2008-09-17 09:34:25 -06:00
|
|
|
/*
|
|
|
|
* Ultra Wide Band
|
|
|
|
* AES-128 CCM Encryption
|
|
|
|
*
|
|
|
|
* Copyright (C) 2007 Intel Corporation
|
|
|
|
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License version
|
|
|
|
* 2 as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
|
|
* 02110-1301, USA.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* We don't do any encryption here; we use the Linux Kernel's AES-128
|
|
|
|
* crypto modules to construct keys and payload blocks in a way
|
|
|
|
* defined by WUSB1.0[6]. Check the erratas, as typos are are patched
|
|
|
|
* there.
|
|
|
|
*
|
|
|
|
* Thanks a zillion to John Keys for his help and clarifications over
|
|
|
|
* the designed-by-a-committee text.
|
|
|
|
*
|
|
|
|
* So the idea is that there is this basic Pseudo-Random-Function
|
|
|
|
* defined in WUSB1.0[6.5] which is the core of everything. It works
|
|
|
|
* by tweaking some blocks, AES crypting them and then xoring
|
|
|
|
* something else with them (this seems to be called CBC(AES) -- can
|
|
|
|
* you tell I know jack about crypto?). So we just funnel it into the
|
|
|
|
* Linux Crypto API.
|
|
|
|
*
|
|
|
|
* We leave a crypto test module so we can verify that vectors match,
|
|
|
|
* every now and then.
|
|
|
|
*
|
|
|
|
* Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
|
|
|
|
* am learning a lot...
|
|
|
|
*
|
|
|
|
* Conveniently, some data structures that need to be
|
|
|
|
* funneled through AES are...16 bytes in size!
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/crypto.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/uwb.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
|
|
|
#include <linux/slab.h>
|
2008-09-17 09:34:25 -06:00
|
|
|
#include <linux/usb/wusb.h>
|
|
|
|
#include <linux/scatterlist.h>
|
|
|
|
|
2008-10-27 09:30:12 -06:00
|
|
|
static int debug_crypto_verify = 0;
|
|
|
|
|
|
|
|
module_param(debug_crypto_verify, int, 0);
|
|
|
|
MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
|
2008-09-17 09:34:25 -06:00
|
|
|
|
2008-12-22 11:27:17 -07:00
|
|
|
static void wusb_key_dump(const void *buf, size_t len)
|
|
|
|
{
|
|
|
|
print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
|
|
|
|
buf, len, 0);
|
|
|
|
}
|
|
|
|
|
2008-09-17 09:34:25 -06:00
|
|
|
/*
|
|
|
|
* Block of data, as understood by AES-CCM
|
|
|
|
*
|
|
|
|
* The code assumes this structure is nothing but a 16 byte array
|
|
|
|
* (packed in a struct to avoid common mess ups that I usually do with
|
|
|
|
* arrays and enforcing type checking).
|
|
|
|
*/
|
|
|
|
struct aes_ccm_block {
|
|
|
|
u8 data[16];
|
|
|
|
} __attribute__((packed));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Counter-mode Blocks (WUSB1.0[6.4])
|
|
|
|
*
|
|
|
|
* According to CCM (or so it seems), for the purpose of calculating
|
|
|
|
* the MIC, the message is broken in N counter-mode blocks, B0, B1,
|
|
|
|
* ... BN.
|
|
|
|
*
|
|
|
|
* B0 contains flags, the CCM nonce and l(m).
|
|
|
|
*
|
|
|
|
* B1 contains l(a), the MAC header, the encryption offset and padding.
