kernel-fxtec-pro1x/kernel/trace/trace_events.c

1683 lines
36 KiB
C
Raw Normal View History

/*
* event tracer
*
* Copyright (C) 2008 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
*
* - Added format output of fields of the trace point.
* This was based off of work by Tom Zanussi <tzanussi@gmail.com>.
*
*/
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/ctype.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
#include <linux/delay.h>
#include <asm/setup.h>
#include "trace_output.h"
#undef TRACE_SYSTEM
#define TRACE_SYSTEM "TRACE_SYSTEM"
DEFINE_MUTEX(event_mutex);
DEFINE_MUTEX(event_storage_mutex);
EXPORT_SYMBOL_GPL(event_storage_mutex);
char event_storage[EVENT_STORAGE_SIZE];
EXPORT_SYMBOL_GPL(event_storage);
LIST_HEAD(ftrace_events);
LIST_HEAD(ftrace_common_fields);
tracing: Move fields from event to class structure Move the defined fields from the event to the class structure. Since the fields of the event are defined by the class they belong to, it makes sense to have the class hold the information instead of the individual events. The events of the same class would just hold duplicate information. After this change the size of the kernel dropped another 3K: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4900252 1057412 861512 6819176 680d68 vmlinux.regs 4900375 1053380 861512 6815267 67fe23 vmlinux.fields Although the text increased, this was mainly due to the C files having to adapt to the change. This is a constant increase, where new tracepoints will not increase the Text. But the big drop is in the data size (as well as needed allocations to hold the fields). This will give even more savings as more tracepoints are created. Note, if just TRACE_EVENT()s are used and not DECLARE_EVENT_CLASS() with several DEFINE_EVENT()s, then the savings will be lost. But we are pushing developers to consolidate events with DEFINE_EVENT() so this should not be an issue. The kprobes define a unique class to every new event, but are dynamic so it should not be a issue. The syscalls however have a single class but the fields for the individual events are different. The syscalls use a metadata to define the fields. I moved the fields list from the event to the metadata and added a "get_fields()" function to the class. This function is used to find the fields. For normal events and kprobes, get_fields() just returns a pointer to the fields list_head in the class. For syscall events, it returns the fields list_head in the metadata for the event. v2: Fixed the syscall fields. The syscall metadata needs a list of fields for both enter and exit. Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-22 08:35:55 -06:00
struct list_head *
trace_get_fields(struct ftrace_event_call *event_call)
{
if (!event_call->class->get_fields)
return &event_call->class->fields;
return event_call->class->get_fields(event_call);
}
static int __trace_define_field(struct list_head *head, const char *type,
const char *name, int offset, int size,
int is_signed, int filter_type)
{
struct ftrace_event_field *field;
field = kzalloc(sizeof(*field), GFP_KERNEL);
if (!field)
goto err;
field->name = kstrdup(name, GFP_KERNEL);
if (!field->name)
goto err;
field->type = kstrdup(type, GFP_KERNEL);
if (!field->type)
goto err;
if (filter_type == FILTER_OTHER)
field->filter_type = filter_assign_type(type);
else
field->filter_type = filter_type;
field->offset = offset;
field->size = size;
field->is_signed = is_signed;
tracing: Move fields from event to class structure Move the defined fields from the event to the class structure. Since the fields of the event are defined by the class they belong to, it makes sense to have the class hold the information instead of the individual events. The events of the same class would just hold duplicate information. After this change the size of the kernel dropped another 3K: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4900252 1057412 861512 6819176 680d68 vmlinux.regs 4900375 1053380 861512 6815267 67fe23 vmlinux.fields Although the text increased, this was mainly due to the C files having to adapt to the change. This is a constant increase, where new tracepoints will not increase the Text. But the big drop is in the data size (as well as needed allocations to hold the fields). This will give even more savings as more tracepoints are created. Note, if just TRACE_EVENT()s are used and not DECLARE_EVENT_CLASS() with several DEFINE_EVENT()s, then the savings will be lost. But we are pushing developers to consolidate events with DEFINE_EVENT() so this should not be an issue. The kprobes define a unique class to every new event, but are dynamic so it should not be a issue. The syscalls however have a single class but the fields for the individual events are different. The syscalls use a metadata to define the fields. I moved the fields list from the event to the metadata and added a "get_fields()" function to the class. This function is used to find the fields. For normal events and kprobes, get_fields() just returns a pointer to the fields list_head in the class. For syscall events, it returns the fields list_head in the metadata for the event. v2: Fixed the syscall fields. The syscall metadata needs a list of fields for both enter and exit. Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-22 08:35:55 -06:00
list_add(&field->link, head);
return 0;
err:
if (field)
kfree(field->name);
kfree(field);
return -ENOMEM;
}
int trace_define_field(struct ftrace_event_call *call, const char *type,
const char *name, int offset, int size, int is_signed,
int filter_type)
{
struct list_head *head;
if (WARN_ON(!call->class))
return 0;
head = trace_get_fields(call);
return __trace_define_field(head, type, name, offset, size,
is_signed, filter_type);
}
EXPORT_SYMBOL_GPL(trace_define_field);
#define __common_field(type, item) \
ret = __trace_define_field(&ftrace_common_fields, #type, \
"common_" #item, \
offsetof(typeof(ent), item), \
sizeof(ent.item), \
is_signed_type(type), FILTER_OTHER); \
if (ret) \
return ret;
static int trace_define_common_fields(void)
{
int ret;
struct trace_entry ent;
__common_field(unsigned short, type);
__common_field(unsigned char, flags);
__common_field(unsigned char, preempt_count);
__common_field(int, pid);
return ret;
}
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
void trace_destroy_fields(struct ftrace_event_call *call)
{
struct ftrace_event_field *field, *next;
tracing: Move fields from event to class structure Move the defined fields from the event to the class structure. Since the fields of the event are defined by the class they belong to, it makes sense to have the class hold the information instead of the individual events. The events of the same class would just hold duplicate information. After this change the size of the kernel dropped another 3K: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4900252 1057412 861512 6819176 680d68 vmlinux.regs 4900375 1053380 861512 6815267 67fe23 vmlinux.fields Although the text increased, this was mainly due to the C files having to adapt to the change. This is a constant increase, where new tracepoints will not increase the Text. But the big drop is in the data size (as well as needed allocations to hold the fields). This will give even more savings as more tracepoints are created. Note, if just TRACE_EVENT()s are used and not DECLARE_EVENT_CLASS() with several DEFINE_EVENT()s, then the savings will be lost. But we are pushing developers to consolidate events with DEFINE_EVENT() so this should not be an issue. The kprobes define a unique class to every new event, but are dynamic so it should not be a issue. The syscalls however have a single class but the fields for the individual events are different. The syscalls use a metadata to define the fields. I moved the fields list from the event to the metadata and added a "get_fields()" function to the class. This function is used to find the fields. For normal events and kprobes, get_fields() just returns a pointer to the fields list_head in the class. For syscall events, it returns the fields list_head in the metadata for the event. v2: Fixed the syscall fields. The syscall metadata needs a list of fields for both enter and exit. Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-22 08:35:55 -06:00
struct list_head *head;
