2006-06-26 01:25:12 -06:00
|
|
|
#include <linux/clocksource.h>
|
2007-02-16 02:28:04 -07:00
|
|
|
#include <linux/clockchips.h>
|
2007-10-12 15:04:06 -06:00
|
|
|
#include <linux/delay.h>
|
2006-06-26 01:25:12 -06:00
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/hpet.h>
|
|
|
|
#include <linux/init.h>
|
2007-03-29 07:46:48 -06:00
|
|
|
#include <linux/sysdev.h>
|
|
|
|
#include <linux/pm.h>
|
2006-06-26 01:25:12 -06:00
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
#include <asm/fixmap.h>
|
2006-06-26 01:25:12 -06:00
|
|
|
#include <asm/hpet.h>
|
2007-10-12 15:04:06 -06:00
|
|
|
#include <asm/i8253.h>
|
2006-06-26 01:25:12 -06:00
|
|
|
#include <asm/io.h>
|
|
|
|
|
2006-06-26 01:25:15 -06:00
|
|
|
#define HPET_MASK CLOCKSOURCE_MASK(32)
|
2006-06-26 01:25:12 -06:00
|
|
|
#define HPET_SHIFT 22
|
|
|
|
|
2008-01-30 05:30:00 -07:00
|
|
|
/* FSEC = 10^-15
|
|
|
|
NSEC = 10^-9 */
|
x86: clean up computation of HPET .mult variables
While reading through the HPET code I realized that the
computation of .mult variables could be done with less
lines of code, resulting in a 1.6% text size saving
for hpet.o
So I propose the following patch, which applies against
today's Linus -git tree.
>From 0c6507e400e9ca5f7f14331e18f8c12baf75a9d3 Mon Sep 17 00:00:00 2001
From: Carlos R. Mafra <crmafra@ift.unesp.br>
Date: Mon, 5 May 2008 19:38:53 -0300
The computation of clocksource_hpet.mult
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
can be streamlined if we note that it is equal to
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
Furthermore, the computation of hpet_clockevent.mult
uint64_t hpet_freq;
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, hpet_clockevent.shift);
can also be streamlined with the observation that hpet_period and hpet_freq are
inverse to each other (in proper units).
So instead of computing hpet_freq and using (schematically)
div_sc(hpet_freq, 10^9, shift) we use the trick of calling with the
arguments in reverse order, div_sc(10^6, hpet_period, shift).
The different power of ten is due to frequency being in Hertz (1/sec)
and the period being in units of femtosecond. Explicitly,
mult = (hpet_freq * 2^shift)/10^9 (before)
mult = (10^6 * 2^shift)/hpet_period (after)
because hpet_freq = 10^15/hpet_period.
The comments in the code are also updated to reflect the changes.
As a result,
text data bss dec hex filename
2957 425 92 3474 d92 arch/x86/kernel/hpet.o
3006 425 92 3523 dc3 arch/x86/kernel/hpet.o.old
a 1.6% reduction in text size.
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-05 17:11:22 -06:00
|
|
|
#define FSEC_PER_NSEC 1000000L
|
2006-06-26 01:25:12 -06:00
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
/*
|
|
|
|
* HPET address is set in acpi/boot.c, when an ACPI entry exists
|
|
|
|
*/
|
|
|
|
unsigned long hpet_address;
|
2007-10-12 15:04:06 -06:00
|
|
|
static void __iomem *hpet_virt_address;
|
2007-02-16 02:28:04 -07:00
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
unsigned long hpet_readl(unsigned long a)
|
2007-02-16 02:28:04 -07:00
|
|
|
{
|
|
|
|
return readl(hpet_virt_address + a);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void hpet_writel(unsigned long d, unsigned long a)
|
|
|
|
{
|
|
|
|
writel(d, hpet_virt_address + a);
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
#include <asm/pgtable.h>
|
2008-07-13 15:50:56 -06:00
|
|
|
#endif
|
2007-10-12 15:04:06 -06:00
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
static inline void hpet_set_mapping(void)
|
|
|
|
{
|
|
|
|
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
|
2008-07-13 15:50:56 -06:00
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
|
|
|
|
#endif
|
2007-10-12 15:04:06 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void hpet_clear_mapping(void)
|
|
|
|
{
|
|
|
|
iounmap(hpet_virt_address);
|
|
|
|
hpet_virt_address = NULL;
|
|
|
|
}
|
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
/*
|
|
|
|
* HPET command line enable / disable
|
|
|
|
*/
|
|
|
|
static int boot_hpet_disable;
|
2007-10-19 12:35:02 -06:00
|
|
|
int hpet_force_user;
