kernel-fxtec-pro1x/arch/um/include/sysdep-i386/ptrace.h

228 lines
6.6 KiB
C
Raw Normal View History

/*
* Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
* Licensed under the GPL
*/
#ifndef __SYSDEP_I386_PTRACE_H
#define __SYSDEP_I386_PTRACE_H
#include "uml-config.h"
#include "user_constants.h"
#include "sysdep/faultinfo.h"
#include "choose-mode.h"
#define MAX_REG_NR (UM_FRAME_SIZE / sizeof(unsigned long))
#define MAX_REG_OFFSET (UM_FRAME_SIZE)
extern void update_debugregs(int seq);
/* syscall emulation path in ptrace */
#ifndef PTRACE_SYSEMU
#define PTRACE_SYSEMU 31
#endif
void set_using_sysemu(int value);
int get_using_sysemu(void);
extern int sysemu_supported;
#ifdef UML_CONFIG_MODE_TT
#include "sysdep/sc.h"
#endif
#ifdef UML_CONFIG_MODE_SKAS
#include "skas_ptregs.h"
#define REGS_IP(r) ((r)[HOST_IP])
#define REGS_SP(r) ((r)[HOST_SP])
#define REGS_EFLAGS(r) ((r)[HOST_EFLAGS])
#define REGS_EAX(r) ((r)[HOST_EAX])
#define REGS_EBX(r) ((r)[HOST_EBX])
#define REGS_ECX(r) ((r)[HOST_ECX])
#define REGS_EDX(r) ((r)[HOST_EDX])
#define REGS_ESI(r) ((r)[HOST_ESI])
#define REGS_EDI(r) ((r)[HOST_EDI])
#define REGS_EBP(r) ((r)[HOST_EBP])
#define REGS_CS(r) ((r)[HOST_CS])
#define REGS_SS(r) ((r)[HOST_SS])
#define REGS_DS(r) ((r)[HOST_DS])
#define REGS_ES(r) ((r)[HOST_ES])
#define REGS_FS(r) ((r)[HOST_FS])
#define REGS_GS(r) ((r)[HOST_GS])
#define REGS_SET_SYSCALL_RETURN(r, res) REGS_EAX(r) = (res)
#define REGS_RESTART_SYSCALL(r) IP_RESTART_SYSCALL(REGS_IP(r))
#endif
#ifndef PTRACE_SYSEMU_SINGLESTEP
#define PTRACE_SYSEMU_SINGLESTEP 32
#endif
union uml_pt_regs {
#ifdef UML_CONFIG_MODE_TT
struct tt_regs {
long syscall;
void *sc;
[PATCH] uml: S390 preparation, abstract host page fault data This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05 17:15:31 -06:00
struct faultinfo faultinfo;
} tt;
#endif
#ifdef UML_CONFIG_MODE_SKAS
struct skas_regs {
unsigned long regs[HOST_FRAME_SIZE];
unsigned long fp[HOST_FP_SIZE];
unsigned long xfp[HOST_XFP_SIZE];
[PATCH] uml: S390 preparation, abstract host page fault data This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05 17:15:31 -06:00
struct faultinfo faultinfo;
long syscall;
int is_user;
} skas;
#endif
};
#define EMPTY_UML_PT_REGS { }
extern int mode_tt;
#define UPT_SC(r) ((r)->tt.sc)
#define UPT_IP(r) \
__CHOOSE_MODE(SC_IP(UPT_SC(r)), REGS_IP((r)->skas.regs))
#define UPT_SP(r) \
__CHOOSE_MODE(SC_SP(UPT_SC(r)), REGS_SP((r)->skas.regs))
#define UPT_EFLAGS(r) \
__CHOOSE_MODE(SC_EFLAGS(UPT_SC(r)), REGS_EFLAGS((r)->skas.regs))
#define UPT_EAX(r) \
__CHOOSE_MODE(SC_EAX(UPT_SC(r)), REGS_EAX((r)->skas.regs))
#define UPT_EBX(r) \
__CHOOSE_MODE(SC_EBX(UPT_SC(r)), REGS_EBX((r)->skas.regs))
#define UPT_ECX(r) \
__CHOOSE_MODE(SC_ECX(UPT_SC(r)), REGS_ECX((r)->skas.regs))
#define UPT_EDX(r) \
__CHOOSE_MODE(SC_EDX(UPT_SC(r)), REGS_EDX((r)->skas.regs))
#define UPT_ESI(r) \
__CHOOSE_MODE(SC_ESI(UPT_SC(r)), REGS_ESI((r)->skas.regs))
#define UPT_EDI(r) \
__CHOOSE_MODE(SC_EDI(UPT_SC(r)), REGS_EDI((r)->skas.regs))
#define UPT_EBP(r) \
__CHOOSE_MODE(SC_EBP(UPT_SC(r)), REGS_EBP((r)->skas.regs))
#define UPT_ORIG_EAX(r) \
__CHOOSE_MODE((r)->tt.syscall, (r)->skas.syscall)
#define UPT_CS(r) \
__CHOOSE_MODE(SC_CS(UPT_SC(r)), REGS_CS((r)->skas.regs))
#define UPT_SS(r) \
__CHOOSE_MODE(SC_SS(UPT_SC(r)), REGS_SS((r)->skas.regs))
#define UPT_DS(r) \
__CHOOSE_MODE(SC_DS(UPT_SC(r)), REGS_DS((r)->skas.regs))
#define UPT_ES(r) \