tracing: Move fields from event to class structure Move the defined fields from the event to the class structure. Since the fields of the event are defined by the class they belong to, it makes sense to have the class hold the information instead of the individual events. The events of the same class would just hold duplicate information. After this change the size of the kernel dropped another 3K: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4900252 1057412 861512 6819176 680d68 vmlinux.regs 4900375 1053380 861512 6815267 67fe23 vmlinux.fields Although the text increased, this was mainly due to the C files having to adapt to the change. This is a constant increase, where new tracepoints will not increase the Text. But the big drop is in the data size (as well as needed allocations to hold the fields). This will give even more savings as more tracepoints are created. Note, if just TRACE_EVENT()s are used and not DECLARE_EVENT_CLASS() with several DEFINE_EVENT()s, then the savings will be lost. But we are pushing developers to consolidate events with DEFINE_EVENT() so this should not be an issue. The kprobes define a unique class to every new event, but are dynamic so it should not be a issue. The syscalls however have a single class but the fields for the individual events are different. The syscalls use a metadata to define the fields. I moved the fields list from the event to the metadata and added a "get_fields()" function to the class. This function is used to find the fields. For normal events and kprobes, get_fields() just returns a pointer to the fields list_head in the class. For syscall events, it returns the fields list_head in the metadata for the event. v2: Fixed the syscall fields. The syscall metadata needs a list of fields for both enter and exit. Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-22 08:35:55 -06:00
head = trace_get_fields(call);
list_for_each_entry_safe(field, next, head, link) {
list_del(&field->link);
kfree(field->type);
kfree(field->name);
kfree(field);
}
}
int trace_event_raw_init(struct ftrace_event_call *call)
{
int id;
id = register_ftrace_event(&call->event);
if (!id)
return -ENODEV;
return 0;
}
EXPORT_SYMBOL_GPL(trace_event_raw_init);
int ftrace_event_reg(struct ftrace_event_call *call, enum trace_reg type)
{
switch (type) {
case TRACE_REG_REGISTER:
return tracepoint_probe_register(call->name,
call->class->probe,
call);
case TRACE_REG_UNREGISTER:
tracepoint_probe_unregister(call->name,
call->class->probe,
call);
return 0;
#ifdef CONFIG_PERF_EVENTS
case TRACE_REG_PERF_REGISTER:
return tracepoint_probe_register(call->name,
call->class->perf_probe,
call);
case TRACE_REG_PERF_UNREGISTER:
tracepoint_probe_unregister(call->name,
call->class->perf_probe,
call);
return 0;
#endif
}
return 0;
}
EXPORT_SYMBOL_GPL(ftrace_event_reg);
void trace_event_enable_cmd_record(bool enable)
{
struct ftrace_event_call *call;
mutex_lock(&event_mutex);
list_for_each_entry(call, &ftrace_events, list) {
if (!(call->flags & TRACE_EVENT_FL_ENABLED))
continue;
if (enable) {
tracing_start_cmdline_record();
call->flags |= TRACE_EVENT_FL_RECORDED_CMD;
} else {
tracing_stop_cmdline_record();
call->flags &= ~TRACE_EVENT_FL_RECORDED_CMD;
}
}
mutex_unlock(&event_mutex);
}
static int ftrace_event_enable_disable(struct ftrace_event_call *call,
int enable)
{
int ret = 0;
switch (enable) {
case 0:
if (call->flags & TRACE_EVENT_FL_ENABLED) {
call->flags &= ~TRACE_EVENT_FL_ENABLED;
if (call->flags & TRACE_EVENT_FL_RECORDED_CMD) {
tracing_stop_cmdline_record();
call->flags &= ~TRACE_EVENT_FL_RECORDED_CMD;
}
call->class->reg(call, TRACE_REG_UNREGISTER);
}
break;
case 1:
if (!(call->flags & TRACE_EVENT_FL_ENABLED)) {
if (trace_flags & TRACE_ITER_RECORD_CMD) {
tracing_start_cmdline_record();
call->flags |= TRACE_EVENT_FL_RECORDED_CMD;
}
ret = call->class->reg(call, TRACE_REG_REGISTER);
if (ret) {
tracing_stop_cmdline_record();
pr_info("event trace: Could not enable event "
"%s\n", call->name);
break;
}
call->flags |= TRACE_EVENT_FL_ENABLED;
}
break;
}
return ret;
}
static void ftrace_clear_events(void)
{
struct ftrace_event_call *call;
mutex_lock(&event_mutex);
list_for_each_entry(call, &ftrace_events, list) {
ftrace_event_enable_disable(call, 0);
}
mutex_unlock(&event_mutex);
}
/*
* __ftrace_set_clr_event(NULL, NULL, NULL, set) will set/unset all events.
*/
static int __ftrace_set_clr_event(const char *match, const char *sub,
const char *event, int set)
{
struct ftrace_event_call *call;
int ret = -EINVAL;
mutex_lock(&event_mutex);
list_for_each_entry(call, &ftrace_events, list) {
if (!call->name || !call->class || !call->class->reg)
continue;
if (match &&
strcmp(match, call->name) != 0 &&
strcmp(match, call->class->system) != 0)
continue;
if (sub && strcmp(sub, call->class->system) != 0)
continue;
if (event && strcmp(event, call->name) != 0)
continue;
ftrace_event_enable_disable(call, set);
ret = 0;
}
mutex_unlock(&event_mutex);
return ret;
}
static int ftrace_set_clr_event(char *buf, int set)
{
char *event = NULL, *sub = NULL, *match;
/*
* The buf format can be <subsystem>:<event-name>
* *:<event-name> means any event by that name.
* :<event-name> is the same.
*
* <subsystem>:* means all events in that subsystem
* <subsystem>: means the same.
*
* <name> (no ':') means all events in a subsystem with
* the name <name> or any event that matches <name>
*/
match = strsep(&buf, ":");
if (buf) {
sub = match;
event = buf;
match = NULL;
if (!strlen(sub) || strcmp(sub, "*") == 0)
sub = NULL;
if (!strlen(event) || strcmp(event, "*") == 0)
event = NULL;
}
return __ftrace_set_clr_event(match, sub, event, set);
}
/**
* trace_set_clr_event - enable or disable an event
* @system: system name to match (NULL for any system)
* @event: event name to match (NULL for all events, within system)
* @set: 1 to enable, 0 to disable
*
* This is a way for other parts of the kernel to enable or disable
* event recording.
*
* Returns 0 on success, -EINVAL if the parameters do not match any
* registered events.
*/
int trace_set_clr_event(const char *system, const char *event, int set)
{
return __ftrace_set_clr_event(NULL, system, event, set);
}
EXPORT_SYMBOL_GPL(trace_set_clr_event);
/* 128 should be much more than enough */
#define EVENT_BUF_SIZE 127
static ssize_t
ftrace_event_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
struct trace_parser parser;
ssize_t read, ret;
if (!cnt)
return 0;
ret = tracing_update_buffers();
if (ret < 0)
return ret;
if (trace_parser_get_init(&parser, EVENT_BUF_SIZE + 1))
return -ENOMEM;
read = trace_get_user(&parser, ubuf, cnt, ppos);
if (read >= 0 && trace_parser_loaded((&parser))) {
int set = 1;
if (*parser.buffer == '!')
set = 0;
parser.buffer[parser.idx] = 0;
ret = ftrace_set_clr_event(parser.buffer + !set, set);
if (ret)
goto out_put;
}
ret = read;
out_put:
trace_parser_put(&parser);
return ret;
}
static void *
t_next(struct seq_file *m, void *v, loff_t *pos)
{
struct ftrace_event_call *call = v;
(*pos)++;
list_for_each_entry_continue(call, &ftrace_events, list) {
/*
* The ftrace subsystem is for showing formats only.
* They can not be enabled or disabled via the event files.
*/
if (call->class && call->class->reg)
return call;
}
return NULL;
}
static void *t_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_event_call *call;
loff_t l;
mutex_lock(&event_mutex);
call = list_entry(&ftrace_events, struct ftrace_event_call, list);
for (l = 0; l <= *pos; ) {
call = t_next(m, call, &l);
if (!call)
break;
}
return call;
}
static void *
s_next(struct seq_file *m, void *v, loff_t *pos)
{
struct ftrace_event_call *call = v;
(*pos)++;
list_for_each_entry_continue(call, &ftrace_events, list) {
if (call->flags & TRACE_EVENT_FL_ENABLED)
return call;
}
return NULL;
}
static void *s_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_event_call *call;
loff_t l;
mutex_lock(&event_mutex);
call = list_entry(&ftrace_events, struct ftrace_event_call, list);
for (l = 0; l <= *pos; ) {
call = s_next(m, call, &l);
if (!call)
break;
}
return call;
}
static int t_show(struct seq_file *m, void *v)
{
struct ftrace_event_call *call = v;
if (strcmp(call->class->system, TRACE_SYSTEM) != 0)
seq_printf(m, "%s:", call->class->system);
seq_printf(m, "%s\n", call->name);
return 0;
}
static void t_stop(struct seq_file *m, void *p)
{
mutex_unlock(&event_mutex);
}
static int
ftrace_event_seq_open(struct inode *inode, struct file *file)
{
const struct seq_operations *seq_ops;
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC))
ftrace_clear_events();
seq_ops = inode->i_private;
return seq_open(file, seq_ops);
}
static ssize_t
event_enable_read(struct file *filp, char __user *ubuf, size_t cnt,
loff_t *ppos)
{
struct ftrace_event_call *call = filp->private_data;
char *buf;
if (call->flags & TRACE_EVENT_FL_ENABLED)
buf = "1\n";
else
buf = "0\n";
return simple_read_from_buffer(ubuf, cnt, ppos, buf, 2);
}
static ssize_t
event_enable_write(struct file *filp, const char __user *ubuf, size_t cnt,
loff_t *ppos)
{
struct ftrace_event_call *call = filp->private_data;
char buf[64];
unsigned long val;
int ret;
if (cnt >= sizeof(buf))
return -EINVAL;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
ret = strict_strtoul(buf, 10, &val);
if (ret < 0)
return ret;
ret = tracing_update_buffers();
if (ret < 0)
return ret;
switch (val) {
case 0:
case 1:
mutex_lock(&event_mutex);
ret = ftrace_event_enable_disable(call, val);
mutex_unlock(&event_mutex);
break;
default:
return -EINVAL;
}
*ppos += cnt;
return ret ? ret : cnt;
}
static ssize_t
system_enable_read(struct file *filp, char __user *ubuf, size_t cnt,
loff_t *ppos)
{
const char set_to_char[4] = { '?', '0', '1', 'X' };
const char *system = filp->private_data;
struct ftrace_event_call *call;
char buf[2];
int set = 0;
int ret;
mutex_lock(&event_mutex);
list_for_each_entry(call, &ftrace_events, list) {
if (!call->name || !call->class || !call->class->reg)
continue;
if (system && strcmp(call->class->system, system) != 0)
continue;
/*
* We need to find out if all the events are set
* or if all events or cleared, or if we have
* a mixture.
