kernel-fxtec-pro1x/net/ipv4/tcp_probe.c

258 lines
6.1 KiB
C
Raw Normal View History

/*
* tcpprobe - Observe the TCP flow with kprobes.
*
* The idea for this came from Werner Almesberger's umlsim
* Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/kprobes.h>
#include <linux/socket.h>
#include <linux/tcp.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/time.h>
#include <net/net_namespace.h>
#include <net/tcp.h>
MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
MODULE_DESCRIPTION("TCP cwnd snooper");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.1");
static int port __read_mostly = 0;
MODULE_PARM_DESC(port, "Port to match (0=all)");
module_param(port, int, 0);
static unsigned int bufsize __read_mostly = 4096;
MODULE_PARM_DESC(bufsize, "Log buffer size in packets (4096)");
module_param(bufsize, uint, 0);
static int full __read_mostly;
MODULE_PARM_DESC(full, "Full log (1=every ack packet received, 0=only cwnd changes)");
module_param(full, int, 0);
static const char procname[] = "tcpprobe";
struct tcp_log {
ktime_t tstamp;
__be32 saddr, daddr;
__be16 sport, dport;
u16 length;
u32 snd_nxt;
u32 snd_una;
u32 snd_wnd;
u32 snd_cwnd;
u32 ssthresh;
u32 srtt;
};
static struct {
spinlock_t lock;
wait_queue_head_t wait;
ktime_t start;
u32 lastcwnd;
unsigned long head, tail;
struct tcp_log *log;
} tcp_probe;
static inline int tcp_probe_used(void)
{
return (tcp_probe.head - tcp_probe.tail) & (bufsize - 1);
}
static inline int tcp_probe_avail(void)
{
return bufsize - tcp_probe_used() - 1;
}
/*
* Hook inserted to be called before each receive packet.
* Note: arguments must match tcp_rcv_established()!
*/
static int jtcp_rcv_established(struct sock *sk, struct sk_buff *skb,
struct tcphdr *th, unsigned len)
{
const struct tcp_sock *tp = tcp_sk(sk);
const struct inet_sock *inet = inet_sk(sk);
/* Only update if port matches */
if ((port == 0 || ntohs(inet->inet_dport) == port ||
ntohs(inet->inet_sport) == port) &&
(full || tp->snd_cwnd != tcp_probe.lastcwnd)) {
spin_lock(&tcp_probe.lock);
/* If log fills, just silently drop */
if (tcp_probe_avail() > 1) {
struct tcp_log *p = tcp_probe.log + tcp_probe.head;
p->tstamp = ktime_get();
p->saddr = inet->inet_saddr;
p->sport = inet->inet_sport;
p->daddr = inet->inet_daddr;
p->dport = inet->inet_dport;
p->length = skb->len;
p->snd_nxt = tp->snd_nxt;
p->snd_una = tp->snd_una;
p->snd_cwnd = tp->snd_cwnd;
p->snd_wnd = tp->snd_wnd;
p->ssthresh = tcp_current_ssthresh(sk);
p->srtt = tp->srtt >> 3;
tcp_probe.head = (tcp_probe.head + 1) & (bufsize - 1);
}
tcp_probe.lastcwnd = tp->snd_cwnd;
spin_unlock(&tcp_probe.lock);
wake_up(&tcp_probe.wait);
}
jprobe_return();
return 0;
}
static struct jprobe tcp_jprobe = {
.kp = {
.symbol_name = "tcp_rcv_established",
},
.entry = jtcp_rcv_established,
};
static int tcpprobe_open(struct inode * inode, struct file * file)
{
/* Reset (empty) log */
spin_lock_bh(&tcp_probe.lock);
tcp_probe.head = tcp_probe.tail = 0;
tcp_probe.start = ktime_get();
spin_unlock_bh(&tcp_probe.lock);
return 0;
}
static int tcpprobe_sprint(char *tbuf, int n)
{
const struct tcp_log *p
= tcp_probe.log + tcp_probe.tail;
struct timespec tv
= ktime_to_timespec(ktime_sub(p->tstamp, tcp_probe.start));
return snprintf(tbuf, n,
"%lu.%09lu %pI4:%u %pI4:%u %d %#x %#x %u %u %u %u\n",
(unsigned long) tv.tv_sec,
(unsigned long) tv.tv_nsec,
&p->saddr, ntohs(p->sport),
&p->daddr, ntohs(p->dport),
p->length, p->snd_nxt, p->snd_una,
p->snd_cwnd, p->ssthresh, p->snd_wnd, p->srtt);
}
static ssize_t tcpprobe_read(struct file *file, char __user *buf,
size_t len, loff_t *ppos)
{
int error = 0;
size_t cnt = 0;
if (!buf)
return -EINVAL;
while (cnt < len) {
char tbuf[128];
int width;
/* Wait for data in buffer */
error = wait_event_interruptible(tcp_probe.wait,
tcp_probe_used() > 0);
if (error)
break;
spin_lock_bh(&tcp_probe.lock);
if (tcp_probe.head == tcp_probe.tail) {
/* multiple readers race? */
spin_unlock_bh(&tcp_probe.lock);
continue;
}
width = tcpprobe_sprint(tbuf, sizeof(tbuf));
if (cnt + width < len)
tcp_probe.tail = (tcp_probe.tail + 1) & (bufsize - 1);
spin_unlock_bh(&tcp_probe.lock);
/* if record greater than space available
return partial buffer (so far) */
if (cnt + width >= len)
break;
if (copy_to_user(buf + cnt, tbuf, width))
return -EFAULT;
cnt += width;
}
return cnt == 0 ? error : cnt;
}
static const struct file_operations tcpprobe_fops = {
.owner = THIS_MODULE,
.open = tcpprobe_open,
.read = tcpprobe_read,
};
static __init int tcpprobe_init(void)
{
int ret = -ENOMEM;
init_waitqueue_head(&tcp_probe.wait);
spin_lock_init(&tcp_probe.lock);
if (bufsize == 0)
return -EINVAL;
bufsize = roundup_pow_of_two(bufsize);
tcp_probe.log = kcalloc(bufsize, sizeof(struct tcp_log), GFP_KERNEL);
if (!tcp_probe.log)
goto err0;
if (!proc_net_fops_create(&init_net, procname, S_IRUSR, &tcpprobe_fops))
goto err0;
ret = register_jprobe(&tcp_jprobe);
if (ret)
goto err1;
pr_info("TCP probe registered (port=%d) bufsize=%u\n", port, bufsize);
return 0;
err1:
proc_net_remove(&init_net, procname);
err0:
kfree(tcp_probe.log);
return ret;
}
module_init(tcpprobe_init);
static __exit void tcpprobe_exit(void)
{
proc_net_remove(&init_net, procname);
unregister_jprobe(&tcp_jprobe);
kfree(tcp_probe.log);
}
module_exit(tcpprobe_exit);