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
static int __init hpet_setup(char* str)
|
|
|
|
{
|
|
|
|
if (str) {
|
|
|
|
if (!strncmp("disable", str, 7))
|
|
|
|
boot_hpet_disable = 1;
|
2007-10-19 12:35:02 -06:00
|
|
|
if (!strncmp("force", str, 5))
|
|
|
|
hpet_force_user = 1;
|
2007-02-16 02:28:04 -07:00
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("hpet=", hpet_setup);
|
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
static int __init disable_hpet(char *str)
|
|
|
|
{
|
|
|
|
boot_hpet_disable = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("nohpet", disable_hpet);
|
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
static inline int is_hpet_capable(void)
|
|
|
|
{
|
|
|
|
return (!boot_hpet_disable && hpet_address);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HPET timer interrupt enable / disable
|
|
|
|
*/
|
|
|
|
static int hpet_legacy_int_enabled;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_hpet_enabled - check whether the hpet timer interrupt is enabled
|
|
|
|
*/
|
|
|
|
int is_hpet_enabled(void)
|
|
|
|
{
|
|
|
|
return is_hpet_capable() && hpet_legacy_int_enabled;
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(is_hpet_enabled);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* When the hpet driver (/dev/hpet) is enabled, we need to reserve
|
|
|
|
* timer 0 and timer 1 in case of RTC emulation.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_HPET
|
|
|
|
static void hpet_reserve_platform_timers(unsigned long id)
|
|
|
|
{
|
|
|
|
struct hpet __iomem *hpet = hpet_virt_address;
|
2008-01-30 05:30:03 -07:00
|
|
|
struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
|
|
|
|
unsigned int nrtimers, i;
|
2007-02-16 02:28:04 -07:00
|
|
|
struct hpet_data hd;
|
|
|
|
|
|
|
|
nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
|
|
|
|
|
|
|
|
memset(&hd, 0, sizeof (hd));
|
|
|
|
hd.hd_phys_address = hpet_address;
|
2007-10-12 15:04:06 -06:00
|
|
|
hd.hd_address = hpet;
|
2007-02-16 02:28:04 -07:00
|
|
|
hd.hd_nirqs = nrtimers;
|
|
|
|
hd.hd_flags = HPET_DATA_PLATFORM;
|
|
|
|
hpet_reserve_timer(&hd, 0);
|
|
|
|
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
hpet_reserve_timer(&hd, 1);
|
|
|
|
#endif
|
2008-04-04 08:26:10 -06:00
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
hd.hd_irq[0] = HPET_LEGACY_8254;
|
|
|
|
hd.hd_irq[1] = HPET_LEGACY_RTC;
|
|
|
|
|
2008-04-27 06:04:14 -06:00
|
|
|
for (i = 2; i < nrtimers; timer++, i++) {
|
|
|
|
hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
|
2008-04-04 08:26:10 -06:00
|
|
|
Tn_INT_ROUTE_CNF_SHIFT;
|
2008-04-27 06:04:14 -06:00
|
|
|
}
|
2008-04-04 08:26:10 -06:00
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
hpet_alloc(&hd);
|
2008-04-04 08:26:10 -06:00
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void hpet_reserve_platform_timers(unsigned long id) { }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Common hpet info
|
|
|
|
*/
|
|
|
|
static unsigned long hpet_period;
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
static void hpet_legacy_set_mode(enum clock_event_mode mode,
|
2007-02-16 02:28:04 -07:00
|
|
|
struct clock_event_device *evt);
|
2007-10-12 15:04:23 -06:00
|
|
|
static int hpet_legacy_next_event(unsigned long delta,
|
2007-02-16 02:28:04 -07:00
|
|
|
struct clock_event_device *evt);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The hpet clock event device
|
|
|
|
*/
|
|
|
|
static struct clock_event_device hpet_clockevent = {
|
|
|
|
.name = "hpet",
|
|
|
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
2007-10-12 15:04:23 -06:00
|
|
|
.set_mode = hpet_legacy_set_mode,
|
|
|
|
.set_next_event = hpet_legacy_next_event,
|
2007-02-16 02:28:04 -07:00
|
|
|
.shift = 32,
|
|
|
|
.irq = 0,
|
2007-10-12 15:04:23 -06:00
|
|
|
.rating = 50,
|
2007-02-16 02:28:04 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
static void hpet_start_counter(void)
|
|
|
|
{
|
|
|
|
unsigned long cfg = hpet_readl(HPET_CFG);
|
|
|
|
|
|
|
|
cfg &= ~HPET_CFG_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
hpet_writel(0, HPET_COUNTER);
|
|
|
|