*/
set |= (1 << !!(call->flags & TRACE_EVENT_FL_ENABLED));
/*
* If we have a mixture, no need to look further.
*/
if (set == 3)
break;
}
mutex_unlock(&event_mutex);
buf[0] = set_to_char[set];
buf[1] = '\n';
ret = simple_read_from_buffer(ubuf, cnt, ppos, buf, 2);
return ret;
}
static ssize_t
system_enable_write(struct file *filp, const char __user *ubuf, size_t cnt,
loff_t *ppos)
{
const char *system = filp->private_data;
unsigned long val;
char buf[64];
ssize_t ret;
if (cnt >= sizeof(buf))
return -EINVAL;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
ret = strict_strtoul(buf, 10, &val);
if (ret < 0)
return ret;
ret = tracing_update_buffers();
if (ret < 0)
return ret;
if (val != 0 && val != 1)
return -EINVAL;
ret = __ftrace_set_clr_event(NULL, system, NULL, val);
if (ret)
goto out;
ret = cnt;
out:
*ppos += cnt;
return ret;
}
enum {
FORMAT_HEADER = 1,
FORMAT_FIELD_SEPERATOR = 2,
FORMAT_PRINTFMT = 3,
};
static void *f_next(struct seq_file *m, void *v, loff_t *pos)
{
struct ftrace_event_call *call = m->private;
struct ftrace_event_field *field;
struct list_head *common_head = &ftrace_common_fields;
struct list_head *head = trace_get_fields(call);
(*pos)++;
switch ((unsigned long)v) {
case FORMAT_HEADER:
if (unlikely(list_empty(common_head)))
return NULL;
field = list_entry(common_head->prev,
struct ftrace_event_field, link);
return field;
case FORMAT_FIELD_SEPERATOR:
if (unlikely(list_empty(head)))
return NULL;
field = list_entry(head->prev, struct ftrace_event_field, link);
return field;
case FORMAT_PRINTFMT:
/* all done */
return NULL;
}
field = v;
if (field->link.prev == common_head)
return (void *)FORMAT_FIELD_SEPERATOR;
else if (field->link.prev == head)
return (void *)FORMAT_PRINTFMT;
field = list_entry(field->link.prev, struct ftrace_event_field, link);
return field;
}
static void *f_start(struct seq_file *m, loff_t *pos)
{
loff_t l = 0;
void *p;
/* Start by showing the header */
if (!*pos)
return (void *)FORMAT_HEADER;
p = (void *)FORMAT_HEADER;
do {
p = f_next(m, p, &l);
} while (p && l < *pos);
return p;
}
static int f_show(struct seq_file *m, void *v)
{
struct ftrace_event_call *call = m->private;
struct ftrace_event_field *field;
const char *array_descriptor;
switch ((unsigned long)v) {
case FORMAT_HEADER:
seq_printf(m, "name: %s\n", call->name);
seq_printf(m, "ID: %d\n", call->event.type);
seq_printf(m, "format:\n");
return 0;
case FORMAT_FIELD_SEPERATOR:
seq_putc(m, '\n');
return 0;
case FORMAT_PRINTFMT:
seq_printf(m, "\nprint fmt: %s\n",
call->print_fmt);
return 0;
}
field = v;
/*
* Smartly shows the array type(except dynamic array).
* Normal:
* field:TYPE VAR
* If TYPE := TYPE[LEN], it is shown:
* field:TYPE VAR[LEN]
*/
array_descriptor = strchr(field->type, '[');
if (!strncmp(field->type, "__data_loc", 10))
array_descriptor = NULL;
if (!array_descriptor)
seq_printf(m, "\tfield:%s %s;\toffset:%u;\tsize:%u;\tsigned:%d;\n",
field->type, field->name, field->offset,
field->size, !!field->is_signed);
else
seq_printf(m, "\tfield:%.*s %s%s;\toffset:%u;\tsize:%u;\tsigned:%d;\n",
(int)(array_descriptor - field->type),
field->type, field->name,
array_descriptor, field->offset,
field->size, !!field->is_signed);
return 0;
}
static void f_stop(struct seq_file *m, void *p)
{
}
static const struct seq_operations trace_format_seq_ops = {
.start = f_start,
.next = f_next,
.stop = f_stop,
.show = f_show,
};
static int trace_format_open(struct inode *inode, struct file *file)
{
struct ftrace_event_call *call = inode->i_private;
struct seq_file *m;
int ret;
ret = seq_open(file, &trace_format_seq_ops);
if (ret < 0)
return ret;
m = file->private_data;
m->private = call;
return 0;
}
static ssize_t
event_id_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos)
{
struct ftrace_event_call *call = filp->private_data;
struct trace_seq *s;
int r;
if (*ppos)
return 0;
s = kmalloc(sizeof(*s), GFP_KERNEL);
if (!s)
return -ENOMEM;
trace_seq_init(s);
trace_seq_printf(s, "%d\n", call->event.type);
r = simple_read_from_buffer(ubuf, cnt, ppos,
s->buffer, s->len);
kfree(s);
return r;
}
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
static ssize_t
event_filter_read(struct file *filp, char __user *ubuf, size_t cnt,
loff_t *ppos)
{
struct ftrace_event_call *call = filp->private_data;
struct trace_seq *s;
int r;
if (*ppos)
return 0;
s = kmalloc(sizeof(*s), GFP_KERNEL);
if (!s)
return -ENOMEM;
trace_seq_init(s);
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
print_event_filter(call, s);
r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, s->len);
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
kfree(s);
return r;
}
static ssize_t
event_filter_write(struct file *filp, const char __user *ubuf, size_t cnt,
loff_t *ppos)
{
struct ftrace_event_call *call = filp->private_data;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
char *buf;
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
int err;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
if (cnt >= PAGE_SIZE)
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
return -EINVAL;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
buf = (char *)__get_free_page(GFP_TEMPORARY);
if (!buf)
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
return -ENOMEM;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
if (copy_from_user(buf, ubuf, cnt)) {
free_page((unsigned long) buf);
return -EFAULT;
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
}
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
buf[cnt] = '\0';
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
err = apply_event_filter(call, buf);
free_page((unsigned long) buf);
if (err < 0)
return err;
tracing/filters: allow on-the-fly filter switching This patch allows event filters to be safely removed or switched on-the-fly while avoiding the use of rcu or the suspension of tracing of previous versions. It does it by adding a new filter_pred_none() predicate function which does nothing and by never deallocating either the predicates or any of the filter_pred members used in matching; the predicate lists are allocated and initialized during ftrace_event_calls initialization. Whenever a filter is removed or replaced, the filter_pred_* functions currently in use by the affected ftrace_event_call are immediately switched over to to the filter_pred_none() function, while the rest of the filter_pred members are left intact, allowing any currently executing filter_pred_* functions to finish up, using the values they're currently using. In the case of filter replacement, the new predicate values are copied into the old predicates after the above step, and the filter_pred_none() functions are replaced by the filter_pred_* functions for the new filter. In this case, it is possible though very unlikely that a previous filter_pred_* is still running even after the filter_pred_none() switch and the switch to the new filter_pred_*. In that case, however, because nothing has been deallocated in the filter_pred, the worst that can happen is that the old filter_pred_* function sees the new values and as a result produces either a false positive or a false negative, depending on the values it finds. So one downside to this method is that rarely, it can produce a bad match during the filter switch, but it should be possible to live with that, IMHO. The other downside is that at least in this patch the predicate lists are always pre-allocated, taking up memory from the start. They could probably be allocated on first-use, and de-allocated when tracing is completely stopped - if this patch makes sense, I could create another one to do that later on. Oh, and it also places a restriction on the size of __arrays in events, currently set to 128, since they can't be larger than the now embedded str_val arrays in the filter_pred struct. Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: paulmck@linux.vnet.ibm.com LKML-Reference: <1239610670.6660.49.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-13 02:17:50 -06:00
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
*ppos += cnt;
return cnt;
}
static ssize_t
subsystem_filter_read(struct file *filp, char __user *ubuf, size_t cnt,
loff_t *ppos)
{
struct event_subsystem *system = filp->private_data;
struct trace_seq *s;
int r;
if (*ppos)
return 0;
s = kmalloc(sizeof(*s), GFP_KERNEL);
if (!s)
return -ENOMEM;
trace_seq_init(s);
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
print_subsystem_event_filter(system, s);
r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, s->len);
kfree(s);
return r;
}
static ssize_t
subsystem_filter_write(struct file *filp, const char __user *ubuf, size_t cnt,
loff_t *ppos)
{
struct event_subsystem *system = filp->private_data;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
char *buf;
int err;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
if (cnt >= PAGE_SIZE)
return -EINVAL;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
buf = (char *)__get_free_page(GFP_TEMPORARY);
if (!buf)
return -ENOMEM;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
if (copy_from_user(buf, ubuf, cnt)) {
free_page((unsigned long) buf);