__CHOOSE_MODE(SC_ES(UPT_SC(r)), REGS_ES((r)->skas.regs))
#define UPT_FS(r) \
__CHOOSE_MODE(SC_FS(UPT_SC(r)), REGS_FS((r)->skas.regs))
#define UPT_GS(r) \
__CHOOSE_MODE(SC_GS(UPT_SC(r)), REGS_GS((r)->skas.regs))
#define UPT_SYSCALL_ARG1(r) UPT_EBX(r)
#define UPT_SYSCALL_ARG2(r) UPT_ECX(r)
#define UPT_SYSCALL_ARG3(r) UPT_EDX(r)
#define UPT_SYSCALL_ARG4(r) UPT_ESI(r)
#define UPT_SYSCALL_ARG5(r) UPT_EDI(r)
#define UPT_SYSCALL_ARG6(r) UPT_EBP(r)
extern int user_context(unsigned long sp);
#define UPT_IS_USER(r) \
CHOOSE_MODE(user_context(UPT_SP(r)), (r)->skas.is_user)
struct syscall_args {
unsigned long args[6];
};
#define SYSCALL_ARGS(r) ((struct syscall_args) \
{ .args = { UPT_SYSCALL_ARG1(r), \
UPT_SYSCALL_ARG2(r), \
UPT_SYSCALL_ARG3(r), \
UPT_SYSCALL_ARG4(r), \
UPT_SYSCALL_ARG5(r), \
UPT_SYSCALL_ARG6(r) } } )
#define UPT_REG(regs, reg) \
({ unsigned long val; \
switch(reg){ \
case EIP: val = UPT_IP(regs); break; \
case UESP: val = UPT_SP(regs); break; \
case EAX: val = UPT_EAX(regs); break; \
case EBX: val = UPT_EBX(regs); break; \
case ECX: val = UPT_ECX(regs); break; \
case EDX: val = UPT_EDX(regs); break; \
case ESI: val = UPT_ESI(regs); break; \
case EDI: val = UPT_EDI(regs); break; \
case EBP: val = UPT_EBP(regs); break; \
case ORIG_EAX: val = UPT_ORIG_EAX(regs); break; \
case CS: val = UPT_CS(regs); break; \
case SS: val = UPT_SS(regs); break; \
case DS: val = UPT_DS(regs); break; \
case ES: val = UPT_ES(regs); break; \
case FS: val = UPT_FS(regs); break; \
case GS: val = UPT_GS(regs); break; \
case EFL: val = UPT_EFLAGS(regs); break; \
default : \
panic("Bad register in UPT_REG : %d\n", reg); \
val = -1; \
} \
val; \
})
#define UPT_SET(regs, reg, val) \
do { \
switch(reg){ \
case EIP: UPT_IP(regs) = val; break; \
case UESP: UPT_SP(regs) = val; break; \
case EAX: UPT_EAX(regs) = val; break; \
case EBX: UPT_EBX(regs) = val; break; \
case ECX: UPT_ECX(regs) = val; break; \
case EDX: UPT_EDX(regs) = val; break; \
case ESI: UPT_ESI(regs) = val; break; \
case EDI: UPT_EDI(regs) = val; break; \
case EBP: UPT_EBP(regs) = val; break; \
case ORIG_EAX: UPT_ORIG_EAX(regs) = val; break; \
case CS: UPT_CS(regs) = val; break; \
case SS: UPT_SS(regs) = val; break; \
case DS: UPT_DS(regs) = val; break; \
case ES: UPT_ES(regs) = val; break; \
case FS: UPT_FS(regs) = val; break; \
case GS: UPT_GS(regs) = val; break; \
case EFL: UPT_EFLAGS(regs) = val; break; \
default : \
panic("Bad register in UPT_SET : %d\n", reg); \
break; \
} \
} while (0)
#define UPT_SET_SYSCALL_RETURN(r, res) \
CHOOSE_MODE(SC_SET_SYSCALL_RETURN(UPT_SC(r), (res)), \
REGS_SET_SYSCALL_RETURN((r)->skas.regs, (res)))
#define UPT_RESTART_SYSCALL(r) \
CHOOSE_MODE(SC_RESTART_SYSCALL(UPT_SC(r)), \
REGS_RESTART_SYSCALL((r)->skas.regs))
#define UPT_ORIG_SYSCALL(r) UPT_EAX(r)
#define UPT_SYSCALL_NR(r) UPT_ORIG_EAX(r)
#define UPT_SYSCALL_RET(r) UPT_EAX(r)
[PATCH] uml: S390 preparation, abstract host page fault data This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05 17:15:31 -06:00
#define UPT_FAULTINFO(r) \
CHOOSE_MODE((&(r)->tt.faultinfo), (&(r)->skas.faultinfo))
#endif
/*
* Overrides for Emacs so that we follow Linus's tabbing style.
* Emacs will notice this stuff at the end of the file and automatically
* adjust the settings for this buffer only. This must remain at the end
* of the file.
* ---------------------------------------------------------------------------
* Local variables:
* c-file-style: "linux"
* End:
*/