hpet_writel(0, HPET_COUNTER + 4);
|
|
|
|
cfg |= HPET_CFG_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
static void hpet_resume_device(void)
|
|
|
|
{
|
2007-10-12 15:04:24 -06:00
|
|
|
force_hpet_resume();
|
2007-10-12 15:04:23 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hpet_restart_counter(void)
|
|
|
|
{
|
|
|
|
hpet_resume_device();
|
|
|
|
hpet_start_counter();
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
static void hpet_enable_legacy_int(void)
|
2007-02-16 02:28:04 -07:00
|
|
|
{
|
|
|
|
unsigned long cfg = hpet_readl(HPET_CFG);
|
|
|
|
|
|
|
|
cfg |= HPET_CFG_LEGACY;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
hpet_legacy_int_enabled = 1;
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
static void hpet_legacy_clockevent_register(void)
|
|
|
|
{
|
|
|
|
/* Start HPET legacy interrupts */
|
|
|
|
hpet_enable_legacy_int();
|
|
|
|
|
|
|
|
/*
|
x86: clean up computation of HPET .mult variables
While reading through the HPET code I realized that the
computation of .mult variables could be done with less
lines of code, resulting in a 1.6% text size saving
for hpet.o
So I propose the following patch, which applies against
today's Linus -git tree.
>From 0c6507e400e9ca5f7f14331e18f8c12baf75a9d3 Mon Sep 17 00:00:00 2001
From: Carlos R. Mafra <crmafra@ift.unesp.br>
Date: Mon, 5 May 2008 19:38:53 -0300
The computation of clocksource_hpet.mult
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
can be streamlined if we note that it is equal to
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
Furthermore, the computation of hpet_clockevent.mult
uint64_t hpet_freq;
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, hpet_clockevent.shift);
can also be streamlined with the observation that hpet_period and hpet_freq are
inverse to each other (in proper units).
So instead of computing hpet_freq and using (schematically)
div_sc(hpet_freq, 10^9, shift) we use the trick of calling with the
arguments in reverse order, div_sc(10^6, hpet_period, shift).
The different power of ten is due to frequency being in Hertz (1/sec)
and the period being in units of femtosecond. Explicitly,
mult = (hpet_freq * 2^shift)/10^9 (before)
mult = (10^6 * 2^shift)/hpet_period (after)
because hpet_freq = 10^15/hpet_period.
The comments in the code are also updated to reflect the changes.
As a result,
text data bss dec hex filename
2957 425 92 3474 d92 arch/x86/kernel/hpet.o
3006 425 92 3523 dc3 arch/x86/kernel/hpet.o.old
a 1.6% reduction in text size.
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-05 17:11:22 -06:00
|
|
|
* The mult factor is defined as (include/linux/clockchips.h)
|
|
|
|
* mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
|
|
|
|
* hpet_period is in units of femtoseconds (per cycle), so
|
|
|
|
* mult/2^shift = cyc/ns = 10^6/hpet_period
|
|
|
|
* mult = (10^6 * 2^shift)/hpet_period
|
|
|
|
* mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
|
2007-10-12 15:04:23 -06:00
|
|
|
*/
|
x86: clean up computation of HPET .mult variables
While reading through the HPET code I realized that the
computation of .mult variables could be done with less
lines of code, resulting in a 1.6% text size saving
for hpet.o
So I propose the following patch, which applies against
today's Linus -git tree.
>From 0c6507e400e9ca5f7f14331e18f8c12baf75a9d3 Mon Sep 17 00:00:00 2001
From: Carlos R. Mafra <crmafra@ift.unesp.br>
Date: Mon, 5 May 2008 19:38:53 -0300
The computation of clocksource_hpet.mult
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
can be streamlined if we note that it is equal to
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
Furthermore, the computation of hpet_clockevent.mult
uint64_t hpet_freq;
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, hpet_clockevent.shift);
can also be streamlined with the observation that hpet_period and hpet_freq are
inverse to each other (in proper units).
So instead of computing hpet_freq and using (schematically)
div_sc(hpet_freq, 10^9, shift) we use the trick of calling with the
arguments in reverse order, div_sc(10^6, hpet_period, shift).
