kernel-fxtec-pro1x/arch/i386/mm/fault.c

629 lines
16 KiB
C
Raw Normal View History

/*
* linux/arch/i386/mm/fault.c
*
* Copyright (C) 1995 Linus Torvalds
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h> /* For unblank_screen() */
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <asm/system.h>
#include <asm/desc.h>
#include <asm/kdebug.h>
#include <asm/segment.h>
extern void die(const char *,struct pt_regs *,long);
static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
int register_page_fault_notifier(struct notifier_block *nb)
{
vmalloc_sync_all();
return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
}
EXPORT_SYMBOL_GPL(register_page_fault_notifier);
int unregister_page_fault_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
static inline int notify_page_fault(enum die_val val, const char *str,
struct pt_regs *regs, long err, int trap, int sig)
{
struct die_args args = {
.regs = regs,
.str = str,
.err = err,
.trapnr = trap,
.signr = sig
};
return atomic_notifier_call_chain(&notify_page_fault_chain, val, &args);
}
/*
* Return EIP plus the CS segment base. The segment limit is also
* adjusted, clamped to the kernel/user address space (whichever is
* appropriate), and returned in *eip_limit.
*
* The segment is checked, because it might have been changed by another
* task between the original faulting instruction and here.
*
* If CS is no longer a valid code segment, or if EIP is beyond the
* limit, or if it is a kernel address when CS is not a kernel segment,
* then the returned value will be greater than *eip_limit.
*
* This is slow, but is very rarely executed.
*/
static inline unsigned long get_segment_eip(struct pt_regs *regs,
unsigned long *eip_limit)
{
unsigned long eip = regs->eip;
unsigned seg = regs->xcs & 0xffff;
u32 seg_ar, seg_limit, base, *desc;
/* Unlikely, but must come before segment checks. */
if (unlikely(regs->eflags & VM_MASK)) {
base = seg << 4;
*eip_limit = base + 0xffff;
return base + (eip & 0xffff);
}
/* The standard kernel/user address space limit. */
*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
/* By far the most common cases. */
if (likely(SEGMENT_IS_FLAT_CODE(seg)))
return eip;
/* Check the segment exists, is within the current LDT/GDT size,
that kernel/user (ring 0..3) has the appropriate privilege,
that it's a code segment, and get the limit. */
__asm__ ("larl %3,%0; lsll %3,%1"
: "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
if ((~seg_ar & 0x9800) || eip > seg_limit) {
*eip_limit = 0;
return 1; /* So that returned eip > *eip_limit. */
}
/* Get the GDT/LDT descriptor base.
When you look for races in this code remember that
LDT and other horrors are only used in user space. */
if (seg & (1<<2)) {
/* Must lock the LDT while reading it. */
down(&current->mm->context.sem);
desc = current->mm->context.ldt;
desc = (void *)desc + (seg & ~7);
} else {
/* Must disable preemption while reading the GDT. */
desc = (u32 *)get_cpu_gdt_table(get_cpu());
desc = (void *)desc + (seg & ~7);
}
/* Decode the code segment base from the descriptor */
base = get_desc_base((unsigned long *)desc);
if (seg & (1<<2)) {
up(&current->mm->context.sem);
} else
put_cpu();
/* Adjust EIP and segment limit, and clamp at the kernel limit.
It's legitimate for segments to wrap at 0xffffffff. */
seg_limit += base;
if (seg_limit < *eip_limit && seg_limit >= base)
*eip_limit = seg_limit;
return eip + base;
}
/*
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
* Check that here and ignore it.
*/
static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
{
unsigned long limit;
unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
int scan_more = 1;
int prefetch = 0;
int i;
for (i = 0; scan_more && i < 15; i++) {
unsigned char opcode;
unsigned char instr_hi;
unsigned char instr_lo;
if (instr > (unsigned char *)limit)
break;
if (probe_kernel_address(instr, opcode))
break;
instr_hi = opcode & 0xf0;
instr_lo = opcode & 0x0f;
instr++;
switch (instr_hi) {
case 0x20:
case 0x30:
/* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
scan_more = ((instr_lo & 7) == 0x6);
break;
case 0x60:
/* 0x64 thru 0x67 are valid prefixes in all modes. */
scan_more = (instr_lo & 0xC) == 0x4;
break;
case 0xF0:
/* 0xF0, 0xF2, and 0xF3 are valid prefixes */
scan_more = !instr_lo || (instr_lo>>1) == 1;
break;
case 0x00:
/* Prefetch instruction is 0x0F0D or 0x0F18 */
scan_more = 0;
if (instr > (unsigned char *)limit)
break;
if (probe_kernel_address(instr, opcode))
break;
prefetch = (instr_lo == 0xF) &&
(opcode == 0x0D || opcode == 0x18);
break;
default:
scan_more = 0;
break;
}
}
return prefetch;
}
static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
unsigned long error_code)
{
if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
boot_cpu_data.x86 >= 6)) {
/* Catch an obscure case of prefetch inside an NX page. */
if (nx_enabled && (error_code & 16))
return 0;
return __is_prefetch(regs, addr);
}
return 0;
}
static noinline void force_sig_info_fault(int si_signo, int si_code,
unsigned long address, struct task_struct *tsk)
{
siginfo_t info;
info.si_signo = si_signo;
info.si_errno = 0;
info.si_code = si_code;
info.si_addr = (void __user *)address;
force_sig_info(si_signo, &info, tsk);
}
fastcall void do_invalid_op(struct pt_regs *, unsigned long);
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
{
unsigned index = pgd_index(address);
pgd_t *pgd_k;
pud_t *pud, *pud_k;
pmd_t *pmd, *pmd_k;
pgd += index;
pgd_k = init_mm.pgd + index;
if (!pgd_present(*pgd_k))
return NULL;
/*
* set_pgd(pgd, *pgd_k); here would be useless on PAE
* and redundant with the set_pmd() on non-PAE. As would
* set_pud.
