr_len;
/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
* the block size in transactions, then we do not allow to activate more than
* only one RXOR transactions simultaneously. So use this var to store
* the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
* set) or not (PPC440SPE_RXOR_RUN is clear).
*/
static unsigned long ppc440spe_rxor_state;
/* These are used in enable & check routines
*/
static u32 ppc440spe_r6_enabled;
static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
static struct completion ppc440spe_r6_test_comp;
static int ppc440spe_adma_dma2rxor_prep_src(
struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_rxor *cursor, int index,
int src_cnt, u32 addr);
static void ppc440spe_adma_dma2rxor_set_src(
struct ppc440spe_adma_desc_slot *desc,
int index, dma_addr_t addr);
static void ppc440spe_adma_dma2rxor_set_mult(
struct ppc440spe_adma_desc_slot *desc,
int index, u8 mult);
#ifdef ADMA_LL_DEBUG
#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
#else
#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
#endif
static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
{
struct dma_cdb *cdb;
struct xor_cb *cb;
int i;
switch (chan->device->id) {
case 0:
case 1:
cdb = block;
pr_debug("CDB at %p [%d]:\n"
"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
"\t sg1u 0x%08x sg1l 0x%08x\n"
"\t sg2u 0x%08x sg2l 0x%08x\n"
"\t sg3u 0x%08x sg3l 0x%08x\n",
cdb, chan->device->id,
cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
);
break;
case 2:
cb = block;
pr_debug("CB at %p [%d]:\n"
"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
"\t cbtah 0x%08x cbtal 0x%08x\n"
"\t cblah 0x%08x cblal 0x%08x\n",
cb, chan->device->id,
cb->cbc, cb->cbbc, cb->cbs,
cb->cbtah, cb->cbtal,
cb->cblah, cb->cblal);
for (i = 0; i < 16; i++) {
if (i && !cb->ops[i].h && !cb->ops[i].l)
continue;
pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
i, cb->ops[i].h, cb->ops[i].l);
}
break;
}
}
static void print_cb_list(struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *iter)
{
for (; iter; iter = iter->hw_next)
print_cb(chan, iter->hw_desc);
}
static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
unsigned int src_cnt)
{
int i;
pr_debug("\n%s(%d):\nsrc: ", __func__, id);
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx ", src[i]);
pr_debug("dst:\n\t0x%016llx\n", dst);
}
static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt)
{
int i;
pr_debug("\n%s(%d):\nsrc: ", __func__, id);
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx ", src[i]);
pr_debug("dst: ");
for (i = 0; i < 2; i++)
pr_debug("\t0x%016llx ", dst[i]);
}
static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
unsigned int src_cnt,
const unsigned char *scf)
{
int i;
pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
if (scf) {
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
} else {
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx(no) ", src[i]);
}
pr_debug("dst: ");
for (i = 0; i < 2; i++)
pr_debug("\t0x%016llx ", src[src_cnt + i]);
}
/******************************************************************************
* Command (Descriptor) Blocks low-level routines
******************************************************************************/
/**
* ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
* pseudo operation
*/
static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan)
{
struct xor_cb *p;
switch (chan->device->id) {
case PPC440SPE_XOR_ID:
p = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
/* NOP with Command Block Complete Enable */
p->cbc = XOR_CBCR_CBCE_BIT;
break;
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
/* NOP with interrupt */
set_bit(PPC440SPE_DESC_INT, &desc->flags);
break;
default:
printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
__func__);
break;
}
}
/**
* ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
* pseudo operation
*/
static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
{
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
desc->hw_next = NULL;
desc->src_cnt = 0;
desc->dst_cnt = 1;
}
/**
* ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
*/
static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
int src_cnt, unsigned long flags)
{
struct xor_cb *hw_desc = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
desc->hw_next = NULL;
desc->src_cnt = src_cnt;
desc->dst_cnt = 1;
hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
if (flags & DMA_PREP_INTERRUPT)
/* Enable interrupt on completion */
hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
}
/**
* ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
* operation in DMA2 controller
*/
static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
int dst_cnt, int src_cnt, unsigned long flags)
{
struct xor_cb *hw_desc = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
desc->hw_next = NULL;
desc->src_cnt = src_cnt;
desc->dst_cnt = dst_cnt;
memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
desc->descs_per_op = 0;
hw_desc->cbc = XOR_CBCR_TGT_BIT;
if (flags & DMA_PREP_INTERRUPT)
/* Enable interrupt on completion */
hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
}
#define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
#define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
#define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
/**
* ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
* with DMA0/1
*/
static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
int dst_cnt, int src_cnt, unsigned long flags,
unsigned long op)
{
struct dma_cdb *hw_desc;
struct ppc440spe_adma_desc_slot *iter;
u8 dopc;
/* Common initialization of a PQ descriptors chain */
set_bits(op, &desc->flags);
desc->src_cnt = src_cnt;
desc->dst_cnt = dst_cnt;
/* WXOR MULTICAST if both P and Q are being computed
* MV_SG1_SG2 if Q only
*/
dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
list_for_each_entry(iter, &desc->group_list, chain_node) {
hw_desc = iter->hw_desc;
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
if (likely(!list_is_last(&iter->chain_node,
&desc->group_list))) {
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
} else {
/* this is the last descriptor.
* this slot will be pasted from ADMA level
* each time it wants to configure parameters
* of the transaction (src, dst, ...)
*/
iter->hw_next = NULL;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
}
}
/* Set OPS depending on WXOR/RXOR type of operation */
if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
/* This is a WXOR only chain:
* - first descriptors are for zeroing destinations
* if PPC440SPE_ZERO_P/Q set;
* - descriptors remained are for GF-XOR operations.
*/
iter = list_first_entry(&desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
}
if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
}
list_for_each_entry_from(iter, &desc->group_list, chain_node) {
hw_desc = iter->hw_desc;
hw_desc->opc = dopc;
}
} else {
/* This is either RXOR-only or mixed RXOR/WXOR */
/* The first 1 or 2 slots in chain are always RXOR,
* if need to calculate P & Q, then there are two
* RXOR slots; if only P or only Q, then there is one
*/
iter = list_first_entry(&desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
}
/* The remaining descs (if any) are WXORs */
if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
list_for_each_entry_from(iter, &desc->group_list,
chain_node) {
hw_desc = iter->hw_desc;
hw_desc->opc = dopc;
}
}
}
}
/**
* ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
* for PQ_ZERO_SUM operation
*/
static void ppc440spe_desc_init_dma01pqzero_sum(
struct ppc440spe_adma_desc_slot *desc,
int dst_cnt, int src_cnt)
{
struct dma_cdb *hw_desc;
struct ppc440spe_adma_desc_slot *iter;
int i = 0;
u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
DMA_CDB_OPC_MV_SG1_SG2;
/*
* Initialize starting from 2nd or 3rd descriptor dependent
* on dst_cnt. First one or two slots are for cloning P
* and/or Q to chan->pdest and/or chan->qdest as we have
* to preserve original P/Q.
*/
iter = list_first_entry(&desc->group_list,
struct ppc440spe_adma_desc_slot, chain_node);
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
if (dst_cnt > 1) {
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
}
/* initialize each source descriptor in chain */
list_for_each_entry_from(iter, &desc->group_list, chain_node) {
hw_desc = iter->hw_desc;
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->src_cnt = 0;
iter->dst_cnt = 0;
/* This is a ZERO_SUM operation:
* - <src_cnt> descriptors starting from 2nd or 3rd
* descriptor are for GF-XOR operations;
* - remaining <dst_cnt> descriptors are for checking the result
*/
if (i++ < src_cnt)
/* MV_SG1_SG2 if only Q is being verified
* MULTICAST if both P and Q are being verified
*/
hw_desc->opc = dopc;
else
/* DMA_CDB_OPC_DCHECK128 operation */
hw_desc->opc = DMA_CDB_OPC_DCHECK128;
if (likely(!list_is_last(&iter->chain_node,
&desc->group_list))) {
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
} else {
/* this is the last descriptor.
* this slot will be pasted from ADMA level
* each time it wants to configure parameters
* of the transaction (src, dst, ...)
*/
iter->hw_next = NULL;
/* always enable interrupt generation since we get
* the status of pqzero from the handler
*/
set_bit(PPC440SPE_DESC_INT, &iter->flags);
}
}
desc->src_cnt = src_cnt;
desc->dst_cnt = dst_cnt;
}
/**
* ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
*/
static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
unsigned long flags)
{
struct dma_cdb *hw_desc = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
desc->hw_next = NULL;
desc->src_cnt = 1;
desc->dst_cnt = 1;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &desc->flags);
else
clear_bit(PPC440SPE_DESC_INT, &desc->flags);
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
}
/**
* ppc440spe_desc_set_src_addr - set source address into the descriptor
*/
static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
int src_idx, dma_addr_t addrh,
dma_addr_t addrl)
{
struct dma_cdb *dma_hw_desc;
struct xor_cb *xor_hw_desc;
phys_addr_t addr64, tmplow, tmphi;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
if (!addrh) {
addr64 = addrl;
tmphi = (addr64 >> 32);
tmplow = (addr64 & 0xFFFFFFFF);
} else {
tmphi = addrh;
tmplow = addrl;
}
dma_hw_desc = desc->hw_desc;
dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
break;
case PPC440SPE_XOR_ID:
xor_hw_desc = desc->hw_desc;
xor_hw_desc->ops[src_idx].l = addrl;
xor_hw_desc->ops[src_idx].h |= addrh;
break;
}
}
/**
* ppc440spe_desc_set_src_mult - set source address mult into the descriptor
*/
static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan, u32 mult_index,
int sg_index, unsigned char mult_value)
{
struct dma_cdb *dma_hw_desc;
struct xor_cb *xor_hw_desc;
u32 *psgu;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_hw_desc = desc->hw_desc;
switch (sg_index) {
/* for RXOR operations set multiplier
* into source cued address
*/
case DMA_CDB_SG_SRC:
psgu = &dma_hw_desc->sg1u;
break;
/* for WXOR operations set multiplier
* into destination cued address(es)
*/
case DMA_CDB_SG_DST1:
psgu = &dma_hw_desc->sg2u;
break;
case DMA_CDB_SG_DST2:
psgu = &dma_hw_desc->sg3u;
break;
default:
BUG();
}
*psgu |= cpu_to_le32(mult_value << mult_index);
break;
case PPC440SPE_XOR_ID:
xor_hw_desc = desc->hw_desc;
break;
default:
BUG();
}
}
/**
* ppc440spe_desc_set_dest_addr - set destination address into the descriptor
*/
static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
dma_addr_t addrh, dma_addr_t addrl,
u32 dst_idx)
{
struct dma_cdb *dma_hw_desc;
struct xor_cb *xor_hw_desc;
phys_addr_t addr64, tmphi, tmplow;
u32 *psgu, *psgl;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
if (!addrh) {
addr64 = addrl;
tmphi = (addr64 >> 32);
tmplow = (addr64 & 0xFFFFFFFF);
} else {
tmphi = addrh;
tmplow = addrl;
}
dma_hw_desc = desc->hw_desc;
psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
*psgl = cpu_to_le32((u32)tmplow);
*psgu |= cpu_to_le32((u32)tmphi);
break;
case PPC440SPE_XOR_ID:
xor_hw_desc = desc->hw_desc;
xor_hw_desc->cbtal = addrl;
xor_hw_desc->cbtah |= addrh;
break;
}
}
/**
* ppc440spe_desc_set_byte_count - set number of data bytes involved
* into the operation
*/
static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
u32 byte_count)
{
struct dma_cdb *dma_hw_desc;
struct xor_cb *xor_hw_desc;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_hw_desc = desc->hw_desc;
dma_hw_desc->cnt = cpu_to_le32(byte_count);
break;
case PPC440SPE_XOR_ID:
xor_hw_desc = desc->hw_desc;
xor_hw_desc->cbbc = byte_count;
break;
}
}
/**
* ppc440spe_desc_set_rxor_block_size - set RXOR block size
*/
static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
{
/* assume that byte_count is aligned on the 512-boundary;
* thus write it directly to the register (bits 23:31 are
* reserved there).