The different power of ten is due to frequency being in Hertz (1/sec)
and the period being in units of femtosecond. Explicitly,
mult = (hpet_freq * 2^shift)/10^9 (before)
mult = (10^6 * 2^shift)/hpet_period (after)
because hpet_freq = 10^15/hpet_period.
The comments in the code are also updated to reflect the changes.
As a result,
text data bss dec hex filename
2957 425 92 3474 d92 arch/x86/kernel/hpet.o
3006 425 92 3523 dc3 arch/x86/kernel/hpet.o.old
a 1.6% reduction in text size.
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-05 17:11:22 -06:00
|
|
|
hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
|
|
|
|
hpet_period, hpet_clockevent.shift);
|
2007-10-12 15:04:23 -06:00
|
|
|
/* Calculate the min / max delta */
|
|
|
|
hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
|
|
|
|
&hpet_clockevent);
|
|
|
|
hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
|
|
|
|
&hpet_clockevent);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start hpet with the boot cpu mask and make it
|
|
|
|
* global after the IO_APIC has been initialized.
|
|
|
|
*/
|
|
|
|
hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
|
|
|
|
clockevents_register_device(&hpet_clockevent);
|
|
|
|
global_clock_event = &hpet_clockevent;
|
|
|
|
printk(KERN_DEBUG "hpet clockevent registered\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hpet_legacy_set_mode(enum clock_event_mode mode,
|
2007-02-16 02:28:04 -07:00
|
|
|
struct clock_event_device *evt)
|
|
|
|
{
|
|
|
|
unsigned long cfg, cmp, now;
|
|
|
|
uint64_t delta;
|
|
|
|
|
|
|
|
switch(mode) {
|
|
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
|
|
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
|
|
|
|
delta >>= hpet_clockevent.shift;
|
|
|
|
now = hpet_readl(HPET_COUNTER);
|
|
|
|
cmp = now + (unsigned long) delta;
|
|
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
|
|
|
|
HPET_TN_SETVAL | HPET_TN_32BIT;
|
|
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
|
|
|
/*
|
|
|
|
* The first write after writing TN_SETVAL to the
|
|
|
|
* config register sets the counter value, the second
|
|
|
|
* write sets the period.
|
|
|
|
*/
|
|
|
|
hpet_writel(cmp, HPET_T0_CMP);
|
|
|
|
udelay(1);
|
|
|
|
hpet_writel((unsigned long) delta, HPET_T0_CMP);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
|
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
|
|
|
break;
|
2007-07-21 05:37:34 -06:00
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_RESUME:
|
2007-10-12 15:04:23 -06:00
|
|
|
hpet_enable_legacy_int();
|
2007-07-21 05:37:34 -06:00
|
|
|
break;
|
2007-02-16 02:28:04 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
static int hpet_legacy_next_event(unsigned long delta,
|
2007-02-16 02:28:04 -07:00
|
|
|
struct clock_event_device *evt)
|
|
|
|
{
|
|
|
|
unsigned long cnt;
|
|
|
|
|
|
|
|
cnt = hpet_readl(HPET_COUNTER);
|
|
|
|
cnt += delta;
|
|
|
|
hpet_writel(cnt, HPET_T0_CMP);
|
|
|
|
|
2007-03-27 01:08:26 -06:00
|
|
|
return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
|
2007-02-16 02:28:04 -07:00
|
|
|
}
|
|
|
|
|
2007-03-05 01:30:50 -07:00
|
|
|
/*
|
|
|
|
* Clock source related code
|
|
|
|
*/
|
|
|
|
static cycle_t read_hpet(void)
|
|
|
|
{
|
|
|
|
return (cycle_t)hpet_readl(HPET_COUNTER);
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static cycle_t __vsyscall_fn vread_hpet(void)
|
|
|
|
{
|
|
|
|
return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2007-03-05 01:30:50 -07:00
|
|
|
static struct clocksource clocksource_hpet = {
|
|
|
|
.name = "hpet",
|
|
|
|
.rating = 250,
|
|
|
|
.read = read_hpet,
|
|
|
|
.mask = HPET_MASK,
|
|
|
|
.shift = HPET_SHIFT,
|
|
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
2007-10-12 15:04:23 -06:00
|
|
|
.resume = hpet_restart_counter,
|
2007-10-12 15:04:06 -06:00
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
.vread = vread_hpet,
|
|
|
|
#endif
|
2007-03-05 01:30:50 -07:00
|
|
|
};
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
static int hpet_clocksource_register(void)
|
2007-02-16 02:28:04 -07:00
|
|
|
{
|
x86: clean up computation of HPET .mult variables
While reading through the HPET code I realized that the
computation of .mult variables could be done with less
lines of code, resulting in a 1.6% text size saving
for hpet.o
So I propose the following patch, which applies against
today's Linus -git tree.