return -EFAULT;
}
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
buf[cnt] = '\0';
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
err = apply_subsystem_event_filter(system, buf);
free_page((unsigned long) buf);
if (err < 0)
return err;
*ppos += cnt;
return cnt;
}
static ssize_t
show_header(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos)
{
int (*func)(struct trace_seq *s) = filp->private_data;
struct trace_seq *s;
int r;
if (*ppos)
return 0;
s = kmalloc(sizeof(*s), GFP_KERNEL);
if (!s)
return -ENOMEM;
trace_seq_init(s);
func(s);
r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, s->len);
kfree(s);
return r;
}
static const struct seq_operations show_event_seq_ops = {
.start = t_start,
.next = t_next,
.show = t_show,
.stop = t_stop,
};
static const struct seq_operations show_set_event_seq_ops = {
.start = s_start,
.next = s_next,
.show = t_show,
.stop = t_stop,
};
static const struct file_operations ftrace_avail_fops = {
.open = ftrace_event_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static const struct file_operations ftrace_set_event_fops = {
.open = ftrace_event_seq_open,
.read = seq_read,
.write = ftrace_event_write,
.llseek = seq_lseek,
.release = seq_release,
};
static const struct file_operations ftrace_enable_fops = {
.open = tracing_open_generic,
.read = event_enable_read,
.write = event_enable_write,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = default_llseek,
};
static const struct file_operations ftrace_event_format_fops = {
.open = trace_format_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static const struct file_operations ftrace_event_id_fops = {
.open = tracing_open_generic,
.read = event_id_read,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = default_llseek,
};
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
static const struct file_operations ftrace_event_filter_fops = {
.open = tracing_open_generic,
.read = event_filter_read,
.write = event_filter_write,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = default_llseek,
tracing: add per-event filtering This patch adds per-event filtering to the event tracing subsystem. It adds a 'filter' debugfs file to each event directory. This file can be written to to set filters; reading from it will display the current set of filters set for that event. Basically, any field listed in the 'format' file for an event can be filtered on (including strings, but not yet other array types) using either matching ('==') or non-matching ('!=') 'predicates'. A 'predicate' can be either a single expression: # echo pid != 0 > filter # cat filter pid != 0 or a compound expression of up to 8 sub-expressions combined using '&&' or '||': # echo comm == Xorg > filter # echo "&& sig != 29" > filter # cat filter comm == Xorg && sig != 29 Only events having field values matching an expression will be available in the trace output; non-matching events are discarded. Note that a compound expression is built up by echoing each sub-expression separately - it's not the most efficient way to do things, but it keeps the parser simple and assumes that compound expressions will be relatively uncommon. In any case, a subsequent patch introducing a way to set filters for entire subsystems should mitigate any need to do this for lots of events. Setting a filter without an '&&' or '||' clears the previous filter completely and sets the filter to the new expression: # cat filter comm == Xorg && sig != 29 # echo comm != Xorg # cat filter comm != Xorg To clear a filter, echo 0 to the filter file: # echo 0 > filter # cat filter none The limit of 8 predicates for a compound expression is arbitrary - for efficiency, it's implemented as an array of pointers to predicates, and 8 seemed more than enough for any filter... Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1237710665.7703.48.camel@charm-linux> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-22 02:31:04 -06:00
};
static const struct file_operations ftrace_subsystem_filter_fops = {
.open = tracing_open_generic,
.read = subsystem_filter_read,
.write = subsystem_filter_write,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = default_llseek,
};
static const struct file_operations ftrace_system_enable_fops = {
.open = tracing_open_generic,
.read = system_enable_read,
.write = system_enable_write,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = default_llseek,
};
static const struct file_operations ftrace_show_header_fops = {
.open = tracing_open_generic,
.read = show_header,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 10:52:59 -06:00
.llseek = default_llseek,
};
static struct dentry *event_trace_events_dir(void)
{
static struct dentry *d_tracer;
static struct dentry *d_events;
if (d_events)
return d_events;
d_tracer = tracing_init_dentry();
if (!d_tracer)
return NULL;
d_events = debugfs_create_dir("events", d_tracer);
if (!d_events)
pr_warning("Could not create debugfs "
"'events' directory\n");
return d_events;
}
static LIST_HEAD(event_subsystems);
static struct dentry *
event_subsystem_dir(const char *name, struct dentry *d_events)
{
struct event_subsystem *system;
tracing/filters: add run-time field descriptions to TRACE_EVENT_FORMAT events This patch adds run-time field descriptions to all the event formats exported using TRACE_EVENT_FORMAT. It also hooks up all the tracers that use them (i.e. the tracers in the 'ftrace subsystem') so they can also have their output filtered by the event-filtering mechanism. When I was testing this, there were a couple of things that fooled me into thinking the filters weren't working, when actually they were - I'll mention them here so others don't make the same mistakes (and file bug reports. ;-) One is that some of the tracers trace multiple events e.g. the sched_switch tracer uses the context_switch and wakeup events, and if you don't set filters on all of the traced events, the unfiltered output from the events without filters on them can make it look like the filtering as a whole isn't working properly, when actually it is doing what it was asked to do - it just wasn't asked to do the right thing. The other is that for the really high-volume tracers e.g. the function tracer, the volume of filtered events can be so high that it pushes the unfiltered events out of the ring buffer before they can be read so e.g. cat'ing the trace file repeatedly shows either no output, or once in awhile some output but that isn't there the next time you read the trace, which isn't what you normally expect when reading the trace file. If you read from the trace_pipe file though, you can catch them before they disappear. Changes from v1: As suggested by Frederic Weisbecker: - get rid of externs in functions - added unlikely() to filter_check_discard() Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-30 23:48:49 -06:00
struct dentry *entry;
/* First see if we did not already create this dir */
list_for_each_entry(system, &event_subsystems, list) {
if (strcmp(system->name, name) == 0) {
system->nr_events++;
return system->entry;
}
}
/* need to create new entry */
system = kmalloc(sizeof(*system), GFP_KERNEL);
if (!system) {
pr_warning("No memory to create event subsystem %s\n",
name);
return d_events;
}
system->entry = debugfs_create_dir(name, d_events);
if (!system->entry) {
pr_warning("Could not create event subsystem %s\n",
name);
kfree(system);
return d_events;
}
system->nr_events = 1;
system->name = kstrdup(name, GFP_KERNEL);
if (!system->name) {
debugfs_remove(system->entry);
kfree(system);
return d_events;
}
list_add(&system->list, &event_subsystems);
system->filter = NULL;
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
system->filter = kzalloc(sizeof(struct event_filter), GFP_KERNEL);
if (!system->filter) {
pr_warning("Could not allocate filter for subsystem "
"'%s'\n", name);
return system->entry;
}
tracing/filters: add run-time field descriptions to TRACE_EVENT_FORMAT events This patch adds run-time field descriptions to all the event formats exported using TRACE_EVENT_FORMAT. It also hooks up all the tracers that use them (i.e. the tracers in the 'ftrace subsystem') so they can also have their output filtered by the event-filtering mechanism. When I was testing this, there were a couple of things that fooled me into thinking the filters weren't working, when actually they were - I'll mention them here so others don't make the same mistakes (and file bug reports. ;-) One is that some of the tracers trace multiple events e.g. the sched_switch tracer uses the context_switch and wakeup events, and if you don't set filters on all of the traced events, the unfiltered output from the events without filters on them can make it look like the filtering as a whole isn't working properly, when actually it is doing what it was asked to do - it just wasn't asked to do the right thing. The other is that for the really high-volume tracers e.g. the function tracer, the volume of filtered events can be so high that it pushes the unfiltered events out of the ring buffer before they can be read so e.g. cat'ing the trace file repeatedly shows either no output, or once in awhile some output but that isn't there the next time you read the trace, which isn't what you normally expect when reading the trace file. If you read from the trace_pipe file though, you can catch them before they disappear. Changes from v1: As suggested by Frederic Weisbecker: - get rid of externs in functions - added unlikely() to filter_check_discard() Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-30 23:48:49 -06:00