|
|
|
|
*
|
|
|
|
* If EO is nonzero, additional blocks are built from payload bytes
|
|
|
|
* until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
|
|
|
|
* padding is not xmitted.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* WUSB1.0[T6.4] */
|
|
|
|
struct aes_ccm_b0 {
|
|
|
|
u8 flags; /* 0x59, per CCM spec */
|
|
|
|
struct aes_ccm_nonce ccm_nonce;
|
|
|
|
__be16 lm;
|
|
|
|
} __attribute__((packed));
|
|
|
|
|
|
|
|
/* WUSB1.0[T6.5] */
|
|
|
|
struct aes_ccm_b1 {
|
|
|
|
__be16 la;
|
|
|
|
u8 mac_header[10];
|
|
|
|
__le16 eo;
|
|
|
|
u8 security_reserved; /* This is always zero */
|
|
|
|
u8 padding; /* 0 */
|
|
|
|
} __attribute__((packed));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encryption Blocks (WUSB1.0[6.4.4])
|
|
|
|
*
|
|
|
|
* CCM uses Ax blocks to generate a keystream with which the MIC and
|
|
|
|
* the message's payload are encoded. A0 always encrypts/decrypts the
|
tree-wide: fix assorted typos all over the place
That is "success", "unknown", "through", "performance", "[re|un]mapping"
, "access", "default", "reasonable", "[con]currently", "temperature"
, "channel", "[un]used", "application", "example","hierarchy", "therefore"
, "[over|under]flow", "contiguous", "threshold", "enough" and others.
Signed-off-by: André Goddard Rosa <andre.goddard@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2009-11-14 08:09:05 -07:00
|
|
|
* MIC. Ax (x>0) are used for the successive payload blocks.
|
2008-09-17 09:34:25 -06:00
|
|
|
*
|
|
|
|
* The x is the counter, and is increased for each block.
|
|
|
|
*/
|
|
|
|
struct aes_ccm_a {
|
|
|
|
u8 flags; /* 0x01, per CCM spec */
|
|
|
|
struct aes_ccm_nonce ccm_nonce;
|
|
|
|
__be16 counter; /* Value of x */
|
|
|
|
} __attribute__((packed));
|
|
|
|
|
|
|
|
static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
|
|
|
|
size_t size)
|
|
|
|
{
|
|
|
|
u8 *bo = _bo;
|
|
|
|
const u8 *bi1 = _bi1, *bi2 = _bi2;
|
|
|
|
size_t itr;
|
|
|
|
for (itr = 0; itr < size; itr++)
|
|
|
|
bo[itr] = bi1[itr] ^ bi2[itr];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CC-MAC function WUSB1.0[6.5]
|
|
|
|
*
|
|
|
|
* Take a data string and produce the encrypted CBC Counter-mode MIC
|
|
|
|
*
|
|
|
|
* Note the names for most function arguments are made to (more or
|
|
|
|
* less) match those used in the pseudo-function definition given in
|
|
|
|
* WUSB1.0[6.5].
|
|
|
|
*
|
|
|
|
* @tfm_cbc: CBC(AES) blkcipher handle (initialized)
|
|
|
|
*
|
|
|
|
* @tfm_aes: AES cipher handle (initialized)
|
|
|
|
*
|
|
|
|
* @mic: buffer for placing the computed MIC (Message Integrity
|
|
|
|
* Code). This is exactly 8 bytes, and we expect the buffer to
|
|
|
|
* be at least eight bytes in length.
|
|
|
|
*
|
|
|
|
* @key: 128 bit symmetric key
|
|
|
|
*
|
|
|
|
* @n: CCM nonce
|
|
|
|
*
|
|
|
|
* @a: ASCII string, 14 bytes long (I guess zero padded if needed;
|
|
|
|
* we use exactly 14 bytes).
|
|
|
|
*
|
|
|
|
* @b: data stream to be processed; cannot be a global or const local
|
|
|
|
* (will confuse the scatterlists)
|
|
|
|
*
|
|
|
|
* @blen: size of b...