>From 0c6507e400e9ca5f7f14331e18f8c12baf75a9d3 Mon Sep 17 00:00:00 2001
From: Carlos R. Mafra <crmafra@ift.unesp.br>
Date: Mon, 5 May 2008 19:38:53 -0300
The computation of clocksource_hpet.mult
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
can be streamlined if we note that it is equal to
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
Furthermore, the computation of hpet_clockevent.mult
uint64_t hpet_freq;
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, hpet_clockevent.shift);
can also be streamlined with the observation that hpet_period and hpet_freq are
inverse to each other (in proper units).
So instead of computing hpet_freq and using (schematically)
div_sc(hpet_freq, 10^9, shift) we use the trick of calling with the
arguments in reverse order, div_sc(10^6, hpet_period, shift).
The different power of ten is due to frequency being in Hertz (1/sec)
and the period being in units of femtosecond. Explicitly,
mult = (hpet_freq * 2^shift)/10^9 (before)
mult = (10^6 * 2^shift)/hpet_period (after)
because hpet_freq = 10^15/hpet_period.
The comments in the code are also updated to reflect the changes.
As a result,
text data bss dec hex filename
2957 425 92 3474 d92 arch/x86/kernel/hpet.o
3006 425 92 3523 dc3 arch/x86/kernel/hpet.o.old
a 1.6% reduction in text size.
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-05 17:11:22 -06:00
|
|
|
u64 start, now;
|
2007-07-21 09:11:12 -06:00
|
|
|
cycle_t t1;
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
/* Start the counter */
|
|
|
|
hpet_start_counter();
|
|
|
|
|
2007-07-21 09:11:12 -06:00
|
|
|
/* Verify whether hpet counter works */
|
|
|
|
t1 = read_hpet();
|
|
|
|
rdtscll(start);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't know the TSC frequency yet, but waiting for
|
|
|
|
* 200000 TSC cycles is safe:
|
|
|
|
* 4 GHz == 50us
|
|
|
|
* 1 GHz == 200us
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
rep_nop();
|
|
|
|
rdtscll(now);
|
|
|
|
} while ((now - start) < 200000UL);
|
|
|
|
|
|
|
|
if (t1 == read_hpet()) {
|
|
|
|
printk(KERN_WARNING
|
|
|
|
"HPET counter not counting. HPET disabled\n");
|
2007-10-12 15:04:23 -06:00
|
|
|
return -ENODEV;
|
2007-07-21 09:11:12 -06:00
|
|
|
}
|
|
|
|
|
x86: clean up computation of HPET .mult variables
While reading through the HPET code I realized that the
computation of .mult variables could be done with less
lines of code, resulting in a 1.6% text size saving
for hpet.o
So I propose the following patch, which applies against
today's Linus -git tree.
>From 0c6507e400e9ca5f7f14331e18f8c12baf75a9d3 Mon Sep 17 00:00:00 2001
From: Carlos R. Mafra <crmafra@ift.unesp.br>
Date: Mon, 5 May 2008 19:38:53 -0300
The computation of clocksource_hpet.mult
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
can be streamlined if we note that it is equal to
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
Furthermore, the computation of hpet_clockevent.mult
uint64_t hpet_freq;
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, hpet_clockevent.shift);
can also be streamlined with the observation that hpet_period and hpet_freq are
inverse to each other (in proper units).
So instead of computing hpet_freq and using (schematically)
div_sc(hpet_freq, 10^9, shift) we use the trick of calling with the
arguments in reverse order, div_sc(10^6, hpet_period, shift).
The different power of ten is due to frequency being in Hertz (1/sec)
and the period being in units of femtosecond. Explicitly,
mult = (hpet_freq * 2^shift)/10^9 (before)
mult = (10^6 * 2^shift)/hpet_period (after)
because hpet_freq = 10^15/hpet_period.
The comments in the code are also updated to reflect the changes.
As a result,
text data bss dec hex filename
2957 425 92 3474 d92 arch/x86/kernel/hpet.o
3006 425 92 3523 dc3 arch/x86/kernel/hpet.o.old
a 1.6% reduction in text size.