*/
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
}
/**
* ppc440spe_desc_set_dcheck - set CHECK pattern
*/
static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan, u8 *qword)
{
struct dma_cdb *dma_hw_desc;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_hw_desc = desc->hw_desc;
iowrite32(qword[0], &dma_hw_desc->sg3l);
iowrite32(qword[4], &dma_hw_desc->sg3u);
iowrite32(qword[8], &dma_hw_desc->sg2l);
iowrite32(qword[12], &dma_hw_desc->sg2u);
break;
default:
BUG();
}
}
/**
* ppc440spe_xor_set_link - set link address in xor CB
*/
static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
struct ppc440spe_adma_desc_slot *next_desc)
{
struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
if (unlikely(!next_desc || !(next_desc->phys))) {
printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
__func__, next_desc,
next_desc ? next_desc->phys : 0);
BUG();
}
xor_hw_desc->cbs = 0;
xor_hw_desc->cblal = next_desc->phys;
xor_hw_desc->cblah = 0;
xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
}
/**
* ppc440spe_desc_set_link - set the address of descriptor following this
* descriptor in chain
*/
static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *prev_desc,
struct ppc440spe_adma_desc_slot *next_desc)
{
unsigned long flags;
struct ppc440spe_adma_desc_slot *tail = next_desc;
if (unlikely(!prev_desc || !next_desc ||
(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
/* If previous next is overwritten something is wrong.
* though we may refetch from append to initiate list
* processing; in this case - it's ok.
*/
printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
"prev->hw_next=0x%p\n", __func__, prev_desc,
next_desc, prev_desc ? prev_desc->hw_next : 0);
BUG();
}
local_irq_save(flags);
/* do s/w chaining both for DMA and XOR descriptors */
prev_desc->hw_next = next_desc;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
break;
case PPC440SPE_XOR_ID:
/* bind descriptor to the chain */
while (tail->hw_next)
tail = tail->hw_next;
xor_last_linked = tail;
if (prev_desc == xor_last_submit)
/* do not link to the last submitted CB */
break;
ppc440spe_xor_set_link(prev_desc, next_desc);
break;
}
local_irq_restore(flags);
}
/**
* ppc440spe_desc_get_link - get the address of the descriptor that
* follows this one
*/
static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan)
{
if (!desc->hw_next)
return 0;
return desc->hw_next->phys;
}
/**
* ppc440spe_desc_is_aligned - check alignment
*/
static inline int ppc440spe_desc_is_aligned(
struct ppc440spe_adma_desc_slot *desc, int num_slots)
{
return (desc->idx & (num_slots - 1)) ? 0 : 1;
}
/**
* ppc440spe_chan_xor_slot_count - get the number of slots necessary for
* XOR operation
*/
static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
int slot_cnt;
/* each XOR descriptor provides up to 16 source operands */
slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
return slot_cnt;
printk(KERN_ERR "%s: len %d > max %d !!\n",
__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
BUG();
return slot_cnt;
}
/**
* ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
* DMA2 PQ operation
*/
static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
int src_cnt, size_t len)
{
signed long long order = 0;
int state = 0;
int addr_count = 0;
int i;
for (i = 1; i < src_cnt; i++) {
dma_addr_t cur_addr = srcs[i];
dma_addr_t old_addr = srcs[i-1];
switch (state) {
case 0:
if (cur_addr == old_addr + len) {
/* direct RXOR */
order = 1;
state = 1;
if (i == src_cnt-1)
addr_count++;
} else if (old_addr == cur_addr + len) {
/* reverse RXOR */
order = -1;
state = 1;
if (i == src_cnt-1)
addr_count++;
} else {
state = 3;
}
break;
case 1:
if (i == src_cnt-2 || (order == -1
&& cur_addr != old_addr - len)) {
order = 0;
state = 0;
addr_count++;
} else if (cur_addr == old_addr + len*order) {
state = 2;
if (i == src_cnt-1)
addr_count++;
} else if (cur_addr == old_addr + 2*len) {
state = 2;
if (i == src_cnt-1)
addr_count++;
} else if (cur_addr == old_addr + 3*len) {
state = 2;
if (i == src_cnt-1)
addr_count++;
} else {
order = 0;
state = 0;
addr_count++;
}
break;
case 2:
order = 0;
state = 0;
addr_count++;
break;
}
if (state == 3)
break;
}
if (src_cnt <= 1 || (state != 1 && state != 2)) {
pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
__func__, src_cnt, state, addr_count, order);
for (i = 0; i < src_cnt; i++)
pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
BUG();
}
return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
}
/******************************************************************************
* ADMA channel low-level routines
******************************************************************************/
static u32
ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
/**
* ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
*/
static void ppc440spe_adma_device_clear_eot_status(
struct ppc440spe_adma_chan *chan)
{
struct dma_regs *dma_reg;
struct xor_regs *xor_reg;
u8 *p = chan->device->dma_desc_pool_virt;
struct dma_cdb *cdb;
u32 rv, i;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* read FIFO to ack */
dma_reg = chan->device->dma_reg;
while ((rv = ioread32(&dma_reg->csfpl))) {
i = rv & DMA_CDB_ADDR_MSK;
cdb = (struct dma_cdb *)&p[i -
(u32)chan->device->dma_desc_pool];
/* Clear opcode to ack. This is necessary for
* ZeroSum operations only
*/
cdb->opc = 0;
if (test_bit(PPC440SPE_RXOR_RUN,
&ppc440spe_rxor_state)) {
/* probably this is a completed RXOR op,
* get pointer to CDB using the fact that
* physical and virtual addresses of CDB
* in pools have the same offsets
*/
if (le32_to_cpu(cdb->sg1u) &
DMA_CUED_XOR_BASE) {
/* this is a RXOR */
clear_bit(PPC440SPE_RXOR_RUN,
&ppc440spe_rxor_state);
}
}
if (rv & DMA_CDB_STATUS_MSK) {
/* ZeroSum check failed
*/
struct ppc440spe_adma_desc_slot *iter;
dma_addr_t phys = rv & ~DMA_CDB_MSK;
/*
* Update the status of corresponding
* descriptor.
*/
list_for_each_entry(iter, &chan->chain,
chain_node) {
if (iter->phys == phys)
break;
}
/*
* if cannot find the corresponding
* slot it's a bug
*/
BUG_ON(&iter->chain_node == &chan->chain);
if (iter->xor_check_result) {
if (test_bit(PPC440SPE_DESC_PCHECK,
&iter->flags)) {
*iter->xor_check_result |=
SUM_CHECK_P_RESULT;
} else
if (test_bit(PPC440SPE_DESC_QCHECK,
&iter->flags)) {
*iter->xor_check_result |=
SUM_CHECK_Q_RESULT;
} else
BUG();
}
}
}
rv = ioread32(&dma_reg->dsts);
if (rv) {
pr_err("DMA%d err status: 0x%x\n",
chan->device->id, rv);
/* write back to clear */
iowrite32(rv, &dma_reg->dsts);
}
break;
case PPC440SPE_XOR_ID:
/* reset status bits to ack */
xor_reg = chan->device->xor_reg;
rv = ioread32be(&xor_reg->sr);
iowrite32be(rv, &xor_reg->sr);
if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
if (rv & XOR_IE_RPTIE_BIT) {
/* Read PLB Timeout Error.
* Try to resubmit the CB
*/
u32 val = ioread32be(&xor_reg->ccbalr);
iowrite32be(val, &xor_reg->cblalr);
val = ioread32be(&xor_reg->crsr);
iowrite32be(val | XOR_CRSR_XAE_BIT,
&xor_reg->crsr);
} else
pr_err("XOR ERR 0x%x status\n", rv);
break;
}
/* if the XORcore is idle, but there are unprocessed CBs
* then refetch the s/w chain here
*/
if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
do_xor_refetch)
ppc440spe_chan_append(chan);
break;
}
}
/**
* ppc440spe_chan_is_busy - get the channel status
*/
static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
{
struct dma_regs *dma_reg;
struct xor_regs *xor_reg;
int busy = 0;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_reg = chan->device->dma_reg;
/* if command FIFO's head and tail pointers are equal and
* status tail is the same as command, then channel is free
*/
if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
busy = 1;
break;
case PPC440SPE_XOR_ID:
/* use the special status bit for the XORcore
*/
xor_reg = chan->device->xor_reg;
busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
break;
}
return busy;
}
/**
* ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
*/
static void ppc440spe_chan_set_first_xor_descriptor(
struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *next_desc)
{
struct xor_regs *xor_reg = chan->device->xor_reg;
if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
printk(KERN_INFO "%s: Warn: XORcore is running "
"when try to set the first CDB!\n",
__func__);
xor_last_submit = xor_last_linked = next_desc;
iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
iowrite32be(next_desc->phys, &xor_reg->cblalr);
iowrite32be(0, &xor_reg->cblahr);
iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
&xor_reg->cbcr);
chan->hw_chain_inited = 1;
}
/**
* ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
* called with irqs disabled
*/
static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *desc)
{
u32 pcdb;
struct dma_regs *dma_reg = chan->device->dma_reg;
pcdb = desc->phys;
if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
pcdb |= DMA_CDB_NO_INT;
chan_last_sub[chan->device->id] = desc;
ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
iowrite32(pcdb, &dma_reg->cpfpl);
}
/**
* ppc440spe_chan_append - update the h/w chain in the channel
*/
static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
{
struct xor_regs *xor_reg;
struct ppc440spe_adma_desc_slot *iter;
struct xor_cb *xcb;
u32 cur_desc;
unsigned long flags;
local_irq_save(flags);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
cur_desc = ppc440spe_chan_get_current_descriptor(chan);
if (likely(cur_desc)) {
iter = chan_last_sub[chan->device->id];
BUG_ON(!iter);
} else {
/* first peer */
iter = chan_first_cdb[chan->device->id];
BUG_ON(!iter);
ppc440spe_dma_put_desc(chan, iter);
chan->hw_chain_inited = 1;
}
/* is there something new to append */
if (!iter->hw_next)
break;
/* flush descriptors from the s/w queue to fifo */
list_for_each_entry_continue(iter, &chan->chain, chain_node) {
ppc440spe_dma_put_desc(chan, iter);
if (!iter->hw_next)
break;
}
break;
case PPC440SPE_XOR_ID:
/* update h/w links and refetch */
if (!xor_last_submit->hw_next)
break;
xor_reg = chan->device->xor_reg;
/* the last linked CDB has to generate an interrupt
* that we'd be able to append the next lists to h/w
* regardless of the XOR engine state at the moment of
* appending of these next lists
*/
xcb = xor_last_linked->hw_desc;
xcb->cbc |= XOR_CBCR_CBCE_BIT;
if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
/* XORcore is idle. Refetch now */
do_xor_refetch = 0;
ppc440spe_xor_set_link(xor_last_submit,
xor_last_submit->hw_next);
ADMA_LL_DBG(print_cb_list(chan,
xor_last_submit->hw_next));
xor_last_submit = xor_last_linked;
iowrite32be(ioread32be(&xor_reg->crsr) |
XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
&xor_reg->crsr);
} else {
/* XORcore is running. Refetch later in the handler */
do_xor_refetch = 1;
}
break;
}
local_irq_restore(flags);
}
/**
* ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
*/
static u32
ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
{
struct dma_regs *dma_reg;
struct xor_regs *xor_reg;
if (unlikely(!chan->hw_chain_inited))
/* h/w descriptor chain is not initialized yet */
return 0;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_reg = chan->device->dma_reg;
return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
case PPC440SPE_XOR_ID:
xor_reg = chan->device->xor_reg;
return ioread32be(&xor_reg->ccbalr);
}
return 0;
}
/**
* ppc440spe_chan_run - enable the channel
*/
static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
{
struct xor_regs *xor_reg;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* DMAs are always enabled, do nothing */
break;
case PPC440SPE_XOR_ID:
/* drain write buffer */
xor_reg = chan->device->xor_reg;
/* fetch descriptor pointed to in <link> */
iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
&xor_reg->crsr);
break;
}
}
/******************************************************************************
* ADMA device level
******************************************************************************/
static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
static dma_cookie_t
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t addr, int index);
static void
ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t addr, int index);
static void
ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t *paddr, unsigned long flags);
static void
ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t addr, int index);
static void
ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
unsigned char mult, int index, int dst_pos);
static void
ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t paddr, dma_addr_t qaddr);
static struct page *ppc440spe_rxor_srcs[32];
/**
* ppc440spe_can_rxor - check if the operands may be processed with RXOR
*/
static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
{
int i, order = 0, state = 0;
int idx = 0;
if (unlikely(!(src_cnt > 1)))
return 0;
BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
/* Skip holes in the source list before checking */
for (i = 0; i < src_cnt; i++) {
if (!srcs[i])
continue;
ppc440spe_rxor_srcs[idx++] = srcs[i];
}
src_cnt = idx;
for (i = 1; i < src_cnt; i++) {
char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
switch (state) {
case 0:
if (cur_addr == old_addr + len) {
/* direct RXOR */
order = 1;
state = 1;
} else if (old_addr == cur_addr + len) {
/* reverse RXOR */
order = -1;
state = 1;
} else
goto out;
break;
case 1:
if ((i == src_cnt - 2) ||
(order == -1 && cur_addr != old_addr - len)) {
order = 0;
state = 0;
} else if ((cur_addr == old_addr + len * order) ||
(cur_addr == old_addr + 2 * len) ||
(cur_addr == old_addr + 3 * len)) {
state = 2;
} else {
order = 0;
state = 0;
}
break;
case 2:
order = 0;
state = 0;
break;
}
}
out:
if (state == 1 || state == 2)
return 1;
return 0;
}
/**
* ppc440spe_adma_device_estimate - estimate the efficiency of processing
* the operation given on this channel. It's assumed that 'chan' is
* capable to process 'cap' type of operation.