entry = debugfs_create_file("filter", 0644, system->entry, system,
&ftrace_subsystem_filter_fops);
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
if (!entry) {
kfree(system->filter);
system->filter = NULL;
tracing/filters: add run-time field descriptions to TRACE_EVENT_FORMAT events This patch adds run-time field descriptions to all the event formats exported using TRACE_EVENT_FORMAT. It also hooks up all the tracers that use them (i.e. the tracers in the 'ftrace subsystem') so they can also have their output filtered by the event-filtering mechanism. When I was testing this, there were a couple of things that fooled me into thinking the filters weren't working, when actually they were - I'll mention them here so others don't make the same mistakes (and file bug reports. ;-) One is that some of the tracers trace multiple events e.g. the sched_switch tracer uses the context_switch and wakeup events, and if you don't set filters on all of the traced events, the unfiltered output from the events without filters on them can make it look like the filtering as a whole isn't working properly, when actually it is doing what it was asked to do - it just wasn't asked to do the right thing. The other is that for the really high-volume tracers e.g. the function tracer, the volume of filtered events can be so high that it pushes the unfiltered events out of the ring buffer before they can be read so e.g. cat'ing the trace file repeatedly shows either no output, or once in awhile some output but that isn't there the next time you read the trace, which isn't what you normally expect when reading the trace file. If you read from the trace_pipe file though, you can catch them before they disappear. Changes from v1: As suggested by Frederic Weisbecker: - get rid of externs in functions - added unlikely() to filter_check_discard() Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-30 23:48:49 -06:00
pr_warning("Could not create debugfs "
"'%s/filter' entry\n", name);
tracing/filters: a better event parser Replace the current event parser hack with a better one. Filters are no longer specified predicate by predicate, but all at once and can use parens and any of the following operators: numeric fields: ==, !=, <, <=, >, >= string fields: ==, != predicates can be combined with the logical operators: &&, || examples: "common_preempt_count > 4" > filter "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter If there was an error, the erroneous string along with an error message can be seen by looking at the filter e.g.: ((sig >= 10 && sig < 15) || dsig == 17) && comm != bash ^ parse_error: Field not found Currently the caret for an error always appears at the beginning of the filter; a real position should be used, but the error message should be useful even without it. To clear a filter, '0' can be written to the filter file. Filters can also be set or cleared for a complete subsystem by writing the same filter as would be written to an individual event to the filter file at the root of the subsytem. Note however, that if any event in the subsystem lacks a field specified in the filter being set, the set will fail and all filters in the subsytem are automatically cleared. This change from the previous version was made because using only the fields that happen to exist for a given event would most likely result in a meaningless filter. Because the logical operators are now implemented as predicates, the maximum number of predicates in a filter was increased from 8 to 16. [ Impact: add new, extended trace-filter implementation ] Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: fweisbec@gmail.com Cc: Li Zefan <lizf@cn.fujitsu.com> LKML-Reference: <1240905899.6416.121.camel@tropicana> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-28 02:04:59 -06:00
}
tracing/filters: add run-time field descriptions to TRACE_EVENT_FORMAT events This patch adds run-time field descriptions to all the event formats exported using TRACE_EVENT_FORMAT. It also hooks up all the tracers that use them (i.e. the tracers in the 'ftrace subsystem') so they can also have their output filtered by the event-filtering mechanism. When I was testing this, there were a couple of things that fooled me into thinking the filters weren't working, when actually they were - I'll mention them here so others don't make the same mistakes (and file bug reports. ;-) One is that some of the tracers trace multiple events e.g. the sched_switch tracer uses the context_switch and wakeup events, and if you don't set filters on all of the traced events, the unfiltered output from the events without filters on them can make it look like the filtering as a whole isn't working properly, when actually it is doing what it was asked to do - it just wasn't asked to do the right thing. The other is that for the really high-volume tracers e.g. the function tracer, the volume of filtered events can be so high that it pushes the unfiltered events out of the ring buffer before they can be read so e.g. cat'ing the trace file repeatedly shows either no output, or once in awhile some output but that isn't there the next time you read the trace, which isn't what you normally expect when reading the trace file. If you read from the trace_pipe file though, you can catch them before they disappear. Changes from v1: As suggested by Frederic Weisbecker: - get rid of externs in functions - added unlikely() to filter_check_discard() Signed-off-by: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-30 23:48:49 -06:00
trace_create_file("enable", 0644, system->entry,
(void *)system->name,
&ftrace_system_enable_fops);
return system->entry;
}
static int
event_create_dir(struct ftrace_event_call *call, struct dentry *d_events,
const struct file_operations *id,
const struct file_operations *enable,
const struct file_operations *filter,
const struct file_operations *format)
{
tracing: Move fields from event to class structure Move the defined fields from the event to the class structure. Since the fields of the event are defined by the class they belong to, it makes sense to have the class hold the information instead of the individual events. The events of the same class would just hold duplicate information. After this change the size of the kernel dropped another 3K: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4900252 1057412 861512 6819176 680d68 vmlinux.regs 4900375 1053380 861512 6815267 67fe23 vmlinux.fields Although the text increased, this was mainly due to the C files having to adapt to the change. This is a constant increase, where new tracepoints will not increase the Text. But the big drop is in the data size (as well as needed allocations to hold the fields). This will give even more savings as more tracepoints are created. Note, if just TRACE_EVENT()s are used and not DECLARE_EVENT_CLASS() with several DEFINE_EVENT()s, then the savings will be lost. But we are pushing developers to consolidate events with DEFINE_EVENT() so this should not be an issue. The kprobes define a unique class to every new event, but are dynamic so it should not be a issue. The syscalls however have a single class but the fields for the individual events are different. The syscalls use a metadata to define the fields. I moved the fields list from the event to the metadata and added a "get_fields()" function to the class. This function is used to find the fields. For normal events and kprobes, get_fields() just returns a pointer to the fields list_head in the class. For syscall events, it returns the fields list_head in the metadata for the event. v2: Fixed the syscall fields. The syscall metadata needs a list of fields for both enter and exit. Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-22 08:35:55 -06:00
struct list_head *head;
int ret;
/*
* If the trace point header did not define TRACE_SYSTEM
* then the system would be called "TRACE_SYSTEM".
*/
if (strcmp(call->class->system, TRACE_SYSTEM) != 0)
d_events = event_subsystem_dir(call->class->system, d_events);
call->dir = debugfs_create_dir(call->name, d_events);
if (!call->dir) {
pr_warning("Could not create debugfs "
"'%s' directory\n", call->name);
return -1;
}
if (call->class->reg)
trace_create_file("enable", 0644, call->dir, call,
enable);
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 10:27:06 -06:00
#ifdef CONFIG_PERF_EVENTS
if (call->event.type && call->class->reg)
trace_create_file("id", 0444, call->dir, call,
id);
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 10:27:06 -06:00
#endif
/*
* Other events may have the same class. Only update
* the fields if they are not already defined.
