kernel-fxtec-pro1x/arch/x86/kernel/cpu/perf_counter.c

564 lines
14 KiB
C
Raw Normal View History

/*
* Performance counter x86 architecture code
*
* Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/perf_counter.h>
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/kdebug.h>
#include <linux/sched.h>
#include <asm/intel_arch_perfmon.h>
#include <asm/apic.h>
static bool perf_counters_initialized __read_mostly;
/*
* Number of (generic) HW counters:
*/
static int nr_hw_counters __read_mostly;
static u32 perf_counter_mask __read_mostly;
/* No support for fixed function counters yet */
#define MAX_HW_COUNTERS 8
struct cpu_hw_counters {
struct perf_counter *counters[MAX_HW_COUNTERS];
unsigned long used[BITS_TO_LONGS(MAX_HW_COUNTERS)];
};
/*
* Intel PerfMon v3. Used on Core2 and later.
*/
static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
const int intel_perfmon_event_map[] =
{
[PERF_COUNT_CYCLES] = 0x003c,
[PERF_COUNT_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
[PERF_COUNT_CACHE_MISSES] = 0x412e,
[PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_BRANCH_MISSES] = 0x00c5,
};
const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map);
/*
* Setup the hardware configuration for a given hw_event_type
*/
static int __hw_perf_counter_init(struct perf_counter *counter)
{
struct perf_counter_hw_event *hw_event = &counter->hw_event;
struct hw_perf_counter *hwc = &counter->hw;
if (unlikely(!perf_counters_initialized))
return -EINVAL;
/*
* Count user events, and generate PMC IRQs:
* (keep 'enabled' bit clear for now)
*/
hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT;
/*
* If privileged enough, count OS events too, and allow
* NMI events as well:
*/
hwc->nmi = 0;
if (capable(CAP_SYS_ADMIN)) {
hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
if (hw_event->nmi)
hwc->nmi = 1;
}
hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0;
hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0;
hwc->irq_period = hw_event->irq_period;
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic counter period:
*/
if (!hwc->irq_period)
hwc->irq_period = 0x7FFFFFFF;
hwc->next_count = -(s32)hwc->irq_period;
/*
* Raw event type provide the config in the event structure
*/
if (hw_event->raw) {
hwc->config |= hw_event->type;
} else {
if (hw_event->type >= max_intel_perfmon_events)
return -EINVAL;
/*
* The generic map:
*/
hwc->config |= intel_perfmon_event_map[hw_event->type];
}
counter->wakeup_pending = 0;
return 0;
}
void hw_perf_enable_all(void)
{
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0);
}
void hw_perf_restore(u64 ctrl)
{
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0);
}
EXPORT_SYMBOL_GPL(hw_perf_restore);
u64 hw_perf_save_disable(void)
{
u64 ctrl;
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
return ctrl;
}
EXPORT_SYMBOL_GPL(hw_perf_save_disable);
static inline void
__x86_perf_counter_disable(struct hw_perf_counter *hwc, unsigned int idx)
{
wrmsr(hwc->config_base + idx, hwc->config, 0);
}
static DEFINE_PER_CPU(u64, prev_next_count[MAX_HW_COUNTERS]);
static void __hw_perf_counter_set_period(struct hw_perf_counter *hwc, int idx)
{
per_cpu(prev_next_count[idx], smp_processor_id()) = hwc->next_count;
wrmsr(hwc->counter_base + idx, hwc->next_count, 0);
}
static void __x86_perf_counter_enable(struct hw_perf_counter *hwc, int idx)
{
wrmsr(hwc->config_base + idx,
hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0);
}
static void x86_perf_counter_enable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
/* Try to get the previous counter again */
if (test_and_set_bit(idx, cpuc->used)) {
idx = find_first_zero_bit(cpuc->used, nr_hw_counters);
set_bit(idx, cpuc->used);
hwc->idx = idx;
}
perf_counters_lapic_init(hwc->nmi);
__x86_perf_counter_disable(hwc, idx);
cpuc->counters[idx] = counter;