* @chan: channel to use
* @cap: type of transaction
* @dst_lst: array of destination pointers
* @dst_cnt: number of destination operands
* @src_lst: array of source pointers
* @src_cnt: number of source operands
* @src_sz: size of each source operand
*/
static int ppc440spe_adma_estimate(struct dma_chan *chan,
enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
struct page **src_lst, int src_cnt, size_t src_sz)
{
int ef = 1;
if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
/* If RAID-6 capabilities were not activated don't try
* to use them
*/
if (unlikely(!ppc440spe_r6_enabled))
return -1;
}
/* In the current implementation of ppc440spe ADMA driver it
* makes sense to pick out only pq case, because it may be
* processed:
* (1) either using Biskup method on DMA2;
* (2) or on DMA0/1.
* Thus we give a favour to (1) if the sources are suitable;
* else let it be processed on one of the DMA0/1 engines.
* In the sum_product case where destination is also the
* source process it on DMA0/1 only.
*/
if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
ef = 0; /* sum_product case, process on DMA0/1 */
else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
ef = 3; /* override (DMA0/1 + idle) */
else
ef = 0; /* can't process on DMA2 if !rxor */
}
/* channel idleness increases the priority */
if (likely(ef) &&
!ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
ef++;
return ef;
}
struct dma_chan *
ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
struct page **dst_lst, int dst_cnt, struct page **src_lst,
int src_cnt, size_t src_sz)
{
struct dma_chan *best_chan = NULL;
struct ppc_dma_chan_ref *ref;
int best_rank = -1;
if (unlikely(!src_sz))
return NULL;
if (src_sz > PAGE_SIZE) {
/*
* should a user of the api ever pass > PAGE_SIZE requests
* we sort out cases where temporary page-sized buffers
* are used.
*/
switch (cap) {
case DMA_PQ:
if (src_cnt == 1 && dst_lst[1] == src_lst[0])
return NULL;
if (src_cnt == 2 && dst_lst[1] == src_lst[1])
return NULL;
break;
case DMA_PQ_VAL:
case DMA_XOR_VAL:
return NULL;
default:
break;
}
}
list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
int rank;
rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
dst_cnt, src_lst, src_cnt, src_sz);
if (rank > best_rank) {
best_rank = rank;
best_chan = ref->chan;
}
}
}
return best_chan;
}
EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
/**
* ppc440spe_get_group_entry - get group entry with index idx
* @tdesc: is the last allocated slot in the group.
*/
static struct ppc440spe_adma_desc_slot *
ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
{
struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
int i = 0;
if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
BUG();
}
list_for_each_entry(iter, &tdesc->group_list, chain_node) {
if (i++ == entry_idx)
break;
}
return iter;
}
/**
* ppc440spe_adma_free_slots - flags descriptor slots for reuse
* @slot: Slot to free
* Caller must hold &ppc440spe_chan->lock while calling this function
*/
static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
struct ppc440spe_adma_chan *chan)
{
int stride = slot->slots_per_op;
while (stride--) {
slot->slots_per_op = 0;
slot = list_entry(slot->slot_node.next,
struct ppc440spe_adma_desc_slot,
slot_node);
}
}
/**
* ppc440spe_adma_run_tx_complete_actions - call functions to be called
* upon completion
*/
static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
dma_cookie_t cookie)
{
BUG_ON(desc->async_tx.cookie < 0);
if (desc->async_tx.cookie > 0) {
cookie = desc->async_tx.cookie;
desc->async_tx.cookie = 0;
/* call the callback (must not sleep or submit new
* operations to this channel)
*/
if (desc->async_tx.callback)
desc->async_tx.callback(
desc->async_tx.callback_param);
dma_descriptor_unmap(&desc->async_tx);
}
/* run dependent operations */
dma_run_dependencies(&desc->async_tx);
return cookie;
}
/**
* ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
*/
static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan)
{
/* the client is allowed to attach dependent operations
* until 'ack' is set
*/
if (!async_tx_test_ack(&desc->async_tx))
return 0;
/* leave the last descriptor in the chain
* so we can append to it
*/
if (list_is_last(&desc->chain_node, &chan->chain) ||
desc->phys == ppc440spe_chan_get_current_descriptor(chan))
return 1;
if (chan->device->id != PPC440SPE_XOR_ID) {
/* our DMA interrupt handler clears opc field of
* each processed descriptor. For all types of
* operations except for ZeroSum we do not actually
* need ack from the interrupt handler. ZeroSum is a
* special case since the result of this operation
* is available from the handler only, so if we see
* such type of descriptor (which is unprocessed yet)
* then leave it in chain.
*/
struct dma_cdb *cdb = desc->hw_desc;
if (cdb->opc == DMA_CDB_OPC_DCHECK128)
return 1;
}
dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
desc->phys, desc->idx, desc->slots_per_op);
list_del(&desc->chain_node);
ppc440spe_adma_free_slots(desc, chan);
return 0;
}
/**
* __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
* which runs through the channel CDBs list until reach the descriptor
* currently processed. When routine determines that all CDBs of group
* are completed then corresponding callbacks (if any) are called and slots
* are freed.
*/
static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
{
struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
dma_cookie_t cookie = 0;
u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
int busy = ppc440spe_chan_is_busy(chan);
int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
chan->device->id, __func__);
if (!current_desc) {
/* There were no transactions yet, so
* nothing to clean
*/
return;
}
/* free completed slots from the chain starting with
* the oldest descriptor
*/
list_for_each_entry_safe(iter, _iter, &chan->chain,
chain_node) {
dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
"busy: %d this_desc: %#llx next_desc: %#x "
"cur: %#x ack: %d\n",
iter->async_tx.cookie, iter->idx, busy, iter->phys,
ppc440spe_desc_get_link(iter, chan), current_desc,
async_tx_test_ack(&iter->async_tx));
prefetch(_iter);
prefetch(&_iter->async_tx);
/* do not advance past the current descriptor loaded into the
* hardware channel,subsequent descriptors are either in process
* or have not been submitted
*/
if (seen_current)
break;
/* stop the search if we reach the current descriptor and the
* channel is busy, or if it appears that the current descriptor
* needs to be re-read (i.e. has been appended to)
*/
if (iter->phys == current_desc) {
BUG_ON(seen_current++);
if (busy || ppc440spe_desc_get_link(iter, chan)) {
/* not all descriptors of the group have
* been completed; exit.
*/
break;
}
}
/* detect the start of a group transaction */
if (!slot_cnt && !slots_per_op) {
slot_cnt = iter->slot_cnt;
slots_per_op = iter->slots_per_op;
if (slot_cnt <= slots_per_op) {
slot_cnt = 0;
slots_per_op = 0;
}
}
if (slot_cnt) {
if (!group_start)
group_start = iter;
slot_cnt -= slots_per_op;
}
/* all the members of a group are complete */
if (slots_per_op != 0 && slot_cnt == 0) {
struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
int end_of_chain = 0;
/* clean up the group */
slot_cnt = group_start->slot_cnt;
grp_iter = group_start;
list_for_each_entry_safe_from(grp_iter, _grp_iter,
&chan->chain, chain_node) {
cookie = ppc440spe_adma_run_tx_complete_actions(
grp_iter, chan, cookie);
slot_cnt -= slots_per_op;
end_of_chain = ppc440spe_adma_clean_slot(
grp_iter, chan);
if (end_of_chain && slot_cnt) {
/* Should wait for ZeroSum completion */
if (cookie > 0)
chan->common.completed_cookie = cookie;
return;
}
if (slot_cnt == 0 || end_of_chain)
break;
}
/* the group should be complete at this point */
BUG_ON(slot_cnt);
slots_per_op = 0;
group_start = NULL;
if (end_of_chain)
break;
else
continue;
} else if (slots_per_op) /* wait for group completion */
continue;
cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
cookie);
if (ppc440spe_adma_clean_slot(iter, chan))
break;
}
BUG_ON(!seen_current);
if (cookie > 0) {
chan->common.completed_cookie = cookie;
pr_debug("\tcompleted cookie %d\n", cookie);
}
}
/**
* ppc440spe_adma_tasklet - clean up watch-dog initiator
*/
static void ppc440spe_adma_tasklet(unsigned long data)
{
struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
__ppc440spe_adma_slot_cleanup(chan);
spin_unlock(&chan->lock);
}
/**
* ppc440spe_adma_slot_cleanup - clean up scheduled initiator
*/
static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
{
spin_lock_bh(&chan->lock);
__ppc440spe_adma_slot_cleanup(chan);
spin_unlock_bh(&chan->lock);
}
/**
* ppc440spe_adma_alloc_slots - allocate free slots (if any)
*/
static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
struct ppc440spe_adma_chan *chan, int num_slots,
int slots_per_op)
{
struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
struct ppc440spe_adma_desc_slot *alloc_start = NULL;
struct list_head chain = LIST_HEAD_INIT(chain);
int slots_found, retry = 0;
BUG_ON(!num_slots || !slots_per_op);
/* start search from the last allocated descrtiptor
* if a contiguous allocation can not be found start searching
* from the beginning of the list
*/
retry:
slots_found = 0;
if (retry == 0)
iter = chan->last_used;
else
iter = list_entry(&chan->all_slots,
struct ppc440spe_adma_desc_slot,
slot_node);
list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
slot_node) {
prefetch(_iter);
prefetch(&_iter->async_tx);
if (iter->slots_per_op) {
slots_found = 0;
continue;
}
/* start the allocation if the slot is correctly aligned */
if (!slots_found++)
alloc_start = iter;
if (slots_found == num_slots) {
struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
struct ppc440spe_adma_desc_slot *last_used = NULL;
iter = alloc_start;
while (num_slots) {
int i;
/* pre-ack all but the last descriptor */
if (num_slots != slots_per_op)
async_tx_ack(&iter->async_tx);
list_add_tail(&iter->chain_node, &chain);
alloc_tail = iter;
iter->async_tx.cookie = 0;
iter->hw_next = NULL;
iter->flags = 0;
iter->slot_cnt = num_slots;
iter->xor_check_result = NULL;
for (i = 0; i < slots_per_op; i++) {
iter->slots_per_op = slots_per_op - i;
last_used = iter;
iter = list_entry(iter->slot_node.next,
struct ppc440spe_adma_desc_slot,
slot_node);
}
num_slots -= slots_per_op;
}
alloc_tail->group_head = alloc_start;
alloc_tail->async_tx.cookie = -EBUSY;
list_splice(&chain, &alloc_tail->group_list);
chan->last_used = last_used;
return alloc_tail;
}
}
if (!retry++)
goto retry;
/* try to free some slots if the allocation fails */
tasklet_schedule(&chan->irq_tasklet);
return NULL;
}
/**
* ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
*/
static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *slot = NULL;
char *hw_desc;
int i, db_sz;
int init;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
init = ppc440spe_chan->slots_allocated ? 0 : 1;
chan->chan_id = ppc440spe_chan->device->id;
/* Allocate descriptor slots */
i = ppc440spe_chan->slots_allocated;
if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
db_sz = sizeof(struct dma_cdb);
else
db_sz = sizeof(struct xor_cb);
for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
GFP_KERNEL);
if (!slot) {
printk(KERN_INFO "SPE ADMA Channel only initialized"
" %d descriptor slots", i--);
break;
}
hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
slot->hw_desc = (void *) &hw_desc[i * db_sz];
dma_async_tx_descriptor_init(&slot->async_tx, chan);
slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
INIT_LIST_HEAD(&slot->chain_node);
INIT_LIST_HEAD(&slot->slot_node);
INIT_LIST_HEAD(&slot->group_list);
slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
slot->idx = i;
spin_lock_bh(&ppc440spe_chan->lock);
ppc440spe_chan->slots_allocated++;
list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