*/
head = trace_get_fields(call);
if (list_empty(head)) {
ret = call->class->define_fields(call);
if (ret < 0) {
pr_warning("Could not initialize trace point"
" events/%s\n", call->name);
return ret;
}
}
trace_create_file("filter", 0644, call->dir, call,
filter);
trace_create_file("format", 0444, call->dir, call,
format);
return 0;
}
static int
__trace_add_event_call(struct ftrace_event_call *call, struct module *mod,
const struct file_operations *id,
const struct file_operations *enable,
const struct file_operations *filter,
const struct file_operations *format)
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
{
struct dentry *d_events;
int ret;
/* The linker may leave blanks */
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
if (!call->name)
return -EINVAL;
if (call->class->raw_init) {
ret = call->class->raw_init(call);
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
if (ret < 0) {
if (ret != -ENOSYS)
pr_warning("Could not initialize trace events/%s\n",
call->name);
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
return ret;
}
}
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
d_events = event_trace_events_dir();
if (!d_events)
return -ENOENT;
ret = event_create_dir(call, d_events, id, enable, filter, format);
if (!ret)
list_add(&call->list, &ftrace_events);
call->mod = mod;
ftrace: Fix trace_add_event_call() to initialize list Handle failure path in trace_add_event_call() to fix the below bug which occurred when I tried to add invalid event twice. Could not create debugfs 'kmalloc' directory Failed to register kprobe event: kmalloc Faild to register probe event(-1) ------------[ cut here ]------------ WARNING: at /home/mhiramat/ksrc/random-tracing/lib/list_debug.c:26 __list_add+0x27/0x5c() Hardware name: list_add corruption. next->prev should be prev (c07d78cc), but was 00001000. (next=d854236c). Modules linked in: sunrpc uinput virtio_net virtio_balloon i2c_piix4 pcspkr i2c_core virtio_blk virtio_pci virtio_ring virtio [last unloaded: scsi_wait_scan] Pid: 1394, comm: tee Not tainted 2.6.31-rc9 #51 Call Trace: [<c0438424>] warn_slowpath_common+0x65/0x7c [<c05371b3>] ? __list_add+0x27/0x5c [<c043846f>] warn_slowpath_fmt+0x24/0x27 [<c05371b3>] __list_add+0x27/0x5c [<c047f050>] list_add+0xa/0xc [<c047f8f5>] trace_add_event_call+0x60/0x97 [<c0483133>] command_trace_probe+0x42c/0x51b [<c044a1b3>] ? remove_wait_queue+0x22/0x27 [<c042a9c0>] ? __wake_up+0x32/0x3b [<c04832f6>] probes_write+0xd4/0x10a [<c0483222>] ? probes_write+0x0/0x10a [<c04b27a9>] vfs_write+0x80/0xdf [<c04b289c>] sys_write+0x3b/0x5d [<c0670d41>] syscall_call+0x7/0xb ---[ end trace 2b962b5dc1fdc07d ]--- Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Tom Zanussi <tzanussi@gmail.com> LKML-Reference: <4AB1077F.6020107@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-09-16 09:42:55 -06:00
return ret;
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
}
/* Add an additional event_call dynamically */
int trace_add_event_call(struct ftrace_event_call *call)
{
int ret;
mutex_lock(&event_mutex);
ret = __trace_add_event_call(call, NULL, &ftrace_event_id_fops,
&ftrace_enable_fops,
&ftrace_event_filter_fops,
&ftrace_event_format_fops);
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
mutex_unlock(&event_mutex);
return ret;
}
static void remove_subsystem_dir(const char *name)
{
struct event_subsystem *system;
if (strcmp(name, TRACE_SYSTEM) == 0)
return;
list_for_each_entry(system, &event_subsystems, list) {
if (strcmp(system->name, name) == 0) {
if (!--system->nr_events) {
struct event_filter *filter = system->filter;
debugfs_remove_recursive(system->entry);
list_del(&system->list);
if (filter) {
kfree(filter->filter_string);
kfree(filter);
}
kfree(system->name);
kfree(system);
}
break;
}
}
}
/*
* Must be called under locking both of event_mutex and trace_event_mutex.
*/
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
static void __trace_remove_event_call(struct ftrace_event_call *call)
{
ftrace_event_enable_disable(call, 0);
if (call->event.funcs)
__unregister_ftrace_event(&call->event);
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
debugfs_remove_recursive(call->dir);
list_del(&call->list);
trace_destroy_fields(call);
destroy_preds(call);
remove_subsystem_dir(call->class->system);
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
}
/* Remove an event_call */
void trace_remove_event_call(struct ftrace_event_call *call)
{
mutex_lock(&event_mutex);
down_write(&trace_event_mutex);
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
__trace_remove_event_call(call);
up_write(&trace_event_mutex);
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
mutex_unlock(&event_mutex);
}
#define for_each_event(event, start, end) \
for (event = start; \
(unsigned long)event < (unsigned long)end; \
event++)
#ifdef CONFIG_MODULES
static LIST_HEAD(ftrace_module_file_list);
/*
* Modules must own their file_operations to keep up with
* reference counting.
*/
struct ftrace_module_file_ops {
struct list_head list;
struct module *mod;
struct file_operations id;
struct file_operations enable;
struct file_operations format;
struct file_operations filter;
};
static struct ftrace_module_file_ops *
trace_create_file_ops(struct module *mod)
{
struct ftrace_module_file_ops *file_ops;
/*
* This is a bit of a PITA. To allow for correct reference
* counting, modules must "own" their file_operations.
* To do this, we allocate the file operations that will be
* used in the event directory.
*/
file_ops = kmalloc(sizeof(*file_ops), GFP_KERNEL);
if (!file_ops)
return NULL;
file_ops->mod = mod;
file_ops->id = ftrace_event_id_fops;
file_ops->id.owner = mod;
file_ops->enable = ftrace_enable_fops;
file_ops->enable.owner = mod;
file_ops->filter = ftrace_event_filter_fops;
file_ops->filter.owner = mod;
file_ops->format = ftrace_event_format_fops;
file_ops->format.owner = mod;
list_add(&file_ops->list, &ftrace_module_file_list);
return file_ops;
}
static void trace_module_add_events(struct module *mod)
{
struct ftrace_module_file_ops *file_ops = NULL;
tracing: Replace trace_event struct array with pointer array Currently the trace_event structures are placed in the _ftrace_events section, and at link time, the linker makes one large array of all the trace_event structures. On boot up, this array is read (much like the initcall sections) and the events are processed. The problem is that there is no guarantee that gcc will place complex structures nicely together in an array format. Two structures in the same file may be placed awkwardly, because gcc has no clue that they are suppose to be in an array. A hack was used previous to force the alignment to 4, to pack the structures together. But this caused alignment issues with other architectures (sparc). Instead of packing the structures into an array, the structures' addresses are now put into the _ftrace_event section. As pointers are always the natural alignment, gcc should always pack them tightly together (otherwise initcall, extable, etc would also fail). By having the pointers to the structures in the section, we can still iterate the trace_events without causing unnecessary alignment problems with other architectures, or depending on the current behaviour of gcc that will likely change in the future just to tick us kernel developers off a little more. The _ftrace_event section is also moved into the .init.data section as it is now only needed at boot up. Suggested-by: David Miller <davem@davemloft.net> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-01-27 07:15:30 -07:00
struct ftrace_event_call **call, **start, **end;
start = mod->trace_events;
end = mod->trace_events + mod->num_trace_events;
if (start == end)
return;
file_ops = trace_create_file_ops(mod);
if (!file_ops)
return;
for_each_event(call, start, end) {
tracing: Replace trace_event struct array with pointer array Currently the trace_event structures are placed in the _ftrace_events section, and at link time, the linker makes one large array of all the trace_event structures. On boot up, this array is read (much like the initcall sections) and the events are processed. The problem is that there is no guarantee that gcc will place complex structures nicely together in an array format. Two structures in the same file may be placed awkwardly, because gcc has no clue that they are suppose to be in an array. A hack was used previous to force the alignment to 4, to pack the structures together. But this caused alignment issues with other architectures (sparc). Instead of packing the structures into an array, the structures' addresses are now put into the _ftrace_event section. As pointers are always the natural alignment, gcc should always pack them tightly together (otherwise initcall, extable, etc would also fail). By having the pointers to the structures in the section, we can still iterate the trace_events without causing unnecessary alignment problems with other architectures, or depending on the current behaviour of gcc that will likely change in the future just to tick us kernel developers off a little more. The _ftrace_event section is also moved into the .init.data section as it is now only needed at boot up. Suggested-by: David Miller <davem@davemloft.net> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-01-27 07:15:30 -07:00
__trace_add_event_call(*call, mod,
&file_ops->id, &file_ops->enable,
&file_ops->filter, &file_ops->format);
}
}
static void trace_module_remove_events(struct module *mod)
{
struct ftrace_module_file_ops *file_ops;
struct ftrace_event_call *call, *p;
bool found = false;
down_write(&trace_event_mutex);
list_for_each_entry_safe(call, p, &ftrace_events, list) {
if (call->mod == mod) {
found = true;
tracing: Ftrace dynamic ftrace_event_call support Add dynamic ftrace_event_call support to ftrace. Trace engines can add new ftrace_event_call to ftrace on the fly. Each operator function of the call takes an ftrace_event_call data structure as an argument, because these functions may be shared among several ftrace_event_calls. Changes from v13: - Define remove_subsystem_dir() always (revirt a2ca5e03), because trace_remove_event_call() uses it. - Modify syscall tracer because of ftrace_event_call change. [fweisbec@gmail.com: Fixed conflict against latest tracing/core] Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K.Prasad <prasad@linux.vnet.ibm.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Przemysław Pawełczyk <przemyslaw@pawelczyk.it> Cc: Roland McGrath <roland@redhat.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Vegard Nossum <vegard.nossum@gmail.com> LKML-Reference: <20090813203453.31965.71901.stgit@localhost.localdomain> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2009-08-13 14:34:53 -06:00
__trace_remove_event_call(call);
}
}
/* Now free the file_operations */
list_for_each_entry(file_ops, &ftrace_module_file_list, list) {
if (file_ops->mod == mod)
break;
}
if (&file_ops->list != &ftrace_module_file_list) {
list_del(&file_ops->list);
kfree(file_ops);
}
/*
* It is safest to reset the ring buffer if the module being unloaded
* registered any events.