|
|
|
|
*
|
|
|
|
* Still not very clear how this is done, but looks like this: we
|
|
|
|
* create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
|
|
|
|
* @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
|
|
|
|
* take the payload and divide it in blocks (16 bytes), xor them with
|
|
|
|
* the previous crypto result (16 bytes) and crypt it, repeat the next
|
|
|
|
* block with the output of the previous one, rinse wash (I guess this
|
|
|
|
* is what AES CBC mode means...but I truly have no idea). So we use
|
|
|
|
* the CBC(AES) blkcipher, that does precisely that. The IV (Initial
|
|
|
|
* Vector) is 16 bytes and is set to zero, so
|
|
|
|
*
|
|
|
|
* See rfc3610. Linux crypto has a CBC implementation, but the
|
|
|
|
* documentation is scarce, to say the least, and the example code is
|
|
|
|
* so intricated that is difficult to understand how things work. Most
|
|
|
|
* of this is guess work -- bite me.
|
|
|
|
*
|
|
|
|
* (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
|
|
|
|
* using the 14 bytes of @a to fill up
|
|
|
|
* b1.{mac_header,e0,security_reserved,padding}.
|
|
|
|
*
|
|
|
|
* NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
|
|
|
|
* l(m) is orthogonal, they bear no relationship, so it is not
|
|
|
|
* in conflict with the parameter's relation that
|
|
|
|
* WUSB1.0[6.4.2]) defines.
|
|
|
|
*
|
|
|
|
* NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
|
|
|
|
* first errata released on 2005/07.
|
|
|
|
*
|
|
|
|
* NOTE: we need to clean IV to zero at each invocation to make sure
|
|
|
|
* we start with a fresh empty Initial Vector, so that the CBC
|
|
|
|
* works ok.
|
|
|
|
*
|
|
|
|
* NOTE: blen is not aligned to a block size, we'll pad zeros, that's
|
|
|
|
* what sg[4] is for. Maybe there is a smarter way to do this.
|
|
|
|
*/
|
|
|
|
static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
|
|
|
|
struct crypto_cipher *tfm_aes, void *mic,
|
|
|
|
const struct aes_ccm_nonce *n,
|
|
|
|
const struct aes_ccm_label *a, const void *b,
|
|
|
|
size_t blen)
|
|
|
|
{
|
|
|
|
int result = 0;
|
|
|
|
struct blkcipher_desc desc;
|
|
|
|
struct aes_ccm_b0 b0;
|
|
|
|
struct aes_ccm_b1 b1;
|
|
|
|
struct aes_ccm_a ax;
|
|
|
|
struct scatterlist sg[4], sg_dst;
|
|
|
|
void *iv, *dst_buf;
|
|
|
|
size_t ivsize, dst_size;
|
|
|
|
const u8 bzero[16] = { 0 };
|
|
|
|
size_t zero_padding;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These checks should be compile time optimized out
|
|
|
|
* ensure @a fills b1's mac_header and following fields
|
|
|
|
*/
|
|
|
|
WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
|
|
|
|
WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
|
|
|
|
WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
|
|
|
|
WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
|
|
|
|
|
|
|
|
result = -ENOMEM;
|
|
|
|
zero_padding = sizeof(struct aes_ccm_block)
|
|
|
|
- blen % sizeof(struct aes_ccm_block);
|
|
|
|
zero_padding = blen % sizeof(struct aes_ccm_block);
|
|
|
|
if (zero_padding)
|
|
|
|
zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
|
|
|
|
dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
|
|
|
|
dst_buf = kzalloc(dst_size, GFP_KERNEL);
|
|
|
|
if (dst_buf == NULL) {
|
|
|
|
printk(KERN_ERR "E: can't alloc destination buffer\n");
|
|
|
|
goto error_dst_buf;
|
|
|
|
}
|
|
|
|
|
|
|
|
iv = crypto_blkcipher_crt(tfm_cbc)->iv;
|
|
|
|
ivsize = crypto_blkcipher_ivsize(tfm_cbc);
|
|
|
|
memset(iv, 0, ivsize);
|
|
|
|
|
|
|
|
/* Setup B0 */
|
|
|
|
b0.flags = 0x59; /* Format B0 */
|
|
|
|
b0.ccm_nonce = *n;
|
|
|
|
b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
|
|
|
|
|
|
|
|
/* Setup B1
|
|
|
|
*
|
|
|
|
* The WUSB spec is anything but clear! WUSB1.0[6.5]
|
|
|
|
* says that to initialize B1 from A with 'l(a) = blen +
|
|
|
|
* 14'--after clarification, it means to use A's contents
|
|
|
|
* for MAC Header, EO, sec reserved and padding.