spin_unlock_bh(&ppc440spe_chan->lock);
}
if (i && !ppc440spe_chan->last_used) {
ppc440spe_chan->last_used =
list_entry(ppc440spe_chan->all_slots.next,
struct ppc440spe_adma_desc_slot,
slot_node);
}
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: allocated %d descriptor slots\n",
ppc440spe_chan->device->id, i);
/* initialize the channel and the chain with a null operation */
if (init) {
switch (ppc440spe_chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
ppc440spe_chan->hw_chain_inited = 0;
/* Use WXOR for self-testing */
if (!ppc440spe_r6_tchan)
ppc440spe_r6_tchan = ppc440spe_chan;
break;
case PPC440SPE_XOR_ID:
ppc440spe_chan_start_null_xor(ppc440spe_chan);
break;
default:
BUG();
}
ppc440spe_chan->needs_unmap = 1;
}
return (i > 0) ? i : -ENOMEM;
}
/**
* ppc440spe_rxor_set_region_data -
*/
static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
u8 xor_arg_no, u32 mask)
{
struct xor_cb *xcb = desc->hw_desc;
xcb->ops[xor_arg_no].h |= mask;
}
/**
* ppc440spe_rxor_set_src -
*/
static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
u8 xor_arg_no, dma_addr_t addr)
{
struct xor_cb *xcb = desc->hw_desc;
xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
xcb->ops[xor_arg_no].l = addr;
}
/**
* ppc440spe_rxor_set_mult -
*/
static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
u8 xor_arg_no, u8 idx, u8 mult)
{
struct xor_cb *xcb = desc->hw_desc;
xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
}
/**
* ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
* has been achieved
*/
static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
{
dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
chan->device->id, chan->pending);
if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
chan->pending = 0;
ppc440spe_chan_append(chan);
}
}
/**
* ppc440spe_adma_tx_submit - submit new descriptor group to the channel
* (it's not necessary that descriptors will be submitted to the h/w
* chains too right now)
*/
static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct ppc440spe_adma_desc_slot *sw_desc;
struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
int slot_cnt;
int slots_per_op;
dma_cookie_t cookie;
sw_desc = tx_to_ppc440spe_adma_slot(tx);
group_start = sw_desc->group_head;
slot_cnt = group_start->slot_cnt;
slots_per_op = group_start->slots_per_op;
spin_lock_bh(&chan->lock);
cookie = dma_cookie_assign(tx);
if (unlikely(list_empty(&chan->chain))) {
/* first peer */
list_splice_init(&sw_desc->group_list, &chan->chain);
chan_first_cdb[chan->device->id] = group_start;
} else {
/* isn't first peer, bind CDBs to chain */
old_chain_tail = list_entry(chan->chain.prev,
struct ppc440spe_adma_desc_slot,
chain_node);
list_splice_init(&sw_desc->group_list,
&old_chain_tail->chain_node);
/* fix up the hardware chain */
ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
}
/* increment the pending count by the number of operations */
chan->pending += slot_cnt / slots_per_op;
ppc440spe_adma_check_threshold(chan);
spin_unlock_bh(&chan->lock);
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
chan->device->id, __func__,
sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
return cookie;
}
/**
* ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
struct dma_chan *chan, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
int slot_cnt, slots_per_op;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
__func__);
spin_lock_bh(&ppc440spe_chan->lock);
slot_cnt = slots_per_op = 1;
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
group_start->unmap_len = 0;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
int slot_cnt, slots_per_op;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
if (unlikely(!len))
return NULL;
BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
spin_lock_bh(&ppc440spe_chan->lock);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s len: %u int_en %d\n",
ppc440spe_chan->device->id, __func__, len,
flags & DMA_PREP_INTERRUPT ? 1 : 0);
slot_cnt = slots_per_op = 1;
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
ppc440spe_desc_init_memcpy(group_start, flags);
ppc440spe_adma_set_dest(group_start, dma_dest, 0);
ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t *dma_src, u32 src_cnt, size_t len,
unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
int slot_cnt, slots_per_op;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
dma_dest, dma_src, src_cnt));
if (unlikely(!len))
return NULL;
BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
ppc440spe_chan->device->id, __func__, src_cnt, len,
flags & DMA_PREP_INTERRUPT ? 1 : 0);
spin_lock_bh(&ppc440spe_chan->lock);
slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
ppc440spe_desc_init_xor(group_start, src_cnt, flags);
ppc440spe_adma_set_dest(group_start, dma_dest, 0);
while (src_cnt--)
ppc440spe_adma_memcpy_xor_set_src(group_start,
dma_src[src_cnt], src_cnt);
ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static inline void
ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
int src_cnt);
static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
/**
* ppc440spe_adma_init_dma2rxor_slot -
*/
static void ppc440spe_adma_init_dma2rxor_slot(
struct ppc440spe_adma_desc_slot *desc,
dma_addr_t *src, int src_cnt)
{
int i;
/* initialize CDB */
for (i = 0; i < src_cnt; i++) {
ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
desc->src_cnt, (u32)src[i]);
}
}
/**
* ppc440spe_dma01_prep_mult -
* for Q operation where destination is also the source
*/
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
unsigned long op = 0;
int slot_cnt;
set_bit(PPC440SPE_DESC_WXOR, &op);
slot_cnt = 2;
spin_lock_bh(&ppc440spe_chan->lock);
/* use WXOR, each descriptor occupies one slot */
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
struct ppc440spe_adma_chan *chan;
struct ppc440spe_adma_desc_slot *iter;
struct dma_cdb *hw_desc;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
set_bits(op, &sw_desc->flags);
sw_desc->src_cnt = src_cnt;
sw_desc->dst_cnt = dst_cnt;
/* First descriptor, zero data in the destination and copy it
* to q page using MULTICAST transfer.
*/
iter = list_first_entry(&sw_desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MULTICAST;
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, dst[0], 0);
ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
src[0]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
/*
* Second descriptor, multiply data from the q page
* and store the result in real destination.
*/
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = NULL;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
ppc440spe_desc_set_src_addr(iter, chan, 0,
DMA_CUED_XOR_HB, dst[1]);
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, dst[0], 0);
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, scf[0]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc;
}
/**
* ppc440spe_dma01_prep_sum_product -
* Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
* the source.
*/
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
unsigned long op = 0;
int slot_cnt;
set_bit(PPC440SPE_DESC_WXOR, &op);
slot_cnt = 3;
spin_lock_bh(&ppc440spe_chan->lock);
/* WXOR, each descriptor occupies one slot */
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
struct ppc440spe_adma_chan *chan;
struct ppc440spe_adma_desc_slot *iter;
struct dma_cdb *hw_desc;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
set_bits(op, &sw_desc->flags);
sw_desc->src_cnt = src_cnt;
sw_desc->dst_cnt = 1;
/* 1st descriptor, src[1] data to q page and zero destination */
iter = list_first_entry(&sw_desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MULTICAST;
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
*dst, 0);
ppc440spe_desc_set_dest_addr(iter, chan, 0,
ppc440spe_chan->qdest, 1);
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
src[1]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
/* 2nd descriptor, multiply src[1] data and store the
* result in destination */
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
ppc440spe_chan->qdest);
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
*dst, 0);
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, scf[1]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
/*
* 3rd descriptor, multiply src[0] data and xor it
* with destination
*/
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = NULL;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
src[0]);
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
*dst, 0);
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, scf[0]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc;
}
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
int slot_cnt;
struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
unsigned long op = 0;
unsigned char mult = 1;
pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
__func__, dst_cnt, src_cnt, len);
/* select operations WXOR/RXOR depending on the
* source addresses of operators and the number
* of destinations (RXOR support only Q-parity calculations)
*/
set_bit(PPC440SPE_DESC_WXOR, &op);
if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
/* no active RXOR;
* do RXOR if:
* - there are more than 1 source,
* - len is aligned on 512-byte boundary,
* - source addresses fit to one of 4 possible regions.
*/
if (src_cnt > 1 &&
!(len & MQ0_CF2H_RXOR_BS_MASK) &&
(src[0] + len) == src[1]) {
/* may do RXOR R1 R2 */
set_bit(PPC440SPE_DESC_RXOR, &op);
if (src_cnt != 2) {
/* may try to enhance region of RXOR */
if ((src[1] + len) == src[2]) {
/* do RXOR R1 R2 R3 */
set_bit(PPC440SPE_DESC_RXOR123,
&op);
} else if ((src[1] + len * 2) == src[2]) {
/* do RXOR R1 R2 R4 */
set_bit(PPC440SPE_DESC_RXOR124, &op);
} else if ((src[1] + len * 3) == src[2]) {
/* do RXOR R1 R2 R5 */
set_bit(PPC440SPE_DESC_RXOR125,
&op);
} else {
/* do RXOR R1 R2 */
set_bit(PPC440SPE_DESC_RXOR12,
&op);
}
} else {
/* do RXOR R1 R2 */
set_bit(PPC440SPE_DESC_RXOR12, &op);
}
}
if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
/* can not do this operation with RXOR */
clear_bit(PPC440SPE_RXOR_RUN,
&ppc440spe_rxor_state);
} else {
/* can do; set block size right now */
ppc440spe_desc_set_rxor_block_size(len);
}
}
/* Number of necessary slots depends on operation type selected */
if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
/* This is a WXOR only chain. Need descriptors for each
* source to GF-XOR them with WXOR, and need descriptors
* for each destination to zero them with WXOR
*/
slot_cnt = src_cnt;
if (flags & DMA_PREP_ZERO_P) {
slot_cnt++;
set_bit(PPC440SPE_ZERO_P, &op);
}
if (flags & DMA_PREP_ZERO_Q) {
slot_cnt++;
set_bit(PPC440SPE_ZERO_Q, &op);
}
} else {
/* Need 1/2 descriptor for RXOR operation, and
* need (src_cnt - (2 or 3)) for WXOR of sources
* remained (if any)
*/
slot_cnt = dst_cnt;
if (flags & DMA_PREP_ZERO_P)
set_bit(PPC440SPE_ZERO_P, &op);
if (flags & DMA_PREP_ZERO_Q)
set_bit(PPC440SPE_ZERO_Q, &op);
if (test_bit(PPC440SPE_DESC_RXOR12, &op))
slot_cnt += src_cnt - 2;
else
slot_cnt += src_cnt - 3;
/* Thus we have either RXOR only chain or
* mixed RXOR/WXOR
*/
if (slot_cnt == dst_cnt)
/* RXOR only chain */
clear_bit(PPC440SPE_DESC_WXOR, &op);
}
spin_lock_bh(&ppc440spe_chan->lock);
/* for both RXOR/WXOR each descriptor occupies one slot */
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
flags, op);
/* setup dst/src/mult */
pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
__func__, dst[0], dst[1]);
ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
while (src_cnt--) {
ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
src_cnt);
/* NOTE: "Multi = 0 is equivalent to = 1" as it
* stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
* doesn't work for RXOR with DMA0/1! Instead, multi=0
* leads to zeroing source data after RXOR.
* So, for P case set-up mult=1 explicitly.