__hw_perf_counter_set_period(hwc, idx);
__x86_perf_counter_enable(hwc, idx);
}
static void __hw_perf_save_counter(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
s64 raw = -1;
s64 delta;
/*
* Get the raw hw counter value:
*/
rdmsrl(hwc->counter_base + idx, raw);
/*
* Rebase it to zero (it started counting at -irq_period),
* to see the delta since ->prev_count:
*/
delta = (s64)hwc->irq_period + (s64)(s32)raw;
atomic64_counter_set(counter, hwc->prev_count + delta);
/*
* Adjust the ->prev_count offset - if we went beyond
* irq_period of units, then we got an IRQ and the counter
* was set back to -irq_period:
*/
while (delta >= (s64)hwc->irq_period) {
hwc->prev_count += hwc->irq_period;
delta -= (s64)hwc->irq_period;
}
/*
* Calculate the next raw counter value we'll write into
* the counter at the next sched-in time:
*/
delta -= (s64)hwc->irq_period;
hwc->next_count = (s32)delta;
}
void perf_counter_print_debug(void)
{
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, next_count;
int cpu, idx;
if (!nr_hw_counters)
return;
local_irq_disable();
cpu = smp_processor_id();
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
printk(KERN_INFO "\n");
printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl);
printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status);
printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow);
for (idx = 0; idx < nr_hw_counters; idx++) {
rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count);
next_count = per_cpu(prev_next_count[idx], cpu);
printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n",
cpu, idx, pmc_ctrl);
printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n",
cpu, idx, pmc_count);
printk(KERN_INFO "CPU#%d: PMC%d next: %016llx\n",
cpu, idx, next_count);
}
local_irq_enable();
}
static void x86_perf_counter_disable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
unsigned int idx = hwc->idx;
__x86_perf_counter_disable(hwc, idx);
clear_bit(idx, cpuc->used);
cpuc->counters[idx] = NULL;
__hw_perf_save_counter(counter, hwc, idx);
}
static void x86_perf_counter_read(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
unsigned long addr = hwc->counter_base + hwc->idx;
s64 offs, val = -1LL;
s32 val32;
/* Careful: NMI might modify the counter offset */
do {
offs = hwc->prev_count;
rdmsrl(addr, val);
} while (offs != hwc->prev_count);
val32 = (s32) val;
val = (s64)hwc->irq_period + (s64)val32;
atomic64_counter_set(counter, hwc->prev_count + val);
}
static void perf_store_irq_data(struct perf_counter *counter, u64 data)
{
struct perf_data *irqdata = counter->irqdata;
if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
irqdata->overrun++;
} else {
u64 *p = (u64 *) &irqdata->data[irqdata->len];
*p = data;
irqdata->len += sizeof(u64);
}
}
/*
* NMI-safe enable method:
*/
static void perf_save_and_restart(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
u64 pmc_ctrl;
rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
__hw_perf_save_counter(counter, hwc, idx);
__hw_perf_counter_set_period(hwc, idx);
if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE)
__x86_perf_counter_enable(hwc, idx);
}
static void
perf_handle_group(struct perf_counter *sibling, u64 *status, u64 *overflown)
{
struct perf_counter *counter, *group_leader = sibling->group_leader;
int bit;
/*
* Store the counter's own timestamp first:
*/
perf_store_irq_data(sibling, sibling->hw_event.type);
perf_store_irq_data(sibling, atomic64_counter_read(sibling));
/*
* Then store sibling timestamps (if any):
*/
list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
/*
* When counter was not in the overflow mask, we have to
* read it from hardware. We read it as well, when it
* has not been read yet and clear the bit in the
* status mask.