|
|
|
|
*/
|
|
|
|
b1.la = cpu_to_be16(blen + 14);
|
|
|
|
memcpy(&b1.mac_header, a, sizeof(*a));
|
|
|
|
|
|
|
|
sg_init_table(sg, ARRAY_SIZE(sg));
|
|
|
|
sg_set_buf(&sg[0], &b0, sizeof(b0));
|
|
|
|
sg_set_buf(&sg[1], &b1, sizeof(b1));
|
|
|
|
sg_set_buf(&sg[2], b, blen);
|
|
|
|
/* 0 if well behaved :) */
|
|
|
|
sg_set_buf(&sg[3], bzero, zero_padding);
|
|
|
|
sg_init_one(&sg_dst, dst_buf, dst_size);
|
|
|
|
|
|
|
|
desc.tfm = tfm_cbc;
|
|
|
|
desc.flags = 0;
|
|
|
|
result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
|
|
|
|
if (result < 0) {
|
|
|
|
printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
|
|
|
|
result);
|
|
|
|
goto error_cbc_crypt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
|
|
|
|
* The procedure is to AES crypt the A0 block and XOR the MIC
|
|
|
|
* Tag agains it; we only do the first 8 bytes and place it
|
|
|
|
* directly in the destination buffer.
|
|
|
|
*
|
|
|
|
* POS Crypto API: size is assumed to be AES's block size.
|
|
|
|
* Thanks for documenting it -- tip taken from airo.c
|
|
|
|
*/
|
|
|
|
ax.flags = 0x01; /* as per WUSB 1.0 spec */
|
|
|
|
ax.ccm_nonce = *n;
|
|
|
|
ax.counter = 0;
|
|
|
|
crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
|
|
|
|
bytewise_xor(mic, &ax, iv, 8);
|
|
|
|
result = 8;
|
|
|
|
error_cbc_crypt:
|
|
|
|
kfree(dst_buf);
|
|
|
|
error_dst_buf:
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* WUSB Pseudo Random Function (WUSB1.0[6.5])
|
|
|
|
*
|
|
|
|
* @b: buffer to the source data; cannot be a global or const local
|
|
|
|
* (will confuse the scatterlists)
|
|
|
|
*/
|
|
|
|
ssize_t wusb_prf(void *out, size_t out_size,
|
|
|
|
const u8 key[16], const struct aes_ccm_nonce *_n,
|
|
|
|
const struct aes_ccm_label *a,
|
|
|
|
const void *b, size_t blen, size_t len)
|
|
|
|
{
|
|
|
|
ssize_t result, bytes = 0, bitr;
|
|
|
|
struct aes_ccm_nonce n = *_n;
|
|
|
|
struct crypto_blkcipher *tfm_cbc;
|
|
|
|
struct crypto_cipher *tfm_aes;
|
|
|
|
u64 sfn = 0;
|
|
|
|
__le64 sfn_le;
|
|
|
|
|
|
|
|
tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
|
|
|
|
if (IS_ERR(tfm_cbc)) {
|
|
|
|
result = PTR_ERR(tfm_cbc);
|
|
|
|
printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
|
|
|
|
goto error_alloc_cbc;
|
|
|
|
}
|
|
|
|
result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
|
|
|
|
if (result < 0) {
|
|
|
|
printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
|
|
|
|
goto error_setkey_cbc;
|
|
|
|
}
|
|
|
|
|
|
|
|
tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
|
|
|
|
if (IS_ERR(tfm_aes)) {
|
|
|
|
result = PTR_ERR(tfm_aes);
|
|
|
|
printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
|
|
|
|
goto error_alloc_aes;
|
|
|
|
}
|
|
|
|
result = crypto_cipher_setkey(tfm_aes, key, 16);
|
|
|
|
if (result < 0) {
|
|
|
|
printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
|
|
|
|
goto error_setkey_aes;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
|
|
|
|
sfn_le = cpu_to_le64(sfn++);
|
|
|
|
memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
|
|
|
|
result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
|
|
|
|
&n, a, b, blen);
|
|
|
|