*/
if (found)
tracing_reset_current_online_cpus();
up_write(&trace_event_mutex);
}
static int trace_module_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct module *mod = data;
mutex_lock(&event_mutex);
switch (val) {
case MODULE_STATE_COMING:
trace_module_add_events(mod);
break;
case MODULE_STATE_GOING:
trace_module_remove_events(mod);
break;
}
mutex_unlock(&event_mutex);
return 0;
}
#else
static int trace_module_notify(struct notifier_block *self,
unsigned long val, void *data)
{
return 0;
}
#endif /* CONFIG_MODULES */
static struct notifier_block trace_module_nb = {
.notifier_call = trace_module_notify,
.priority = 0,
};
tracing: Replace trace_event struct array with pointer array Currently the trace_event structures are placed in the _ftrace_events section, and at link time, the linker makes one large array of all the trace_event structures. On boot up, this array is read (much like the initcall sections) and the events are processed. The problem is that there is no guarantee that gcc will place complex structures nicely together in an array format. Two structures in the same file may be placed awkwardly, because gcc has no clue that they are suppose to be in an array. A hack was used previous to force the alignment to 4, to pack the structures together. But this caused alignment issues with other architectures (sparc). Instead of packing the structures into an array, the structures' addresses are now put into the _ftrace_event section. As pointers are always the natural alignment, gcc should always pack them tightly together (otherwise initcall, extable, etc would also fail). By having the pointers to the structures in the section, we can still iterate the trace_events without causing unnecessary alignment problems with other architectures, or depending on the current behaviour of gcc that will likely change in the future just to tick us kernel developers off a little more. The _ftrace_event section is also moved into the .init.data section as it is now only needed at boot up. Suggested-by: David Miller <davem@davemloft.net> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-01-27 07:15:30 -07:00
extern struct ftrace_event_call *__start_ftrace_events[];
extern struct ftrace_event_call *__stop_ftrace_events[];
static char bootup_event_buf[COMMAND_LINE_SIZE] __initdata;
static __init int setup_trace_event(char *str)
{
strlcpy(bootup_event_buf, str, COMMAND_LINE_SIZE);
ring_buffer_expanded = 1;
tracing_selftest_disabled = 1;
return 1;
}
__setup("trace_event=", setup_trace_event);
static __init int event_trace_init(void)
{
tracing: Replace trace_event struct array with pointer array Currently the trace_event structures are placed in the _ftrace_events section, and at link time, the linker makes one large array of all the trace_event structures. On boot up, this array is read (much like the initcall sections) and the events are processed. The problem is that there is no guarantee that gcc will place complex structures nicely together in an array format. Two structures in the same file may be placed awkwardly, because gcc has no clue that they are suppose to be in an array. A hack was used previous to force the alignment to 4, to pack the structures together. But this caused alignment issues with other architectures (sparc). Instead of packing the structures into an array, the structures' addresses are now put into the _ftrace_event section. As pointers are always the natural alignment, gcc should always pack them tightly together (otherwise initcall, extable, etc would also fail). By having the pointers to the structures in the section, we can still iterate the trace_events without causing unnecessary alignment problems with other architectures, or depending on the current behaviour of gcc that will likely change in the future just to tick us kernel developers off a little more. The _ftrace_event section is also moved into the .init.data section as it is now only needed at boot up. Suggested-by: David Miller <davem@davemloft.net> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-01-27 07:15:30 -07:00
struct ftrace_event_call **call;
struct dentry *d_tracer;
struct dentry *entry;
struct dentry *d_events;
int ret;
char *buf = bootup_event_buf;
char *token;
d_tracer = tracing_init_dentry();
if (!d_tracer)
return 0;
entry = debugfs_create_file("available_events", 0444, d_tracer,
(void *)&show_event_seq_ops,
&ftrace_avail_fops);
if (!entry)
pr_warning("Could not create debugfs "
"'available_events' entry\n");
entry = debugfs_create_file("set_event", 0644, d_tracer,
(void *)&show_set_event_seq_ops,
&ftrace_set_event_fops);
if (!entry)
pr_warning("Could not create debugfs "
"'set_event' entry\n");
d_events = event_trace_events_dir();
if (!d_events)
return 0;
/* ring buffer internal formats */
trace_create_file("header_page", 0444, d_events,
ring_buffer_print_page_header,
&ftrace_show_header_fops);
trace_create_file("header_event", 0444, d_events,
ring_buffer_print_entry_header,
&ftrace_show_header_fops);
trace_create_file("enable", 0644, d_events,
NULL, &ftrace_system_enable_fops);
if (trace_define_common_fields())
pr_warning("tracing: Failed to allocate common fields");
for_each_event(call, __start_ftrace_events, __stop_ftrace_events) {
tracing: Replace trace_event struct array with pointer array Currently the trace_event structures are placed in the _ftrace_events section, and at link time, the linker makes one large array of all the trace_event structures. On boot up, this array is read (much like the initcall sections) and the events are processed. The problem is that there is no guarantee that gcc will place complex structures nicely together in an array format. Two structures in the same file may be placed awkwardly, because gcc has no clue that they are suppose to be in an array. A hack was used previous to force the alignment to 4, to pack the structures together. But this caused alignment issues with other architectures (sparc). Instead of packing the structures into an array, the structures' addresses are now put into the _ftrace_event section. As pointers are always the natural alignment, gcc should always pack them tightly together (otherwise initcall, extable, etc would also fail). By having the pointers to the structures in the section, we can still iterate the trace_events without causing unnecessary alignment problems with other architectures, or depending on the current behaviour of gcc that will likely change in the future just to tick us kernel developers off a little more. The _ftrace_event section is also moved into the .init.data section as it is now only needed at boot up. Suggested-by: David Miller <davem@davemloft.net> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-01-27 07:15:30 -07:00
__trace_add_event_call(*call, NULL, &ftrace_event_id_fops,
&ftrace_enable_fops,
&ftrace_event_filter_fops,
&ftrace_event_format_fops);
}
while (true) {
token = strsep(&buf, ",");
if (!token)
break;
if (!*token)
continue;
ret = ftrace_set_clr_event(token, 1);
if (ret)
pr_warning("Failed to enable trace event: %s\n", token);
}
ret = register_module_notifier(&trace_module_nb);
if (ret)
pr_warning("Failed to register trace events module notifier\n");
return 0;
}
fs_initcall(event_trace_init);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
#ifdef CONFIG_FTRACE_STARTUP_TEST
static DEFINE_SPINLOCK(test_spinlock);
static DEFINE_SPINLOCK(test_spinlock_irq);
static DEFINE_MUTEX(test_mutex);
static __init void test_work(struct work_struct *dummy)
{
spin_lock(&test_spinlock);
spin_lock_irq(&test_spinlock_irq);
udelay(1);
spin_unlock_irq(&test_spinlock_irq);
spin_unlock(&test_spinlock);
mutex_lock(&test_mutex);
msleep(1);
mutex_unlock(&test_mutex);
}
static __init int event_test_thread(void *unused)
{
void *test_malloc;
test_malloc = kmalloc(1234, GFP_KERNEL);
if (!test_malloc)
pr_info("failed to kmalloc\n");
schedule_on_each_cpu(test_work);
kfree(test_malloc);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop())
schedule();
return 0;
}
/*
* Do various things that may trigger events.
*/
static __init void event_test_stuff(void)
{
struct task_struct *test_thread;
test_thread = kthread_run(event_test_thread, NULL, "test-events");
msleep(1);
kthread_stop(test_thread);
}
/*
* For every trace event defined, we will test each trace point separately,
* and then by groups, and finally all trace points.