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-05 17:11:22 -06:00
|
|
|
/*
|
|
|
|
* The definition of mult is (include/linux/clocksource.h)
|
|
|
|
* mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
|
|
|
|
* so we first need to convert hpet_period to ns/cyc units:
|
|
|
|
* mult/2^shift = ns/cyc = hpet_period/10^6
|
|
|
|
* mult = (hpet_period * 2^shift)/10^6
|
|
|
|
* mult = (hpet_period << shift)/FSEC_PER_NSEC
|
2007-03-05 01:30:50 -07:00
|
|
|
*/
|
x86: clean up computation of HPET .mult variables
While reading through the HPET code I realized that the
computation of .mult variables could be done with less
lines of code, resulting in a 1.6% text size saving
for hpet.o
So I propose the following patch, which applies against
today's Linus -git tree.
>From 0c6507e400e9ca5f7f14331e18f8c12baf75a9d3 Mon Sep 17 00:00:00 2001
From: Carlos R. Mafra <crmafra@ift.unesp.br>
Date: Mon, 5 May 2008 19:38:53 -0300
The computation of clocksource_hpet.mult
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
can be streamlined if we note that it is equal to
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
Furthermore, the computation of hpet_clockevent.mult
uint64_t hpet_freq;
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, hpet_clockevent.shift);
can also be streamlined with the observation that hpet_period and hpet_freq are
inverse to each other (in proper units).
So instead of computing hpet_freq and using (schematically)
div_sc(hpet_freq, 10^9, shift) we use the trick of calling with the
arguments in reverse order, div_sc(10^6, hpet_period, shift).
The different power of ten is due to frequency being in Hertz (1/sec)
and the period being in units of femtosecond. Explicitly,
mult = (hpet_freq * 2^shift)/10^9 (before)
mult = (10^6 * 2^shift)/hpet_period (after)
because hpet_freq = 10^15/hpet_period.
The comments in the code are also updated to reflect the changes.
As a result,
text data bss dec hex filename
2957 425 92 3474 d92 arch/x86/kernel/hpet.o
3006 425 92 3523 dc3 arch/x86/kernel/hpet.o.old
a 1.6% reduction in text size.
Signed-off-by: Carlos R. Mafra <crmafra@ift.unesp.br>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-05 17:11:22 -06:00
|
|
|
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
|
2007-03-05 01:30:50 -07:00
|
|
|
|
|
|
|
clocksource_register(&clocksource_hpet);
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-02-04 16:48:13 -07:00
|
|
|
/**
|
|
|
|
* hpet_enable - Try to setup the HPET timer. Returns 1 on success.
|
2007-10-12 15:04:23 -06:00
|
|
|
*/
|
|
|
|
int __init hpet_enable(void)
|
|
|
|
{
|
|
|
|
unsigned long id;
|
|
|
|
|
|
|
|
if (!is_hpet_capable())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_set_mapping();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the period and check for a sane value:
|
|
|
|
*/
|
|
|
|
hpet_period = hpet_readl(HPET_PERIOD);
|
|
|
|
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
|
|
|
|
goto out_nohpet;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the HPET ID register to retrieve the IRQ routing
|
|
|
|
* information and the number of channels
|
|
|
|
*/
|
|
|
|
id = hpet_readl(HPET_ID);
|
|
|
|
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
/*
|
|
|
|
* The legacy routing mode needs at least two channels, tick timer
|
|
|
|
* and the rtc emulation channel.
|
|
|
|
*/
|
|
|
|
if (!(id & HPET_ID_NUMBER))
|
|
|
|
goto out_nohpet;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (hpet_clocksource_register())
|
|
|
|
goto out_nohpet;
|
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
if (id & HPET_ID_LEGSUP) {
|
2007-10-12 15:04:23 -06:00
|
|
|
hpet_legacy_clockevent_register();
|
2007-02-16 02:28:04 -07:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
2006-06-26 01:25:12 -06:00
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
out_nohpet:
|
2007-10-12 15:04:06 -06:00
|
|
|
hpet_clear_mapping();
|
2007-03-29 07:46:48 -06:00
|
|
|
boot_hpet_disable = 1;
|
2007-02-16 02:28:04 -07:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
/*
|
|
|
|
* Needs to be late, as the reserve_timer code calls kalloc !
|
|
|
|
*
|
|
|
|
* Not a problem on i386 as hpet_enable is called from late_time_init,
|
|
|
|
* but on x86_64 it is necessary !