*/
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
mult = scf[src_cnt];
ppc440spe_adma_pq_set_src_mult(sw_desc,
mult, src_cnt, dst_cnt - 1);
}
/* Setup byte count foreach slot just allocated */
sw_desc->async_tx.flags = flags;
list_for_each_entry(iter, &sw_desc->group_list,
chain_node) {
ppc440spe_desc_set_byte_count(iter,
ppc440spe_chan, len);
iter->unmap_len = len;
}
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc;
}
static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
int slot_cnt, descs_per_op;
struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
unsigned long op = 0;
unsigned char mult = 1;
BUG_ON(!dst_cnt);
/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
__func__, dst_cnt, src_cnt, len);*/
spin_lock_bh(&ppc440spe_chan->lock);
descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
if (descs_per_op < 0) {
spin_unlock_bh(&ppc440spe_chan->lock);
return NULL;
}
/* depending on number of sources we have 1 or 2 RXOR chains */
slot_cnt = descs_per_op * dst_cnt;
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
op = slot_cnt;
sw_desc->async_tx.flags = flags;
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
--op ? 0 : flags);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = len;
ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
iter->rxor_cursor.len = len;
iter->descs_per_op = descs_per_op;
}
op = 0;
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
op++;
if (op % descs_per_op == 0)
ppc440spe_adma_init_dma2rxor_slot(iter, src,
src_cnt);
if (likely(!list_is_last(&iter->chain_node,
&sw_desc->group_list))) {
/* set 'next' pointer */
iter->hw_next =
list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
ppc440spe_xor_set_link(iter, iter->hw_next);
} else {
/* this is the last descriptor. */
iter->hw_next = NULL;
}
}
/* fixup head descriptor */
sw_desc->dst_cnt = dst_cnt;
if (flags & DMA_PREP_ZERO_P)
set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
if (flags & DMA_PREP_ZERO_Q)
set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
/* setup dst/src/mult */
ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
while (src_cnt--) {
/* handle descriptors (if dst_cnt == 2) inside
* the ppc440spe_adma_pq_set_srcxxx() functions
*/
ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
src_cnt);
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
mult = scf[src_cnt];
ppc440spe_adma_pq_set_src_mult(sw_desc,
mult, src_cnt, dst_cnt - 1);
}
}
spin_unlock_bh(&ppc440spe_chan->lock);
ppc440spe_desc_set_rxor_block_size(len);
return sw_desc;
}
/**
* ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
int dst_cnt = 0;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
dst, src, src_cnt));
BUG_ON(!len);
BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
BUG_ON(!src_cnt);
if (src_cnt == 1 && dst[1] == src[0]) {
dma_addr_t dest[2];
/* dst[1] is real destination (Q) */
dest[0] = dst[1];
/* this is the page to multicast source data to */
dest[1] = ppc440spe_chan->qdest;
sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
dest, 2, src, src_cnt, scf, len, flags);
return sw_desc ? &sw_desc->async_tx : NULL;
}
if (src_cnt == 2 && dst[1] == src[1]) {
sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
&dst[1], src, 2, scf, len, flags);
return sw_desc ? &sw_desc->async_tx : NULL;
}
if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
BUG_ON(!dst[0]);
dst_cnt++;
flags |= DMA_PREP_ZERO_P;
}
if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
BUG_ON(!dst[1]);
dst_cnt++;
flags |= DMA_PREP_ZERO_Q;
}
BUG_ON(!dst_cnt);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
ppc440spe_chan->device->id, __func__, src_cnt, len,
flags & DMA_PREP_INTERRUPT ? 1 : 0);
switch (ppc440spe_chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
dst, dst_cnt, src, src_cnt, scf,
len, flags);
break;
case PPC440SPE_XOR_ID:
sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
dst, dst_cnt, src, src_cnt, scf,
len, flags);
break;
}
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
* a PQ_ZERO_SUM operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
enum sum_check_flags *pqres, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *iter;
dma_addr_t pdest, qdest;
int slot_cnt, slots_per_op, idst, dst_cnt;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
if (flags & DMA_PREP_PQ_DISABLE_P)
pdest = 0;
else
pdest = pq[0];
if (flags & DMA_PREP_PQ_DISABLE_Q)
qdest = 0;
else
qdest = pq[1];
ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
src, src_cnt, scf));
/* Always use WXOR for P/Q calculations (two destinations).
* Need 1 or 2 extra slots to verify results are zero.
*/
idst = dst_cnt = (pdest && qdest) ? 2 : 1;
/* One additional slot per destination to clone P/Q
* before calculation (we have to preserve destinations).
*/
slot_cnt = src_cnt + dst_cnt * 2;
slots_per_op = 1;
spin_lock_bh(&ppc440spe_chan->lock);
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
/* Setup byte count for each slot just allocated */
sw_desc->async_tx.flags = flags;
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = len;
}
if (pdest) {
struct dma_cdb *hw_desc;
struct ppc440spe_adma_chan *chan;
iter = sw_desc->group_head;
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter->src_cnt = 0;
iter->dst_cnt = 0;
ppc440spe_desc_set_dest_addr(iter, chan, 0,
ppc440spe_chan->pdest, 0);
ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = 0;
/* override pdest to preserve original P */
pdest = ppc440spe_chan->pdest;
}
if (qdest) {
struct dma_cdb *hw_desc;
struct ppc440spe_adma_chan *chan;
iter = list_first_entry(&sw_desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
if (pdest) {
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter->src_cnt = 0;
iter->dst_cnt = 0;
ppc440spe_desc_set_dest_addr(iter, chan, 0,
ppc440spe_chan->qdest, 0);
ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = 0;
/* override qdest to preserve original Q */
qdest = ppc440spe_chan->qdest;
}
/* Setup destinations for P/Q ops */
ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
/* Setup zero QWORDs into DCHECK CDBs */
idst = dst_cnt;
list_for_each_entry_reverse(iter, &sw_desc->group_list,
chain_node) {
/*
* The last CDB corresponds to Q-parity check,
* the one before last CDB corresponds
* P-parity check
*/
if (idst == DMA_DEST_MAX_NUM) {
if (idst == dst_cnt) {
set_bit(PPC440SPE_DESC_QCHECK,
&iter->flags);
} else {
set_bit(PPC440SPE_DESC_PCHECK,
&iter->flags);
}
} else {
if (qdest) {
set_bit(PPC440SPE_DESC_QCHECK,
&iter->flags);
} else {
set_bit(PPC440SPE_DESC_PCHECK,
&iter->flags);
}
}
iter->xor_check_result = pqres;
/*
* set it to zero, if check fail then result will
* be updated
*/
*iter->xor_check_result = 0;
ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
ppc440spe_qword);
if (!(--dst_cnt))
break;
}
/* Setup sources and mults for P/Q ops */
list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
chain_node) {
struct ppc440spe_adma_chan *chan;
u32 mult_dst;
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
ppc440spe_desc_set_src_addr(iter, chan, 0,
DMA_CUED_XOR_HB,
src[src_cnt - 1]);
if (qdest) {
mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
DMA_CDB_SG_DST1;
ppc440spe_desc_set_src_mult(iter, chan,
DMA_CUED_MULT1_OFF,
mult_dst,
scf[src_cnt - 1]);
}
if (!(--src_cnt))
break;
}
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
* XOR ZERO_SUM operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
size_t len, enum sum_check_flags *result, unsigned long flags)
{
struct dma_async_tx_descriptor *tx;
dma_addr_t pq[2];
/* validate P, disable Q */
pq[0] = src[0];
pq[1] = 0;
flags |= DMA_PREP_PQ_DISABLE_Q;
tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
src_cnt - 1, 0, len,
result, flags);
return tx;
}
/**
* ppc440spe_adma_set_dest - set destination address into descriptor
*/
static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t addr, int index)
{
struct ppc440spe_adma_chan *chan;
BUG_ON(index >= sw_desc->dst_cnt);
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* to do: support transfers lengths >
* PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
*/
ppc440spe_desc_set_dest_addr(sw_desc->group_head,
chan, 0, addr, index);
break;
case PPC440SPE_XOR_ID:
sw_desc = ppc440spe_get_group_entry(sw_desc, index);
ppc440spe_desc_set_dest_addr(sw_desc,
chan, 0, addr, index);
break;
}
}
static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
struct ppc440spe_adma_chan *chan, dma_addr_t addr)
{
/* To clear destinations update the descriptor
* (P or Q depending on index) as follows:
* addr is destination (0 corresponds to SG2):
*/
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
/* ... and the addr is source: */
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
/* addr is always SG2 then the mult is always DST1 */
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, 1);
}
/**
* ppc440spe_adma_pq_set_dest - set destination address into descriptor
* for the PQXOR operation
*/
static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t *addrs, unsigned long flags)
{
struct ppc440spe_adma_desc_slot *iter;
struct ppc440spe_adma_chan *chan;
dma_addr_t paddr, qaddr;
dma_addr_t addr = 0, ppath, qpath;
int index = 0, i;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
if (flags & DMA_PREP_PQ_DISABLE_P)
paddr = 0;
else
paddr = addrs[0];
if (flags & DMA_PREP_PQ_DISABLE_Q)
qaddr = 0;
else
qaddr = addrs[1];
if (!paddr || !qaddr)
addr = paddr ? paddr : qaddr;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* walk through the WXOR source list and set P/Q-destinations
* for each slot:
*/
if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
/* This is WXOR-only chain; may have 1/2 zero descs */
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
index++;
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
index++;
iter = ppc440spe_get_group_entry(sw_desc, index);
if (addr) {
/* one destination */
list_for_each_entry_from(iter,
&sw_desc->group_list, chain_node)
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, addr, 0);
} else {
/* two destinations */
list_for_each_entry_from(iter,
&sw_desc->group_list, chain_node) {
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, paddr, 0);
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, qaddr, 1);
}
}
if (index) {
/* To clear destinations update the descriptor
* (1st,2nd, or both depending on flags)
*/
index = 0;
if (test_bit(PPC440SPE_ZERO_P,
&sw_desc->flags)) {
iter = ppc440spe_get_group_entry(
sw_desc, index++);
ppc440spe_adma_pq_zero_op(iter, chan,
paddr);
}
if (test_bit(PPC440SPE_ZERO_Q,
&sw_desc->flags)) {
iter = ppc440spe_get_group_entry(
sw_desc, index++);
ppc440spe_adma_pq_zero_op(iter, chan,
qaddr);
}
return;
}
} else {
/* This is RXOR-only or RXOR/WXOR mixed chain */
/* If we want to include destination into calculations,
* then make dest addresses cued with mult=1 (XOR).
*/
ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
/* Setup destination(s) in RXOR slot(s) */
iter = ppc440spe_get_group_entry(sw_desc, index++);
ppc440spe_desc_set_dest_addr(iter, chan,
paddr ? ppath : qpath,
paddr ? paddr : qaddr, 0);
if (!addr) {
/* two destinations */
iter = ppc440spe_get_group_entry(sw_desc,
index++);
ppc440spe_desc_set_dest_addr(iter, chan,
qpath, qaddr, 0);
}
if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
/* Setup destination(s) in remaining WXOR
* slots
*/
iter = ppc440spe_get_group_entry(sw_desc,
index);
if (addr) {
/* one destination */
list_for_each_entry_from(iter,
&sw_desc->group_list,
chain_node)
ppc440spe_desc_set_dest_addr(
iter, chan,
DMA_CUED_XOR_BASE,
addr, 0);
} else {
/* two destinations */
list_for_each_entry_from(iter,
&sw_desc->group_list,
chain_node) {
ppc440spe_desc_set_dest_addr(
iter, chan,
DMA_CUED_XOR_BASE,
paddr, 0);
ppc440spe_desc_set_dest_addr(
iter, chan,
DMA_CUED_XOR_BASE,
qaddr, 1);
}
}
}
}
break;
case PPC440SPE_XOR_ID:
/* DMA2 descriptors have only 1 destination, so there are
* two chains - one for each dest.
* If we want to include destination into calculations,
* then make dest addresses cued with mult=1 (XOR).
*/
ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
iter = ppc440spe_get_group_entry(sw_desc, 0);
for (i = 0; i < sw_desc->descs_per_op; i++) {
ppc440spe_desc_set_dest_addr(iter, chan,
paddr ? ppath : qpath,
paddr ? paddr : qaddr, 0);
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
if (!addr) {
/* Two destinations; setup Q here */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->descs_per_op);
for (i = 0; i < sw_desc->descs_per_op; i++) {
ppc440spe_desc_set_dest_addr(iter,
chan, qpath, qaddr, 0);
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
}
break;
}
}
/**
* ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
* for the PQ_ZERO_SUM operation
*/
static void ppc440spe_adma_pqzero_sum_set_dest(
struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t paddr, dma_addr_t qaddr)
{
struct ppc440spe_adma_desc_slot *iter, *end;
struct ppc440spe_adma_chan *chan;
dma_addr_t addr = 0;
int idx;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
/* walk through the WXOR source list and set P/Q-destinations
* for each slot
*/
idx = (paddr && qaddr) ? 2 : 1;
/* set end */
list_for_each_entry_reverse(end, &sw_desc->group_list,
chain_node) {
if (!(--idx))
break;
}
/* set start */
idx = (paddr && qaddr) ? 2 : 1;
iter = ppc440spe_get_group_entry(sw_desc, idx);
if (paddr && qaddr) {
/* two destinations */
list_for_each_entry_from(iter, &sw_desc->group_list,
chain_node) {
if (unlikely(iter == end))
break;
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, paddr, 0);
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, qaddr, 1);
}
} else {
/* one destination */
addr = paddr ? paddr : qaddr;
list_for_each_entry_from(iter, &sw_desc->group_list,
chain_node) {
if (unlikely(iter == end))
break;
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, addr, 0);
}
}
/* The remaining descriptors are DATACHECK. These have no need in
* destination. Actually, these destinations are used there
* as sources for check operation. So, set addr as source.
