kernel-fxtec-pro1x/drivers/media/dvb/frontends/mt2060.c

313 lines
8 KiB
C
Raw Normal View History

/*
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
*
* Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
/* See mt2060_priv.h for details */
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include "mt2060.h"
#include "mt2060_priv.h"
static int debug=0;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "MT2060: " args); printk("\n"); } } while (0)
// Reads a single register
static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
{
struct i2c_msg msg[2] = {
{ .addr = state->config->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
};
if (i2c_transfer(state->i2c, msg, 2) != 2) {
printk(KERN_WARNING "mt2060 I2C read failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a single register
static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
{
u8 buf[2];
struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
};
buf[0]=reg;
buf[1]=val;
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a set of consecutive registers
static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
{
struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
};
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
return -EREMOTEIO;
}
return 0;
}
// Initialisation sequences
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
static u8 mt2060_config1[] = {
REG_LO1C1,
0x3F, 0x74, 0x00, 0x08, 0x93
};
// FMCG=2, GP2=0, GP1=0
static u8 mt2060_config2[] = {
REG_MISC_CTRL,
0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
};
// VGAG=3, V1CSE=1
static u8 mt2060_config3[] = {
REG_VGAG,
0x33
};
int mt2060_init(struct mt2060_state *state)
{
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
return -EREMOTEIO;
if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
return -EREMOTEIO;
return 0;
}
EXPORT_SYMBOL(mt2060_init);
#ifdef MT2060_SPURCHECK
/* The function below calculates the frequency offset between the output frequency if2
and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
{
int I,J;
int dia,diamin,diff;
diamin=1000000;
for (I = 1; I < 10; I++) {
J = ((2*I*lo1)/lo2+1)/2;
diff = I*(int)lo1-J*(int)lo2;
if (diff < 0) diff=-diff;
dia = (diff-(int)if2);
if (dia < 0) dia=-dia;
if (diamin > dia) diamin=dia;
}
return diamin;
}
#define BANDWIDTH 4000 // kHz
/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
{
u32 Spur,Sp1,Sp2;
int I,J;
I=0;
J=1000;
Spur=mt2060_spurcalc(lo1,lo2,if2);
if (Spur < BANDWIDTH) {
/* Potential spurs detected */
dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
(int)lo1,(int)lo2);
I=1000;
Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
if (Sp1 < Sp2) {
J=-J; I=-I; Spur=Sp2;
} else
Spur=Sp1;
while (Spur < BANDWIDTH) {
I += J;
Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
}
dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
(int)(lo1+I),(int)(lo2+I));
}
return I;
}
#endif
#define IF2 36150 // IF2 frequency = 36.150 MHz
#define FREF 16000 // Quartz oscillator 16 MHz
int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
{
int ret=0;
int i=0;
u32 freq;
u8 lnaband;
u32 f_lo1,f_lo2;
u32 div1,num1,div2,num2;
u8 b[8];
u32 if1;
if1 = state->if1_freq;
b[0] = REG_LO1B1;
b[1] = 0xFF;
mt2060_writeregs(state,b,2);
freq = fep->frequency / 1000; // Hz -> kHz
f_lo1 = freq + if1 * 1000;
f_lo1 = (f_lo1/250)*250;
f_lo2 = f_lo1 - freq - IF2;
f_lo2 = (f_lo2/50)*50;
#ifdef MT2060_SPURCHECK
// LO-related spurs detection and correction
num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
f_lo1 += num1;
f_lo2 += num1;
#endif
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
div1 = f_lo1 / FREF;
num1 = (64 * (f_lo1 % FREF) )/FREF;
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
div2 = f_lo2 / FREF;
num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
if (freq <= 95000) lnaband = 0xB0; else
if (freq <= 180000) lnaband = 0xA0; else
if (freq <= 260000) lnaband = 0x90; else
if (freq <= 335000) lnaband = 0x80; else
if (freq <= 425000) lnaband = 0x70; else
if (freq <= 480000) lnaband = 0x60; else
if (freq <= 570000) lnaband = 0x50; else
if (freq <= 645000) lnaband = 0x40; else
if (freq <= 730000) lnaband = 0x30; else
if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
b[0] = REG_LO1C1;
b[1] = lnaband | ((num1 >>2) & 0x0F);
b[2] = div1;
b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
b[4] = num2 >> 4;
b[5] = ((num2 >>12) & 1) | (div2 << 1);
dprintk("IF1: %dMHz",(int)if1);
dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
mt2060_writeregs(state,b,6);
//Waits for pll lock or timeout
i=0;
do {
mt2060_readreg(state,REG_LO_STATUS,b);
if ((b[0] & 0x88)==0x88) break;
msleep(4);
i++;
} while (i<10);
return ret;
}
EXPORT_SYMBOL(mt2060_set);
/* from usbsnoop.log */
static void mt2060_calibrate(struct mt2060_state *state)
{
u8 b = 0;
int i = 0;
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
return;
if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
return;
do {
b |= (1 << 6); // FM1SS;
mt2060_writereg(state, REG_LO2C1,b);
msleep(20);
if (i == 0) {
b |= (1 << 7); // FM1CA;
mt2060_writereg(state, REG_LO2C1,b);
b &= ~(1 << 7); // FM1CA;
msleep(20);
}
b &= ~(1 << 6); // FM1SS
mt2060_writereg(state, REG_LO2C1,b);
msleep(20);
i++;
} while (i < 9);
i = 0;
while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
msleep(20);
if (i < 10) {
mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
dprintk("calibration was successful: %d", state->fmfreq);
} else
dprintk("FMCAL timed out");
}
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
{
u8 id = 0;
memset(state,0,sizeof(struct mt2060_state));
state->config = config;
state->i2c = i2c;
state->if1_freq = if1;
if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
return -ENODEV;
if (id != PART_REV)
return -ENODEV;
printk(KERN_INFO "MT2060: successfully identified\n");
mt2060_calibrate(state);
return 0;
}
EXPORT_SYMBOL(mt2060_attach);
MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
MODULE_LICENSE("GPL");