|
|
|
|
*/
|
|
|
|
static __init int hpet_late_init(void)
|
|
|
|
{
|
2007-10-12 15:04:23 -06:00
|
|
|
if (boot_hpet_disable)
|
2007-10-12 15:04:06 -06:00
|
|
|
return -ENODEV;
|
|
|
|
|
2007-10-12 15:04:23 -06:00
|
|
|
if (!hpet_address) {
|
|
|
|
if (!force_hpet_address)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
hpet_address = force_hpet_address;
|
|
|
|
hpet_enable();
|
|
|
|
if (!hpet_virt_address)
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
|
2007-10-12 15:04:23 -06:00
|
|
|
|
2007-10-12 15:04:06 -06:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
fs_initcall(hpet_late_init);
|
|
|
|
|
2007-12-03 09:17:10 -07:00
|
|
|
void hpet_disable(void)
|
|
|
|
{
|
|
|
|
if (is_hpet_capable()) {
|
|
|
|
unsigned long cfg = hpet_readl(HPET_CFG);
|
|
|
|
|
|
|
|
if (hpet_legacy_int_enabled) {
|
|
|
|
cfg &= ~HPET_CFG_LEGACY;
|
|
|
|
hpet_legacy_int_enabled = 0;
|
|
|
|
}
|
|
|
|
cfg &= ~HPET_CFG_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
|
|
|
|
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
|
|
|
|
* is enabled, we support RTC interrupt functionality in software.
|
|
|
|
* RTC has 3 kinds of interrupts:
|
|
|
|
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
|
|
|
|
* is updated
|
|
|
|
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
|
|
|
|
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
|
|
|
|
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
|
|
|
|
* (1) and (2) above are implemented using polling at a frequency of
|
|
|
|
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
|
|
|
|
* overhead. (DEFAULT_RTC_INT_FREQ)
|
|
|
|
* For (3), we use interrupts at 64Hz or user specified periodic
|
|
|
|
* frequency, whichever is higher.
|
|
|
|
*/
|
|
|
|
#include <linux/mc146818rtc.h>
|
|
|
|
#include <linux/rtc.h>
|
2008-01-30 05:33:28 -07:00
|
|
|
#include <asm/rtc.h>
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
#define DEFAULT_RTC_INT_FREQ 64
|
|
|
|
#define DEFAULT_RTC_SHIFT 6
|
|
|
|
#define RTC_NUM_INTS 1
|
|
|
|
|
|
|
|
static unsigned long hpet_rtc_flags;
|
|
|
|
static unsigned long hpet_prev_update_sec;
|
|
|
|
static struct rtc_time hpet_alarm_time;
|
|
|
|
static unsigned long hpet_pie_count;
|
|
|
|
static unsigned long hpet_t1_cmp;
|
|
|
|
static unsigned long hpet_default_delta;
|
|
|
|
static unsigned long hpet_pie_delta;
|
|
|
|
static unsigned long hpet_pie_limit;
|
|
|
|
|
2008-01-30 05:33:28 -07:00
|
|
|
static rtc_irq_handler irq_handler;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Registers a IRQ handler.
|
|
|
|
*/
|
|
|
|
int hpet_register_irq_handler(rtc_irq_handler handler)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return -ENODEV;
|
|
|
|
if (irq_handler)
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
irq_handler = handler;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deregisters the IRQ handler registered with hpet_register_irq_handler()
|
|
|
|
* and does cleanup.
|
|
|
|
*/
|
|
|
|
void hpet_unregister_irq_handler(rtc_irq_handler handler)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return;
|
|
|
|
|
|
|
|
irq_handler = NULL;
|
|
|
|
hpet_rtc_flags = 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
|
|
|
|
|
2007-02-16 02:28:04 -07:00
|
|
|
/*
|
|
|
|
* Timer 1 for RTC emulation. We use one shot mode, as periodic mode
|
|
|
|
* is not supported by all HPET implementations for timer 1.
|
|
|
|
*
|
|
|
|
* hpet_rtc_timer_init() is called when the rtc is initialized.
|
|
|
|
*/
|
|
|
|
int hpet_rtc_timer_init(void)
|
|
|
|
{
|
|
|
|
unsigned long cfg, cnt, delta, flags;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!hpet_default_delta) {
|
|
|
|
uint64_t clc;
|
|
|
|
|
|
|
|
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
|
|
|
|
clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
|
|
|
|
hpet_default_delta = (unsigned long) clc;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
|
|
|
|
delta = hpet_default_delta;
|
|
|
|
else
|
|
|
|
delta = hpet_pie_delta;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
|
|
|
|
cnt = delta + hpet_readl(HPET_COUNTER);
|
|
|
|
hpet_writel(cnt, HPET_T1_CMP);
|
|
|
|
hpet_t1_cmp = cnt;
|
|
|
|
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
|
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
|
|
|
|
|
|
local_irq_restore(flags);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The functions below are called from rtc driver.