*/
bit = counter->hw.idx;
if (!test_bit(bit, (unsigned long *) overflown) ||
test_bit(bit, (unsigned long *) status)) {
clear_bit(bit, (unsigned long *) status);
perf_save_and_restart(counter);
}
}
perf_store_irq_data(sibling, counter->hw_event.type);
perf_store_irq_data(sibling, atomic64_counter_read(counter));
}
}
/*
* This handler is triggered by the local APIC, so the APIC IRQ handling
* rules apply:
*/
static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi)
{
int bit, cpu = smp_processor_id();
u64 ack, status, saved_global;
struct cpu_hw_counters *cpuc;
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global);
/* Disable counters globally */
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
ack_APIC_irq();
cpuc = &per_cpu(cpu_hw_counters, cpu);
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
if (!status)
goto out;
again:
ack = status;
for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) {
struct perf_counter *counter = cpuc->counters[bit];
clear_bit(bit, (unsigned long *) &status);
if (!counter)
continue;
perf_save_and_restart(counter);
switch (counter->hw_event.record_type) {
case PERF_RECORD_SIMPLE:
continue;
case PERF_RECORD_IRQ:
perf_store_irq_data(counter, instruction_pointer(regs));
break;
case PERF_RECORD_GROUP:
perf_handle_group(counter, &status, &ack);
break;
}
/*
* From NMI context we cannot call into the scheduler to
* do a task wakeup - but we mark these counters as
* wakeup_pending and initate a wakeup callback:
*/
if (nmi) {
counter->wakeup_pending = 1;
set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
} else {
wake_up(&counter->waitq);
}
}
wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0);
/*
* Repeat if there is more work to be done:
*/
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
if (status)
goto again;
out:
/*
* Restore - do not reenable when global enable is off:
*/
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0);
}
void smp_perf_counter_interrupt(struct pt_regs *regs)
{
irq_enter();
#ifdef CONFIG_X86_64
add_pda(apic_perf_irqs, 1);
#else
per_cpu(irq_stat, smp_processor_id()).apic_perf_irqs++;
#endif
apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
__smp_perf_counter_interrupt(regs, 0);
irq_exit();
}
/*
* This handler is triggered by NMI contexts:
*/
void perf_counter_notify(struct pt_regs *regs)
{
struct cpu_hw_counters *cpuc;
unsigned long flags;
int bit, cpu;
local_irq_save(flags);
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
for_each_bit(bit, cpuc->used, nr_hw_counters) {
struct perf_counter *counter = cpuc->counters[bit];
if (!counter)
continue;
if (counter->wakeup_pending) {
counter->wakeup_pending = 0;
wake_up(&counter->waitq);
}
}
local_irq_restore(flags);
}
void __cpuinit perf_counters_lapic_init(int nmi)
{
u32 apic_val;
if (!perf_counters_initialized)
return;
/*
* Enable the performance counter vector in the APIC LVT:
*/
apic_val = apic_read(APIC_LVTERR);
apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
if (nmi)
apic_write(APIC_LVTPC, APIC_DM_NMI);
else
apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
apic_write(APIC_LVTERR, apic_val);
}
static int __kprobes
perf_counter_nmi_handler(struct notifier_block *self,
unsigned long cmd, void *__args)
{
struct die_args *args = __args;
struct pt_regs *regs;
if (likely(cmd != DIE_NMI_IPI))
return NOTIFY_DONE;
regs = args->regs;
apic_write(APIC_LVTPC, APIC_DM_NMI);
__smp_perf_counter_interrupt(regs, 1);
return NOTIFY_STOP;
}
static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
.notifier_call = perf_counter_nmi_handler
};
void __init init_hw_perf_counters(void)
{
union cpuid10_eax eax;
unsigned int unused;
unsigned int ebx;
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return;
/*
* Check whether the Architectural PerfMon supports
* Branch Misses Retired Event or not.
*/
cpuid(10, &(eax.full), &ebx, &unused, &unused);
if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
return;
printk(KERN_INFO "Intel Performance Monitoring support detected.\n");
printk(KERN_INFO "... version: %d\n", eax.split.version_id);
printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters);
nr_hw_counters = eax.split.num_counters;
if (nr_hw_counters > MAX_HW_COUNTERS) {
nr_hw_counters = MAX_HW_COUNTERS;
WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
nr_hw_counters, MAX_HW_COUNTERS);
}
perf_counter_mask = (1 << nr_hw_counters) - 1;
perf_max_counters = nr_hw_counters;
printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width);
printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length);
perf_counters_lapic_init(0);
register_die_notifier(&perf_counter_nmi_notifier);
perf_counters_initialized = true;
}
static const struct hw_perf_counter_ops x86_perf_counter_ops = {
.hw_perf_counter_enable = x86_perf_counter_enable,
.hw_perf_counter_disable = x86_perf_counter_disable,
.hw_perf_counter_read = x86_perf_counter_read,
};
const struct hw_perf_counter_ops *
hw_perf_counter_init(struct perf_counter *counter)
{
int err;
err = __hw_perf_counter_init(counter);
if (err)
return NULL;
return &x86_perf_counter_ops;
}