if (result < 0)
|
|
|
|
goto error_ccm_mac;
|
|
|
|
bytes += result;
|
|
|
|
}
|
|
|
|
result = bytes;
|
|
|
|
error_ccm_mac:
|
|
|
|
error_setkey_aes:
|
|
|
|
crypto_free_cipher(tfm_aes);
|
|
|
|
error_alloc_aes:
|
|
|
|
error_setkey_cbc:
|
|
|
|
crypto_free_blkcipher(tfm_cbc);
|
|
|
|
error_alloc_cbc:
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* WUSB1.0[A.2] test vectors */
|
|
|
|
static const u8 stv_hsmic_key[16] = {
|
|
|
|
0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
|
|
|
|
0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct aes_ccm_nonce stv_hsmic_n = {
|
|
|
|
.sfn = { 0 },
|
|
|
|
.tkid = { 0x76, 0x98, 0x01, },
|
|
|
|
.dest_addr = { .data = { 0xbe, 0x00 } },
|
|
|
|
.src_addr = { .data = { 0x76, 0x98 } },
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Out-of-band MIC Generation verification code
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static int wusb_oob_mic_verify(void)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
u8 mic[8];
|
|
|
|
/* WUSB1.0[A.2] test vectors
|
|
|
|
*
|
|
|
|
* Need to keep it in the local stack as GCC 4.1.3something
|
|
|
|
* messes up and generates noise.
|
|
|
|
*/
|
|
|
|
struct usb_handshake stv_hsmic_hs = {
|
|
|
|
.bMessageNumber = 2,
|
|
|
|
.bStatus = 00,
|
|
|
|
.tTKID = { 0x76, 0x98, 0x01 },
|
|
|
|
.bReserved = 00,
|
|
|
|
.CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
|
|
|
|
0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
|
|
|
|
0x3c, 0x3d, 0x3e, 0x3f },
|
|
|
|
.nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
|
|
|
|
0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
|
|
|
|
0x2c, 0x2d, 0x2e, 0x2f },
|
|
|
|
.MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
|
|
|
|
0x14, 0x7b } ,
|
|
|
|
};
|
|
|
|
size_t hs_size;
|
|
|
|
|
|
|
|
result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
|
|
|
|
if (result < 0)
|
|
|
|
printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
|
|
|
|
else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
|
|
|
|
printk(KERN_ERR "E: OOB MIC test: "
|
|
|
|
"mismatch between MIC result and WUSB1.0[A2]\n");
|
|
|
|
hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
|
|
|
|
printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
|
2008-12-22 11:27:17 -07:00
|
|
|
wusb_key_dump(&stv_hsmic_hs, hs_size);
|
2008-09-17 09:34:25 -06:00
|
|
|
printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
|
|
|
|
sizeof(stv_hsmic_n));
|
2008-12-22 11:27:17 -07:00
|
|
|
wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
|
2008-09-17 09:34:25 -06:00
|
|
|
printk(KERN_ERR "E: MIC out:\n");
|
2008-12-22 11:27:17 -07:00
|
|
|
wusb_key_dump(mic, sizeof(mic));
|
2008-09-17 09:34:25 -06:00
|
|
|
printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
|
2008-12-22 11:27:17 -07:00
|
|
|
wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
|
2008-09-17 09:34:25 -06:00
|
|
|
result = -EINVAL;
|
|
|
|
} else
|
|
|
|
result = 0;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Test vectors for Key derivation
|
|
|
|
*
|
|
|
|
* These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
|
|
|
|
* (errata corrected in 2005/07).