*/
ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
if (!addr) {
end = list_entry(end->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
}
}
/**
* ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
*/
static inline void ppc440spe_desc_set_xor_src_cnt(
struct ppc440spe_adma_desc_slot *desc,
int src_cnt)
{
struct xor_cb *hw_desc = desc->hw_desc;
hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
hw_desc->cbc |= src_cnt;
}
/**
* ppc440spe_adma_pq_set_src - set source address into descriptor
*/
static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t addr, int index)
{
struct ppc440spe_adma_chan *chan;
dma_addr_t haddr = 0;
struct ppc440spe_adma_desc_slot *iter = NULL;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
*/
if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
/* RXOR-only or RXOR/WXOR operation */
int iskip = test_bit(PPC440SPE_DESC_RXOR12,
&sw_desc->flags) ? 2 : 3;
if (index == 0) {
/* 1st slot (RXOR) */
/* setup sources region (R1-2-3, R1-2-4,
* or R1-2-5)
*/
if (test_bit(PPC440SPE_DESC_RXOR12,
&sw_desc->flags))
haddr = DMA_RXOR12 <<
DMA_CUED_REGION_OFF;
else if (test_bit(PPC440SPE_DESC_RXOR123,
&sw_desc->flags))
haddr = DMA_RXOR123 <<
DMA_CUED_REGION_OFF;
else if (test_bit(PPC440SPE_DESC_RXOR124,
&sw_desc->flags))
haddr = DMA_RXOR124 <<
DMA_CUED_REGION_OFF;
else if (test_bit(PPC440SPE_DESC_RXOR125,
&sw_desc->flags))
haddr = DMA_RXOR125 <<
DMA_CUED_REGION_OFF;
else
BUG();
haddr |= DMA_CUED_XOR_BASE;
iter = ppc440spe_get_group_entry(sw_desc, 0);
} else if (index < iskip) {
/* 1st slot (RXOR)
* shall actually set source address only once
* instead of first <iskip>
*/
iter = NULL;
} else {
/* 2nd/3d and next slots (WXOR);
* skip first slot with RXOR
*/
haddr = DMA_CUED_XOR_HB;
iter = ppc440spe_get_group_entry(sw_desc,
index - iskip + sw_desc->dst_cnt);
}
} else {
int znum = 0;
/* WXOR-only operation; skip first slots with
* zeroing destinations
*/
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
znum++;
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
znum++;
haddr = DMA_CUED_XOR_HB;
iter = ppc440spe_get_group_entry(sw_desc,
index + znum);
}
if (likely(iter)) {
ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
if (!index &&
test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
sw_desc->dst_cnt == 2) {
/* if we have two destinations for RXOR, then
* setup source in the second descr too
*/
iter = ppc440spe_get_group_entry(sw_desc, 1);
ppc440spe_desc_set_src_addr(iter, chan, 0,
haddr, addr);
}
}
break;
case PPC440SPE_XOR_ID:
/* DMA2 may do Biskup */
iter = sw_desc->group_head;
if (iter->dst_cnt == 2) {
/* both P & Q calculations required; set P src here */
ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
/* this is for Q */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->descs_per_op);
}
ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
break;
}
}
/**
* ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
*/
static void ppc440spe_adma_memcpy_xor_set_src(
struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t addr, int index)
{
struct ppc440spe_adma_chan *chan;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
sw_desc = sw_desc->group_head;
if (likely(sw_desc))
ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
}
/**
* ppc440spe_adma_dma2rxor_inc_addr -
*/
static void ppc440spe_adma_dma2rxor_inc_addr(
struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_rxor *cursor, int index, int src_cnt)
{
cursor->addr_count++;
if (index == src_cnt - 1) {
ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
} else if (cursor->addr_count == XOR_MAX_OPS) {
ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
cursor->addr_count = 0;
cursor->desc_count++;
}
}
/**
* ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
*/
static int ppc440spe_adma_dma2rxor_prep_src(
struct ppc440spe_adma_desc_slot *hdesc,
struct ppc440spe_rxor *cursor, int index,
int src_cnt, u32 addr)
{
int rval = 0;
u32 sign;
struct ppc440spe_adma_desc_slot *desc = hdesc;
int i;
for (i = 0; i < cursor->desc_count; i++) {
desc = list_entry(hdesc->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
switch (cursor->state) {
case 0:
if (addr == cursor->addrl + cursor->len) {
/* direct RXOR */
cursor->state = 1;
cursor->xor_count++;
if (index == src_cnt-1) {
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else if (cursor->addrl == addr + cursor->len) {
/* reverse RXOR */
cursor->state = 1;
cursor->xor_count++;
set_bit(cursor->addr_count, &desc->reverse_flags[0]);
if (index == src_cnt-1) {
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else {
printk(KERN_ERR "Cannot build "
"DMA2 RXOR command block.\n");
BUG();
}
break;
case 1:
sign = test_bit(cursor->addr_count,
desc->reverse_flags)
? -1 : 1;
if (index == src_cnt-2 || (sign == -1
&& addr != cursor->addrl - 2*cursor->len)) {
cursor->state = 0;
cursor->xor_count = 1;
cursor->addrl = addr;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
} else if (addr == cursor->addrl + 2*sign*cursor->len) {
cursor->state = 2;
cursor->xor_count = 0;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR123 << DMA_CUED_REGION_OFF);
if (index == src_cnt-1) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else if (addr == cursor->addrl + 3*cursor->len) {
cursor->state = 2;
cursor->xor_count = 0;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR124 << DMA_CUED_REGION_OFF);
if (index == src_cnt-1) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else if (addr == cursor->addrl + 4*cursor->len) {
cursor->state = 2;
cursor->xor_count = 0;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR125 << DMA_CUED_REGION_OFF);
if (index == src_cnt-1) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else {
cursor->state = 0;
cursor->xor_count = 1;
cursor->addrl = addr;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
break;
case 2:
cursor->state = 0;
cursor->addrl = addr;
cursor->xor_count++;
if (index) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
break;
}
return rval;
}
/**
* ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
* ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
*/
static void ppc440spe_adma_dma2rxor_set_src(
struct ppc440spe_adma_desc_slot *desc,
int index, dma_addr_t addr)
{
struct xor_cb *xcb = desc->hw_desc;
int k = 0, op = 0, lop = 0;
/* get the RXOR operand which corresponds to index addr */
while (op <= index) {
lop = op;
if (k == XOR_MAX_OPS) {
k = 0;
desc = list_entry(desc->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
xcb = desc->hw_desc;
}
if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
(DMA_RXOR12 << DMA_CUED_REGION_OFF))
op += 2;
else
op += 3;
}
BUG_ON(k < 1);
if (test_bit(k-1, desc->reverse_flags)) {
/* reverse operand order; put last op in RXOR group */
if (index == op - 1)
ppc440spe_rxor_set_src(desc, k - 1, addr);
} else {
/* direct operand order; put first op in RXOR group */
if (index == lop)
ppc440spe_rxor_set_src(desc, k - 1, addr);
}
}
/**
* ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
* ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
*/
static void ppc440spe_adma_dma2rxor_set_mult(
struct ppc440spe_adma_desc_slot *desc,
int index, u8 mult)
{
struct xor_cb *xcb = desc->hw_desc;
int k = 0, op = 0, lop = 0;
/* get the RXOR operand which corresponds to index mult */
while (op <= index) {
lop = op;
if (k == XOR_MAX_OPS) {
k = 0;
desc = list_entry(desc->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
xcb = desc->hw_desc;
}
if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
(DMA_RXOR12 << DMA_CUED_REGION_OFF))
op += 2;
else
op += 3;
}
BUG_ON(k < 1);
if (test_bit(k-1, desc->reverse_flags)) {
/* reverse order */
ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
} else {
/* direct order */
ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
}
}
/**
* ppc440spe_init_rxor_cursor -
*/
static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
{
memset(cursor, 0, sizeof(struct ppc440spe_rxor));
cursor->state = 2;
}
/**
* ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
* descriptor for the PQXOR operation
*/
static void ppc440spe_adma_pq_set_src_mult(
struct ppc440spe_adma_desc_slot *sw_desc,
unsigned char mult, int index, int dst_pos)
{
struct ppc440spe_adma_chan *chan;
u32 mult_idx, mult_dst;
struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
int region = test_bit(PPC440SPE_DESC_RXOR12,
&sw_desc->flags) ? 2 : 3;
if (index < region) {
/* RXOR multipliers */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->dst_cnt - 1);
if (sw_desc->dst_cnt == 2)
iter1 = ppc440spe_get_group_entry(
sw_desc, 0);
mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
mult_dst = DMA_CDB_SG_SRC;
} else {
/* WXOR multiplier */
iter = ppc440spe_get_group_entry(sw_desc,
index - region +
sw_desc->dst_cnt);
mult_idx = DMA_CUED_MULT1_OFF;
mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
DMA_CDB_SG_DST1;
}
} else {
int znum = 0;
/* WXOR-only;
* skip first slots with destinations (if ZERO_DST has
* place)
*/
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
znum++;
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
znum++;
iter = ppc440spe_get_group_entry(sw_desc, index + znum);
mult_idx = DMA_CUED_MULT1_OFF;
mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
}
if (likely(iter)) {
ppc440spe_desc_set_src_mult(iter, chan,
mult_idx, mult_dst, mult);
if (unlikely(iter1)) {
/* if we have two destinations for RXOR, then
* we've just set Q mult. Set-up P now.
*/
ppc440spe_desc_set_src_mult(iter1, chan,
mult_idx, mult_dst, 1);
}
}
break;
case PPC440SPE_XOR_ID:
iter = sw_desc->group_head;
if (sw_desc->dst_cnt == 2) {
/* both P & Q calculations required; set P mult here */
ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
/* and then set Q mult */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->descs_per_op);
}
ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
break;
}
}
/**
* ppc440spe_adma_free_chan_resources - free the resources allocated
*/
static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *iter, *_iter;
int in_use_descs = 0;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ppc440spe_adma_slot_cleanup(ppc440spe_chan);
spin_lock_bh(&ppc440spe_chan->lock);
list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
chain_node) {
in_use_descs++;
list_del(&iter->chain_node);
}
list_for_each_entry_safe_reverse(iter, _iter,
&ppc440spe_chan->all_slots, slot_node) {
list_del(&iter->slot_node);
kfree(iter);
ppc440spe_chan->slots_allocated--;
}
ppc440spe_chan->last_used = NULL;
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d %s slots_allocated %d\n",
ppc440spe_chan->device->id,
__func__, ppc440spe_chan->slots_allocated);
spin_unlock_bh(&ppc440spe_chan->lock);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
in_use_descs - 1);
}
/**
* ppc440spe_adma_tx_status - poll the status of an ADMA transaction
* @chan: ADMA channel handle
* @cookie: ADMA transaction identifier
* @txstate: a holder for the current state of the channel
*/
static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
enum dma_status ret;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
ppc440spe_adma_slot_cleanup(ppc440spe_chan);
return dma_cookie_status(chan, cookie, txstate);
}
/**
* ppc440spe_adma_eot_handler - end of transfer interrupt handler
*/
static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
{
struct ppc440spe_adma_chan *chan = data;
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
tasklet_schedule(&chan->irq_tasklet);
ppc440spe_adma_device_clear_eot_status(chan);
return IRQ_HANDLED;
}
/**
* ppc440spe_adma_err_handler - DMA error interrupt handler;
* do the same things as a eot handler
*/
static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
{
struct ppc440spe_adma_chan *chan = data;
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
tasklet_schedule(&chan->irq_tasklet);
ppc440spe_adma_device_clear_eot_status(chan);
return IRQ_HANDLED;
}
/**
* ppc440spe_test_callback - called when test operation has been done
*/
static void ppc440spe_test_callback(void *unused)
{
complete(&ppc440spe_r6_test_comp);
}
/**
* ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
*/
static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
__func__, ppc440spe_chan->pending);
if (ppc440spe_chan->pending) {
ppc440spe_chan->pending = 0;
ppc440spe_chan_append(ppc440spe_chan);
}
}
/**
* ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
* use FIFOs (as opposite to chains used in XOR) so this is a XOR
* specific operation)
*/
static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
{
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
dma_cookie_t cookie;
int slot_cnt, slots_per_op;
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
spin_lock_bh(&chan->lock);
slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
list_splice_init(&sw_desc->group_list, &chan->chain);
async_tx_ack(&sw_desc->async_tx);
ppc440spe_desc_init_null_xor(group_start);
dmaengine: fix cookie handling in iop-adma.c and ppc4xx/adma.c Dan Williams said: > > Russell King wrote: > > Firstly, we have DMA_MIN_COOKIE which has value 1 - so any cookies below > > that aren't valid.  That seems sane. > > > > We seem to have different behaviours: > > > > -       cookie = c->cookie; > > -       cookie++; > > -       if (cookie < 0) > > -               cookie = 1; > > -       c->cookie = cookie; > > -       tx->cookie = cookie; > > > > c->cookie here is initialized to zero, so the first cookie given out will > > be 1.  This is how most DMA engine drivers implement this. > > > > Then we have this: > > > >                cookie = chan->common.cookie; > >                cookie++; > >                if (cookie <= 1) > >                        cookie = 2; > > > >                /* initialize the completed cookie to be less than > >                 * the most recently used cookie > >                 */ > >                chan->common.completed_cookie = cookie - 1; > >                chan->common.cookie = sw_desc->async_tx.cookie = cookie; > > > > Again, chan->common.cookie starts off at 0.  The first cookie given out > > will be 2, and 1 will never be used.  There are three drivers which > > implement it this way. > > > > Why is there this difference, and can these three be corrected to behave > > the same way as the first (and therefore the assignment of cookies > > consolidated?) > > Yes, they should be consolidated, and I believe they have drifted only > because there were no good common helpers and murphy's law took over. So lets fix this up to use the common dma_cookie_assign() helper. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Tested-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Jassi Brar <jassisinghbrar@gmail.com> [imx-sdma.c & mxs-dma.c] Tested-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Vinod Koul <vinod.koul@linux.intel.com>
2012-03-06 15:36:07 -07:00
cookie = dma_cookie_assign(&sw_desc->async_tx);
/* initialize the completed cookie to be less than
* the most recently used cookie
*/
chan->common.completed_cookie = cookie - 1;
/* channel should not be busy */
BUG_ON(ppc440spe_chan_is_busy(chan));
/* set the descriptor address */
ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
/* run the descriptor */
ppc440spe_chan_run(chan);
} else
printk(KERN_ERR "ppc440spe adma%d"
" failed to allocate null descriptor\n",
chan->device->id);
spin_unlock_bh(&chan->lock);
}
/**
* ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
* For this we just perform one WXOR operation with the same source
* and destination addresses, the GF-multiplier is 1; so if RAID-6
* capabilities are enabled then we'll get src/dst filled with zero.