|
|
|
|
* Return 0 if HPET is not being used.
|
|
|
|
* Otherwise do the necessary changes and return 1.
|
|
|
|
*/
|
|
|
|
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_rtc_flags &= ~bit_mask;
|
|
|
|
return 1;
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
|
|
|
|
{
|
|
|
|
unsigned long oldbits = hpet_rtc_flags;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_rtc_flags |= bit_mask;
|
|
|
|
|
|
|
|
if (!oldbits)
|
|
|
|
hpet_rtc_timer_init();
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
|
|
|
|
unsigned char sec)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_alarm_time.tm_hour = hrs;
|
|
|
|
hpet_alarm_time.tm_min = min;
|
|
|
|
hpet_alarm_time.tm_sec = sec;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
int hpet_set_periodic_freq(unsigned long freq)
|
|
|
|
{
|
|
|
|
uint64_t clc;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (freq <= DEFAULT_RTC_INT_FREQ)
|
|
|
|
hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
|
|
|
|
else {
|
|
|
|
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
|
|
|
|
do_div(clc, freq);
|
|
|
|
clc >>= hpet_clockevent.shift;
|
|
|
|
hpet_pie_delta = (unsigned long) clc;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
int hpet_rtc_dropped_irq(void)
|
|
|
|
{
|
|
|
|
return is_hpet_enabled();
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
static void hpet_rtc_timer_reinit(void)
|
|
|
|
{
|
|
|
|
unsigned long cfg, delta;
|
|
|
|
int lost_ints = -1;
|
|
|
|
|
|
|
|
if (unlikely(!hpet_rtc_flags)) {
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
|
|
|
|
delta = hpet_default_delta;
|
|
|
|
else
|
|
|
|
delta = hpet_pie_delta;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Increment the comparator value until we are ahead of the
|
|
|
|
* current count.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
hpet_t1_cmp += delta;
|
|
|
|
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
|
|
|
|
lost_ints++;
|
|
|
|
} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
|
|
|
|
|
|
|
|
if (lost_ints) {
|
|
|
|
if (hpet_rtc_flags & RTC_PIE)
|
|
|
|
hpet_pie_count += lost_ints;
|
|
|
|
if (printk_ratelimit())
|
|
|
|
printk(KERN_WARNING "rtc: lost %d interrupts\n",
|
|
|
|
lost_ints);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
|
|
|
|
{
|
|
|
|
struct rtc_time curr_time;
|
|
|
|
unsigned long rtc_int_flag = 0;
|
|
|
|
|
|
|
|
hpet_rtc_timer_reinit();
|
2008-01-30 05:33:28 -07:00
|
|
|
memset(&curr_time, 0, sizeof(struct rtc_time));
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
|
2008-01-30 05:33:28 -07:00
|
|
|
get_rtc_time(&curr_time);
|
2007-02-16 02:28:04 -07:00
|
|
|
|
|
|
|
if (hpet_rtc_flags & RTC_UIE &&
|
|
|
|
curr_time.tm_sec != hpet_prev_update_sec) {
|
|
|
|
rtc_int_flag = RTC_UF;
|
|
|
|
hpet_prev_update_sec = curr_time.tm_sec;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hpet_rtc_flags & RTC_PIE &&
|
|
|
|
++hpet_pie_count >= hpet_pie_limit) {
|
|
|
|
rtc_int_flag |= RTC_PF;
|
|
|
|
hpet_pie_count = 0;
|
|
|
|
}
|
|
|
|
|
2008-01-15 08:44:38 -07:00
|
|
|
if (hpet_rtc_flags & RTC_AIE &&
|
2007-02-16 02:28:04 -07:00
|
|
|
(curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
|
|
|
|
(curr_time.tm_min == hpet_alarm_time.tm_min) &&
|
|
|
|
(curr_time.tm_hour == hpet_alarm_time.tm_hour))
|
|
|
|
rtc_int_flag |= RTC_AF;
|
|
|
|
|
|
|
|
if (rtc_int_flag) {
|
|
|
|
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
|
2008-01-30 05:33:28 -07:00
|
|
|
if (irq_handler)
|
|
|
|
irq_handler(rtc_int_flag, dev_id);
|
2007-02-16 02:28:04 -07:00
|
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
2008-01-30 05:33:28 -07:00
|
|
|
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
|
2007-02-16 02:28:04 -07:00
|
|
|
#endif
|