*/
static __init void event_trace_self_tests(void)
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
{
struct ftrace_event_call *call;
struct event_subsystem *system;
int ret;
pr_info("Running tests on trace events:\n");
list_for_each_entry(call, &ftrace_events, list) {
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 10:27:06 -06:00
/* Only test those that have a probe */
if (!call->class || !call->class->probe)
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
continue;
/*
* Testing syscall events here is pretty useless, but
* we still do it if configured. But this is time consuming.
* What we really need is a user thread to perform the
* syscalls as we test.
*/
#ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS
if (call->class->system &&
strcmp(call->class->system, "syscalls") == 0)
continue;
#endif
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
pr_info("Testing event %s: ", call->name);
/*
* If an event is already enabled, someone is using
* it and the self test should not be on.
*/
if (call->flags & TRACE_EVENT_FL_ENABLED) {
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
pr_warning("Enabled event during self test!\n");
WARN_ON_ONCE(1);
continue;
}
ftrace_event_enable_disable(call, 1);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
event_test_stuff();
ftrace_event_enable_disable(call, 0);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
pr_cont("OK\n");
}
/* Now test at the sub system level */
pr_info("Running tests on trace event systems:\n");
list_for_each_entry(system, &event_subsystems, list) {
/* the ftrace system is special, skip it */
if (strcmp(system->name, "ftrace") == 0)
continue;
pr_info("Testing event system %s: ", system->name);
ret = __ftrace_set_clr_event(NULL, system->name, NULL, 1);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
if (WARN_ON_ONCE(ret)) {
pr_warning("error enabling system %s\n",
system->name);
continue;
}
event_test_stuff();
ret = __ftrace_set_clr_event(NULL, system->name, NULL, 0);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
if (WARN_ON_ONCE(ret))
pr_warning("error disabling system %s\n",
system->name);
pr_cont("OK\n");
}
/* Test with all events enabled */
pr_info("Running tests on all trace events:\n");
pr_info("Testing all events: ");
ret = __ftrace_set_clr_event(NULL, NULL, NULL, 1);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
if (WARN_ON_ONCE(ret)) {
pr_warning("error enabling all events\n");
return;
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
}
event_test_stuff();
/* reset sysname */
ret = __ftrace_set_clr_event(NULL, NULL, NULL, 0);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
if (WARN_ON_ONCE(ret)) {
pr_warning("error disabling all events\n");
return;
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
}
pr_cont("OK\n");
}
#ifdef CONFIG_FUNCTION_TRACER
static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable);
static void
function_test_events_call(unsigned long ip, unsigned long parent_ip)
{
struct ring_buffer_event *event;
struct ring_buffer *buffer;
struct ftrace_entry *entry;
unsigned long flags;
long disabled;
int cpu;
int pc;
pc = preempt_count();
tracing: Remove ftrace_preempt_disable/enable The ftrace_preempt_disable/enable functions were to address a recursive race caused by the function tracer. The function tracer traces all functions which makes it easily susceptible to recursion. One area was preempt_enable(). This would call the scheduler and the schedulre would call the function tracer and loop. (So was it thought). The ftrace_preempt_disable/enable was made to protect against recursion inside the scheduler by storing the NEED_RESCHED flag. If it was set before the ftrace_preempt_disable() it would not call schedule on ftrace_preempt_enable(), thinking that if it was set before then it would have already scheduled unless it was already in the scheduler. This worked fine except in the case of SMP, where another task would set the NEED_RESCHED flag for a task on another CPU, and then kick off an IPI to trigger it. This could cause the NEED_RESCHED to be saved at ftrace_preempt_disable() but the IPI to arrive in the the preempt disabled section. The ftrace_preempt_enable() would not call the scheduler because the flag was already set before entring the section. This bug would cause a missed preemption check and cause lower latencies. Investigating further, I found that the recusion caused by the function tracer was not due to schedule(), but due to preempt_schedule(). Now that preempt_schedule is completely annotated with notrace, the recusion no longer is an issue. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-03 07:36:50 -06:00
preempt_disable_notrace();
cpu = raw_smp_processor_id();
disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu));
if (disabled != 1)
goto out;
local_save_flags(flags);
event = trace_current_buffer_lock_reserve(&buffer,
TRACE_FN, sizeof(*entry),
flags, pc);
if (!event)
goto out;
entry = ring_buffer_event_data(event);
entry->ip = ip;
entry->parent_ip = parent_ip;
trace_nowake_buffer_unlock_commit(buffer, event, flags, pc);
out:
atomic_dec(&per_cpu(ftrace_test_event_disable, cpu));
tracing: Remove ftrace_preempt_disable/enable The ftrace_preempt_disable/enable functions were to address a recursive race caused by the function tracer. The function tracer traces all functions which makes it easily susceptible to recursion. One area was preempt_enable(). This would call the scheduler and the schedulre would call the function tracer and loop. (So was it thought). The ftrace_preempt_disable/enable was made to protect against recursion inside the scheduler by storing the NEED_RESCHED flag. If it was set before the ftrace_preempt_disable() it would not call schedule on ftrace_preempt_enable(), thinking that if it was set before then it would have already scheduled unless it was already in the scheduler. This worked fine except in the case of SMP, where another task would set the NEED_RESCHED flag for a task on another CPU, and then kick off an IPI to trigger it. This could cause the NEED_RESCHED to be saved at ftrace_preempt_disable() but the IPI to arrive in the the preempt disabled section. The ftrace_preempt_enable() would not call the scheduler because the flag was already set before entring the section. This bug would cause a missed preemption check and cause lower latencies. Investigating further, I found that the recusion caused by the function tracer was not due to schedule(), but due to preempt_schedule(). Now that preempt_schedule is completely annotated with notrace, the recusion no longer is an issue. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-03 07:36:50 -06:00
preempt_enable_notrace();
}
static struct ftrace_ops trace_ops __initdata =
{
.func = function_test_events_call,
};
static __init void event_trace_self_test_with_function(void)
{
register_ftrace_function(&trace_ops);
pr_info("Running tests again, along with the function tracer\n");
event_trace_self_tests();
unregister_ftrace_function(&trace_ops);
}
#else
static __init void event_trace_self_test_with_function(void)
{
}
#endif
static __init int event_trace_self_tests_init(void)
{
if (!tracing_selftest_disabled) {
event_trace_self_tests();
event_trace_self_test_with_function();
}
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
return 0;
}
late_initcall(event_trace_self_tests_init);
tracing/events: add startup tests for events As events start to become popular, and the new way to add tracing infrastructure into ftrace, it is important to catch any problems that might happen with a mistake in the TRACE_EVENT macro. This patch introduces a startup self test on the registered trace events. Note, it can only do a generic test, any type of testing that needs more involement is needed to be implemented by the tracepoint creators. The test goes down one by one enabling a trace point and running some random tasks (random in the sense that I just made them up). Those tasks are creating threads, grabbing mutexes and spinlocks and using workqueues. After testing each event individually, it does the same test after enabling each system of trace points. Like sched, irq, lockdep. Then finally it enables all tracepoints and performs the tasks again. The output to the console on bootup will look like this when everything works: Running tests on trace events: Testing event kfree_skb: OK Testing event kmalloc: OK Testing event kmem_cache_alloc: OK Testing event kmalloc_node: OK Testing event kmem_cache_alloc_node: OK Testing event kfree: OK Testing event kmem_cache_free: OK Testing event irq_handler_exit: OK Testing event irq_handler_entry: OK Testing event softirq_entry: OK Testing event softirq_exit: OK Testing event lock_acquire: OK Testing event lock_release: OK Testing event sched_kthread_stop: OK Testing event sched_kthread_stop_ret: OK Testing event sched_wait_task: OK Testing event sched_wakeup: OK Testing event sched_wakeup_new: OK Testing event sched_switch: OK Testing event sched_migrate_task: OK Testing event sched_process_free: OK Testing event sched_process_exit: OK Testing event sched_process_wait: OK Testing event sched_process_fork: OK Testing event sched_signal_send: OK Running tests on trace event systems: Testing event system skb: OK Testing event system kmem: OK Testing event system irq: OK Testing event system lockdep: OK Testing event system sched: OK Running tests on all trace events: Testing all events: OK [ folded in: tracing: add #include <linux/delay.h> to fix build failure in test_work() This build failure occured on a few rare configs: kernel/trace/trace_events.c: In function ‘test_work’: kernel/trace/trace_events.c:975: error: implicit declaration of function ‘udelay’ kernel/trace/trace_events.c:980: error: implicit declaration of function ‘msleep’ delay.h is included in way too many other headers, hiding cases where new usage is added without header inclusion. [ Impact: build fix ] Signed-off-by: Ingo Molnar <mingo@elte.hu> ] [ Impact: add event tracer self-tests ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-15 11:36:40 -06:00
#endif