*/
static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
{
struct ppc440spe_adma_desc_slot *sw_desc, *iter;
struct page *pg;
char *a;
dma_addr_t dma_addr, addrs[2];
unsigned long op = 0;
int rval = 0;
set_bit(PPC440SPE_DESC_WXOR, &op);
pg = alloc_page(GFP_KERNEL);
if (!pg)
return -ENOMEM;
spin_lock_bh(&chan->lock);
sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
if (sw_desc) {
/* 1 src, 1 dsr, int_ena, WXOR */
ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
iter->unmap_len = PAGE_SIZE;
}
} else {
rval = -EFAULT;
spin_unlock_bh(&chan->lock);
goto exit;
}
spin_unlock_bh(&chan->lock);
/* Fill the test page with ones */
memset(page_address(pg), 0xFF, PAGE_SIZE);
dma_addr = dma_map_page(chan->device->dev, pg, 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
/* Setup addresses */
ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
addrs[0] = dma_addr;
addrs[1] = 0;
ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
async_tx_ack(&sw_desc->async_tx);
sw_desc->async_tx.callback = ppc440spe_test_callback;
sw_desc->async_tx.callback_param = NULL;
init_completion(&ppc440spe_r6_test_comp);
ppc440spe_adma_tx_submit(&sw_desc->async_tx);
ppc440spe_adma_issue_pending(&chan->common);
wait_for_completion(&ppc440spe_r6_test_comp);
/* Now check if the test page is zeroed */
a = page_address(pg);
if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
/* page is zero - RAID-6 enabled */
rval = 0;
} else {
/* RAID-6 was not enabled */
rval = -EINVAL;
}
exit:
__free_page(pg);
return rval;
}
static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
{
switch (adev->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
dma_cap_set(DMA_PQ, adev->common.cap_mask);
dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
break;
case PPC440SPE_XOR_ID:
dma_cap_set(DMA_XOR, adev->common.cap_mask);
dma_cap_set(DMA_PQ, adev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
adev->common.cap_mask = adev->common.cap_mask;
break;
}
/* Set base routines */
adev->common.device_alloc_chan_resources =
ppc440spe_adma_alloc_chan_resources;
adev->common.device_free_chan_resources =
ppc440spe_adma_free_chan_resources;
adev->common.device_tx_status = ppc440spe_adma_tx_status;
adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
/* Set prep routines based on capability */
if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
adev->common.device_prep_dma_memcpy =
ppc440spe_adma_prep_dma_memcpy;
}
if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
adev->common.max_xor = XOR_MAX_OPS;
adev->common.device_prep_dma_xor =
ppc440spe_adma_prep_dma_xor;
}
if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
switch (adev->id) {
case PPC440SPE_DMA0_ID:
dma_set_maxpq(&adev->common,
DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
break;
case PPC440SPE_DMA1_ID:
dma_set_maxpq(&adev->common,
DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
break;
case PPC440SPE_XOR_ID:
adev->common.max_pq = XOR_MAX_OPS * 3;
break;
}
adev->common.device_prep_dma_pq =
ppc440spe_adma_prep_dma_pq;
}
if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
switch (adev->id) {
case PPC440SPE_DMA0_ID:
adev->common.max_pq = DMA0_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
case PPC440SPE_DMA1_ID:
adev->common.max_pq = DMA1_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
}
adev->common.device_prep_dma_pq_val =
ppc440spe_adma_prep_dma_pqzero_sum;
}
if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
switch (adev->id) {
case PPC440SPE_DMA0_ID:
adev->common.max_xor = DMA0_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
case PPC440SPE_DMA1_ID:
adev->common.max_xor = DMA1_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
}
adev->common.device_prep_dma_xor_val =
ppc440spe_adma_prep_dma_xor_zero_sum;
}
if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
adev->common.device_prep_dma_interrupt =
ppc440spe_adma_prep_dma_interrupt;
}
pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
"( %s%s%s%s%s%s)\n",
dev_name(adev->dev),
dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
}
static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
struct ppc440spe_adma_chan *chan,
int *initcode)
{
struct platform_device *ofdev;
struct device_node *np;
int ret;
ofdev = container_of(adev->dev, struct platform_device, dev);
np = ofdev->dev.of_node;
if (adev->id != PPC440SPE_XOR_ID) {
adev->err_irq = irq_of_parse_and_map(np, 1);
if (adev->err_irq == NO_IRQ) {
dev_warn(adev->dev, "no err irq resource?\n");
*initcode = PPC_ADMA_INIT_IRQ2;
adev->err_irq = -ENXIO;
} else
atomic_inc(&ppc440spe_adma_err_irq_ref);
} else {
adev->err_irq = -ENXIO;
}
adev->irq = irq_of_parse_and_map(np, 0);
if (adev->irq == NO_IRQ) {
dev_err(adev->dev, "no irq resource\n");
*initcode = PPC_ADMA_INIT_IRQ1;
ret = -ENXIO;
goto err_irq_map;
}
dev_dbg(adev->dev, "irq %d, err irq %d\n",
adev->irq, adev->err_irq);
ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
0, dev_driver_string(adev->dev), chan);
if (ret) {
dev_err(adev->dev, "can't request irq %d\n",
adev->irq);
*initcode = PPC_ADMA_INIT_IRQ1;
ret = -EIO;
goto err_req1;
}
/* only DMA engines have a separate error IRQ
* so it's Ok if err_irq < 0 in XOR engine case.
*/
if (adev->err_irq > 0) {
/* both DMA engines share common error IRQ */
ret = request_irq(adev->err_irq,
ppc440spe_adma_err_handler,
IRQF_SHARED,
dev_driver_string(adev->dev),
chan);
if (ret) {
dev_err(adev->dev, "can't request irq %d\n",
adev->err_irq);
*initcode = PPC_ADMA_INIT_IRQ2;
ret = -EIO;
goto err_req2;
}
}
if (adev->id == PPC440SPE_XOR_ID) {
/* enable XOR engine interrupts */
iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
&adev->xor_reg->ier);
} else {
u32 mask, enable;
np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
if (!np) {
pr_err("%s: can't find I2O device tree node\n",
__func__);
ret = -ENODEV;
goto err_req2;
}
adev->i2o_reg = of_iomap(np, 0);
if (!adev->i2o_reg) {
pr_err("%s: failed to map I2O registers\n", __func__);
of_node_put(np);
ret = -EINVAL;
goto err_req2;
}
of_node_put(np);
/* Unmask 'CS FIFO Attention' interrupts and
* enable generating interrupts on errors
*/
enable = (adev->id == PPC440SPE_DMA0_ID) ?
~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
mask = ioread32(&adev->i2o_reg->iopim) & enable;
iowrite32(mask, &adev->i2o_reg->iopim);
}
return 0;
err_req2:
free_irq(adev->irq, chan);
err_req1:
irq_dispose_mapping(adev->irq);
err_irq_map:
if (adev->err_irq > 0) {
if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
irq_dispose_mapping(adev->err_irq);
}
return ret;
}
static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
struct ppc440spe_adma_chan *chan)
{
u32 mask, disable;
if (adev->id == PPC440SPE_XOR_ID) {
/* disable XOR engine interrupts */
mask = ioread32be(&adev->xor_reg->ier);
mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
iowrite32be(mask, &adev->xor_reg->ier);
} else {
/* disable DMAx engine interrupts */
disable = (adev->id == PPC440SPE_DMA0_ID) ?
(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
mask = ioread32(&adev->i2o_reg->iopim) | disable;
iowrite32(mask, &adev->i2o_reg->iopim);
}
free_irq(adev->irq, chan);
irq_dispose_mapping(adev->irq);
if (adev->err_irq > 0) {
free_irq(adev->err_irq, chan);
if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
irq_dispose_mapping(adev->err_irq);
iounmap(adev->i2o_reg);
}
}
}
/**
* ppc440spe_adma_probe - probe the asynch device
*/
static int ppc440spe_adma_probe(struct platform_device *ofdev)
{
struct device_node *np = ofdev->dev.of_node;
struct resource res;
struct ppc440spe_adma_device *adev;
struct ppc440spe_adma_chan *chan;
struct ppc_dma_chan_ref *ref, *_ref;
int ret = 0, initcode = PPC_ADMA_INIT_OK;
const u32 *idx;
int len;
void *regs;
u32 id, pool_size;
if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
id = PPC440SPE_XOR_ID;
/* As far as the XOR engine is concerned, it does not
* use FIFOs but uses linked list. So there is no dependency
* between pool size to allocate and the engine configuration.
*/
pool_size = PAGE_SIZE << 1;
} else {
/* it is DMA0 or DMA1 */
idx = of_get_property(np, "cell-index", &len);
if (!idx || (len != sizeof(u32))) {
dev_err(&ofdev->dev, "Device node %s has missing "
"or invalid cell-index property\n",
np->full_name);
return -EINVAL;
}
id = *idx;
/* DMA0,1 engines use FIFO to maintain CDBs, so we
* should allocate the pool accordingly to size of this
* FIFO. Thus, the pool size depends on the FIFO depth:
* how much CDBs pointers the FIFO may contain then so
* much CDBs we should provide in the pool.
* That is
* CDB size = 32B;
* CDBs number = (DMA0_FIFO_SIZE >> 3);
* Pool size = CDBs number * CDB size =
* = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
*/
pool_size = (id == PPC440SPE_DMA0_ID) ?
DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
pool_size <<= 2;
}
if (of_address_to_resource(np, 0, &res)) {
dev_err(&ofdev->dev, "failed to get memory resource\n");
initcode = PPC_ADMA_INIT_MEMRES;
ret = -ENODEV;
goto out;
}
if (!request_mem_region(res.start, resource_size(&res),
dev_driver_string(&ofdev->dev))) {
dev_err(&ofdev->dev, "failed to request memory region %pR\n",
&res);
initcode = PPC_ADMA_INIT_MEMREG;
ret = -EBUSY;
goto out;
}
/* create a device */
adev = kzalloc(sizeof(*adev), GFP_KERNEL);
if (!adev) {
dev_err(&ofdev->dev, "failed to allocate device\n");
initcode = PPC_ADMA_INIT_ALLOC;
ret = -ENOMEM;
goto err_adev_alloc;
}
adev->id = id;
adev->pool_size = pool_size;
/* allocate coherent memory for hardware descriptors */
adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
adev->pool_size, &adev->dma_desc_pool,
GFP_KERNEL);
if (adev->dma_desc_pool_virt == NULL) {
dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
"memory for hardware descriptors\n",
adev->pool_size);
initcode = PPC_ADMA_INIT_COHERENT;
ret = -ENOMEM;
goto err_dma_alloc;
}
dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
regs = ioremap(res.start, resource_size(&res));
if (!regs) {
dev_err(&ofdev->dev, "failed to ioremap regs!\n");
ret = -ENOMEM;
goto err_regs_alloc;
}
if (adev->id == PPC440SPE_XOR_ID) {
adev->xor_reg = regs;
/* Reset XOR */
iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
} else {
size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
adev->dma_reg = regs;
/* DMAx_FIFO_SIZE is defined in bytes,
* <fsiz> - is defined in number of CDB pointers (8byte).
* DMA FIFO Length = CSlength + CPlength, where
* CSlength = CPlength = (fsiz + 1) * 8.