|
|
|
|
*/
|
|
|
|
static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
|
|
|
|
0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
|
|
|
|
0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
|
|
|
|
.sfn = { 0 },
|
|
|
|
.tkid = { 0x76, 0x98, 0x01, },
|
|
|
|
.dest_addr = { .data = { 0xbe, 0x00 } },
|
|
|
|
.src_addr = { .data = { 0x76, 0x98 } },
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
|
|
|
|
.kck = {
|
|
|
|
0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
|
|
|
|
0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
|
|
|
|
},
|
|
|
|
.ptk = {
|
|
|
|
0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
|
|
|
|
0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Performa a test to make sure we match the vectors defined in
|
|
|
|
* WUSB1.0[A.1](Errata2006/12)
|
|
|
|
*/
|
|
|
|
static int wusb_key_derive_verify(void)
|
|
|
|
{
|
|
|
|
int result = 0;
|
|
|
|
struct wusb_keydvt_out keydvt_out;
|
|
|
|
/* These come from WUSB1.0[A.1] + 2006/12 errata
|
|
|
|
* NOTE: can't make this const or global -- somehow it seems
|
|
|
|
* the scatterlists for crypto get confused and we get
|
|
|
|
* bad data. There is no doc on this... */
|
|
|
|
struct wusb_keydvt_in stv_keydvt_in_a1 = {
|
|
|
|
.hnonce = {
|
|
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
|
|
|
},
|
|
|
|
.dnonce = {
|
|
|
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
|
|
|
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
|
|
|
|
&stv_keydvt_in_a1);
|
|
|
|
if (result < 0)
|
|
|
|
printk(KERN_ERR "E: WUSB key derivation test: "
|
|
|
|
"derivation failed: %d\n", result);
|
|
|
|
if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
|
|
|
|
printk(KERN_ERR "E: WUSB key derivation test: "
|
|
|
|
"mismatch between key derivation result "
|
|
|
|
"and WUSB1.0[A1] Errata 2006/12\n");
|
2008-12-22 11:27:17 -07:00
|
|
|
printk(KERN_ERR "E: keydvt in: key\n");
|
|
|
|
wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
|
|
|
|
printk(KERN_ERR "E: keydvt in: nonce\n");
|
|
|
|
wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
|
|
|
|
printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
|
|
|
|
wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
|
2008-09-17 09:34:25 -06:00
|
|
|
printk(KERN_ERR "E: keydvt out: KCK\n");
|
2008-12-22 11:27:17 -07:00
|
|
|
wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
|
2008-09-17 09:34:25 -06:00
|
|
|
printk(KERN_ERR "E: keydvt out: PTK\n");
|
2008-12-22 11:27:17 -07:00
|
|
|
wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
|
2008-09-17 09:34:25 -06:00
|
|
|
result = -EINVAL;
|
|
|
|
} else
|
|
|
|
result = 0;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize crypto system
|
|
|
|
*
|
|
|
|
* FIXME: we do nothing now, other than verifying. Later on we'll
|
|
|
|
* cache the encryption stuff, so that's why we have a separate init.
|
|
|
|
*/
|
|
|
|
int wusb_crypto_init(void)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
|
2008-10-27 09:30:12 -06:00
|
|
|
if (debug_crypto_verify) {
|
|
|
|
result = wusb_key_derive_verify();
|
|
|
|
if (result < 0)
|
|
|
|
return result;
|
|
|
|
return wusb_oob_mic_verify();
|
|
|
|
}
|
|
|
|
return 0;
|
2008-09-17 09:34:25 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
void wusb_crypto_exit(void)
|
|
|
|
{
|
|
|
|
/* FIXME: free cached crypto transforms */
|
|
|
|
}
|