*/
iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
&adev->dma_reg->fsiz);
/* Configure DMA engine */
iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
&adev->dma_reg->cfg);
/* Clear Status */
iowrite32(~0, &adev->dma_reg->dsts);
}
adev->dev = &ofdev->dev;
adev->common.dev = &ofdev->dev;
INIT_LIST_HEAD(&adev->common.channels);
platform_set_drvdata(ofdev, adev);
/* create a channel */
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
if (!chan) {
dev_err(&ofdev->dev, "can't allocate channel structure\n");
initcode = PPC_ADMA_INIT_CHANNEL;
ret = -ENOMEM;
goto err_chan_alloc;
}
spin_lock_init(&chan->lock);
INIT_LIST_HEAD(&chan->chain);
INIT_LIST_HEAD(&chan->all_slots);
chan->device = adev;
chan->common.device = &adev->common;
dma_cookie_init(&chan->common);
list_add_tail(&chan->common.device_node, &adev->common.channels);
tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
(unsigned long)chan);
/* allocate and map helper pages for async validation or
* async_mult/async_sum_product operations on DMA0/1.
*/
if (adev->id != PPC440SPE_XOR_ID) {
chan->pdest_page = alloc_page(GFP_KERNEL);
chan->qdest_page = alloc_page(GFP_KERNEL);
if (!chan->pdest_page ||
!chan->qdest_page) {
if (chan->pdest_page)
__free_page(chan->pdest_page);
if (chan->qdest_page)
__free_page(chan->qdest_page);
ret = -ENOMEM;
goto err_page_alloc;
}
chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
}
ref = kmalloc(sizeof(*ref), GFP_KERNEL);
if (ref) {
ref->chan = &chan->common;
INIT_LIST_HEAD(&ref->node);
list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
} else {
dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
ret = -ENOMEM;
goto err_ref_alloc;
}
ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
if (ret)
goto err_irq;
ppc440spe_adma_init_capabilities(adev);
ret = dma_async_device_register(&adev->common);
if (ret) {
initcode = PPC_ADMA_INIT_REGISTER;
dev_err(&ofdev->dev, "failed to register dma device\n");
goto err_dev_reg;
}
goto out;
err_dev_reg:
ppc440spe_adma_release_irqs(adev, chan);
err_irq:
list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
if (chan == to_ppc440spe_adma_chan(ref->chan)) {
list_del(&ref->node);
kfree(ref);
}
}
err_ref_alloc:
if (adev->id != PPC440SPE_XOR_ID) {
dma_unmap_page(&ofdev->dev, chan->pdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
dma_unmap_page(&ofdev->dev, chan->qdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
__free_page(chan->pdest_page);
__free_page(chan->qdest_page);
}
err_page_alloc:
kfree(chan);
err_chan_alloc:
if (adev->id == PPC440SPE_XOR_ID)
iounmap(adev->xor_reg);
else
iounmap(adev->dma_reg);
err_regs_alloc:
dma_free_coherent(adev->dev, adev->pool_size,
adev->dma_desc_pool_virt,
adev->dma_desc_pool);
err_dma_alloc:
kfree(adev);
err_adev_alloc:
release_mem_region(res.start, resource_size(&res));
out:
if (id < PPC440SPE_ADMA_ENGINES_NUM)
ppc440spe_adma_devices[id] = initcode;
return ret;
}
/**
* ppc440spe_adma_remove - remove the asynch device
*/
static int ppc440spe_adma_remove(struct platform_device *ofdev)
{
struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
struct device_node *np = ofdev->dev.of_node;
struct resource res;
struct dma_chan *chan, *_chan;
struct ppc_dma_chan_ref *ref, *_ref;
struct ppc440spe_adma_chan *ppc440spe_chan;
if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
ppc440spe_adma_devices[adev->id] = -1;
dma_async_device_unregister(&adev->common);
list_for_each_entry_safe(chan, _chan, &adev->common.channels,
device_node) {
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
tasklet_kill(&ppc440spe_chan->irq_tasklet);
if (adev->id != PPC440SPE_XOR_ID) {
dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
__free_page(ppc440spe_chan->pdest_page);
__free_page(ppc440spe_chan->qdest_page);
}
list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
node) {
if (ppc440spe_chan ==
to_ppc440spe_adma_chan(ref->chan)) {
list_del(&ref->node);
kfree(ref);
}
}
list_del(&chan->device_node);
kfree(ppc440spe_chan);
}
dma_free_coherent(adev->dev, adev->pool_size,
adev->dma_desc_pool_virt, adev->dma_desc_pool);
if (adev->id == PPC440SPE_XOR_ID)
iounmap(adev->xor_reg);
else
iounmap(adev->dma_reg);
of_address_to_resource(np, 0, &res);
release_mem_region(res.start, resource_size(&res));
kfree(adev);
return 0;
}
/*
* /sys driver interface to enable h/w RAID-6 capabilities
* Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
* directory are "devices", "enable" and "poly".
* "devices" shows available engines.
* "enable" is used to enable RAID-6 capabilities or to check
* whether these has been activated.
* "poly" allows setting/checking used polynomial (for PPC440SPe only).
*/
static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
{
ssize_t size = 0;
int i;
for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
if (ppc440spe_adma_devices[i] == -1)
continue;
size += snprintf(buf + size, PAGE_SIZE - size,
"PPC440SP(E)-ADMA.%d: %s\n", i,
ppc_adma_errors[ppc440spe_adma_devices[i]]);
}
return size;
}
static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
{
return snprintf(buf, PAGE_SIZE,
"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
ppc440spe_r6_enabled ? "EN" : "DIS");
}
static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
const char *buf, size_t count)
{
unsigned long val;
if (!count || count > 11)
return -EINVAL;
if (!ppc440spe_r6_tchan)
return -EFAULT;
/* Write a key */
sscanf(buf, "%lx", &val);
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
isync();
/* Verify whether it really works now */
if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
pr_info("PPC440SP(e) RAID-6 has been activated "
"successfully\n");
ppc440spe_r6_enabled = 1;
} else {
pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
" Error key ?\n");
ppc440spe_r6_enabled = 0;
}
return count;
}
static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
{
ssize_t size = 0;
u32 reg;
#ifdef CONFIG_440SP
/* 440SP has fixed polynomial */
reg = 0x4d;
#else
reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
reg >>= MQ0_CFBHL_POLY;
reg &= 0xFF;
#endif
size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
"uses 0x1%02x polynomial.\n", reg);
return size;
}
static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
const char *buf, size_t count)
{
unsigned long reg, val;
#ifdef CONFIG_440SP
/* 440SP uses default 0x14D polynomial only */
return -EINVAL;
#endif
if (!count || count > 6)
return -EINVAL;
/* e.g., 0x14D or 0x11D */
sscanf(buf, "%lx", &val);
if (val & ~0x1FF)
return -EINVAL;
val &= 0xFF;
reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
reg &= ~(0xFF << MQ0_CFBHL_POLY);
reg |= val << MQ0_CFBHL_POLY;
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
return count;
}
static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
store_ppc440spe_r6enable);
static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
store_ppc440spe_r6poly);
/*
* Common initialisation for RAID engines; allocate memory for
* DMAx FIFOs, perform configuration common for all DMA engines.
* Further DMA engine specific configuration is done at probe time.
*/
static int ppc440spe_configure_raid_devices(void)
{
struct device_node *np;
struct resource i2o_res;
struct i2o_regs __iomem *i2o_reg;
dcr_host_t i2o_dcr_host;
unsigned int dcr_base, dcr_len;
int i, ret;
np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
if (!np) {
pr_err("%s: can't find I2O device tree node\n",
__func__);
return -ENODEV;
}
if (of_address_to_resource(np, 0, &i2o_res)) {
of_node_put(np);
return -EINVAL;
}
i2o_reg = of_iomap(np, 0);
if (!i2o_reg) {
pr_err("%s: failed to map I2O registers\n", __func__);
of_node_put(np);
return -EINVAL;
}
/* Get I2O DCRs base */
dcr_base = dcr_resource_start(np, 0);
dcr_len = dcr_resource_len(np, 0);
if (!dcr_base && !dcr_len) {
pr_err("%s: can't get DCR registers base/len!\n",
np->full_name);
of_node_put(np);
iounmap(i2o_reg);
return -ENODEV;
}
i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
if (!DCR_MAP_OK(i2o_dcr_host)) {
pr_err("%s: failed to map DCRs!\n", np->full_name);
of_node_put(np);
iounmap(i2o_reg);
return -ENODEV;
}
of_node_put(np);
/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
* the base address of FIFO memory space.
* Actually we need twice more physical memory than programmed in the
* <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
*/
ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
GFP_KERNEL);
if (!ppc440spe_dma_fifo_buf) {
pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
iounmap(i2o_reg);
dcr_unmap(i2o_dcr_host, dcr_len);
return -ENOMEM;
}
/*
* Configure h/w
*/
/* Reset I2O/DMA */
mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
mtdcri(SDR0, DCRN_SDR0_SRST, 0);
/* Setup the base address of mmaped registers */
dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
I2O_REG_ENABLE);
dcr_unmap(i2o_dcr_host, dcr_len);
/* Setup FIFO memory space base address */
iowrite32(0, &i2o_reg->ifbah);
iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
/* set zero FIFO size for I2O, so the whole
* ppc440spe_dma_fifo_buf is used by DMAs.
* DMAx_FIFOs will be configured while probe.
*/
iowrite32(0, &i2o_reg->ifsiz);
iounmap(i2o_reg);
/* To prepare WXOR/RXOR functionality we need access to
* Memory Queue Module DCRs (finally it will be enabled
* via /sys interface of the ppc440spe ADMA driver).
*/
np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
if (!np) {
pr_err("%s: can't find MQ device tree node\n",
__func__);
ret = -ENODEV;
goto out_free;
}
/* Get MQ DCRs base */
dcr_base = dcr_resource_start(np, 0);
dcr_len = dcr_resource_len(np, 0);
if (!dcr_base && !dcr_len) {
pr_err("%s: can't get DCR registers base/len!\n",
np->full_name);
ret = -ENODEV;
goto out_mq;
}
ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
pr_err("%s: failed to map DCRs!\n", np->full_name);
ret = -ENODEV;
goto out_mq;
}
of_node_put(np);
ppc440spe_mq_dcr_len = dcr_len;
/* Set HB alias */
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
/* Set:
* - LL transaction passing limit to 1;
* - Memory controller cycle limit to 1;
* - Galois Polynomial to 0x14d (default)
*/
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
(1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
(PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
atomic_set(&ppc440spe_adma_err_irq_ref, 0);
for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
ppc440spe_adma_devices[i] = -1;
return 0;
out_mq:
of_node_put(np);
out_free:
kfree(ppc440spe_dma_fifo_buf);
return ret;
}
static const struct of_device_id ppc440spe_adma_of_match[] = {
{ .compatible = "ibm,dma-440spe", },
{ .compatible = "amcc,xor-accelerator", },
{},
};
MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
static struct platform_driver ppc440spe_adma_driver = {
.probe = ppc440spe_adma_probe,
.remove = ppc440spe_adma_remove,
.driver = {
.name = "PPC440SP(E)-ADMA",
.of_match_table = ppc440spe_adma_of_match,
},
};
static __init int ppc440spe_adma_init(void)
{
int ret;
ret = ppc440spe_configure_raid_devices();
if (ret)
return ret;
ret = platform_driver_register(&ppc440spe_adma_driver);
if (ret) {
pr_err("%s: failed to register platform driver\n",
__func__);
goto out_reg;
}
/* Initialization status */
ret = driver_create_file(&ppc440spe_adma_driver.driver,
&driver_attr_devices);
if (ret)
goto out_dev;
/* RAID-6 h/w enable entry */
ret = driver_create_file(&ppc440spe_adma_driver.driver,
&driver_attr_enable);
if (ret)
goto out_en;
/* GF polynomial to use */
ret = driver_create_file(&ppc440spe_adma_driver.driver,
&driver_attr_poly);
if (!ret)
return ret;
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_enable);
out_en:
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_devices);
out_dev:
/* User will not be able to enable h/w RAID-6 */
pr_err("%s: failed to create RAID-6 driver interface\n",
__func__);
platform_driver_unregister(&ppc440spe_adma_driver);
out_reg:
dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
kfree(ppc440spe_dma_fifo_buf);
return ret;
}
static void __exit ppc440spe_adma_exit(void)
{
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_poly);
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_enable);
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_devices);
platform_driver_unregister(&ppc440spe_adma_driver);
dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
kfree(ppc440spe_dma_fifo_buf);
}
arch_initcall(ppc440spe_adma_init);
module_exit(ppc440spe_adma_exit);
MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
MODULE_LICENSE("GPL");