*/
pud = pud_offset(pgd, address);
pud_k = pud_offset(pgd_k, address);
if (!pud_present(*pud_k))
return NULL;
pmd = pmd_offset(pud, address);
pmd_k = pmd_offset(pud_k, address);
if (!pmd_present(*pmd_k))
return NULL;
if (!pmd_present(*pmd))
set_pmd(pmd, *pmd_k);
else
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
return pmd_k;
}
/*
* Handle a fault on the vmalloc or module mapping area
*
* This assumes no large pages in there.
*/
static inline int vmalloc_fault(unsigned long address)
{
unsigned long pgd_paddr;
pmd_t *pmd_k;
pte_t *pte_k;
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*
* Do _not_ use "current" here. We might be inside
* an interrupt in the middle of a task switch..
*/
pgd_paddr = read_cr3();
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
if (!pmd_k)
return -1;
pte_k = pte_offset_kernel(pmd_k, address);
if (!pte_present(*pte_k))
return -1;
return 0;
}
/*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*
* error_code:
* bit 0 == 0 means no page found, 1 means protection fault
* bit 1 == 0 means read, 1 means write
* bit 2 == 0 means kernel, 1 means user-mode
* bit 3 == 1 means use of reserved bit detected
* bit 4 == 1 means fault was an instruction fetch
*/
fastcall void __kprobes do_page_fault(struct pt_regs *regs,
unsigned long error_code)
{
struct task_struct *tsk;
struct mm_struct *mm;
struct vm_area_struct * vma;
unsigned long address;
unsigned long page;
int write, si_code;
/* get the address */
address = read_cr2();
tsk = current;
si_code = SEGV_MAPERR;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*
* This verifies that the fault happens in kernel space
* (error_code & 4) == 0, and that the fault was not a
* protection error (error_code & 9) == 0.
*/
if (unlikely(address >= TASK_SIZE)) {
if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
return;
if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
SIGSEGV) == NOTIFY_STOP)
return;
/*
* Don't take the mm semaphore here. If we fixup a prefetch
* fault we could otherwise deadlock.
*/
goto bad_area_nosemaphore;
}
if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
SIGSEGV) == NOTIFY_STOP)
return;
/* It's safe to allow irq's after cr2 has been saved and the vmalloc
fault has been handled. */
if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
local_irq_enable();
mm = tsk->mm;
/*
* If we're in an interrupt, have no user context or are running in an
* atomic region then we must not take the fault..
*/
if (in_atomic() || !mm)
goto bad_area_nosemaphore;
/* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in the
* kernel and should generate an OOPS. Unfortunatly, in the case of an
* erroneous fault occurring in a code path which already holds mmap_sem
* we will deadlock attempting to validate the fault against the
* address space. Luckily the kernel only validly references user
* space from well defined areas of code, which are listed in the
* exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibilty of a deadlock.
* Attempt to lock the address space, if we cannot we then validate the
* source. If this is invalid we can skip the address space check,
* thus avoiding the deadlock.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if ((error_code & 4) == 0 &&
!search_exception_tables(regs->eip))
goto bad_area_nosemaphore;
down_read(&mm->mmap_sem);
}
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (vma->vm_start <= address)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if (error_code & 4) {
/*
* Accessing the stack below %esp is always a bug.
* The large cushion allows instructions like enter
* and pusha to work. ("enter $65535,$31" pushes
* 32 pointers and then decrements %esp by 65535.)
*/
if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
goto bad_area;
}
if (expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
si_code = SEGV_ACCERR;
write = 0;
switch (error_code & 3) {
default: /* 3: write, present */
/* fall through */
case 2: /* write, not present */
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
write++;
break;
case 1: /* read, present */
goto bad_area;
case 0: /* read, not present */
[PATCH] make PROT_WRITE imply PROT_READ Make PROT_WRITE imply PROT_READ for a number of architectures which don't support write only in hardware. While looking at this, I noticed that some architectures which do not support write only mappings already take the exact same approach. For example, in arch/alpha/mm/fault.c: " if (cause < 0) { if (!(vma->vm_flags & VM_EXEC)) goto bad_area; } else if (!cause) { /* Allow reads even for write-only mappings */ if (!(vma->vm_flags & (VM_READ | VM_WRITE))) goto bad_area; } else { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } " Thus, this patch brings other architectures which do not support write only mappings in-line and consistent with the rest. I've verified the patch on ia64, x86_64 and x86. Additional discussion: Several architectures, including x86, can not support write-only mappings. The pte for x86 reserves a single bit for protection and its two states are read only or read/write. Thus, write only is not supported in h/w. Currently, if i 'mmap' a page write-only, the first read attempt on that page creates a page fault and will SEGV. That check is enforced in arch/blah/mm/fault.c. However, if i first write that page it will fault in and the pte will be set to read/write. Thus, any subsequent reads to the page will succeed. It is this inconsistency in behavior that this patch is attempting to address. Furthermore, if the page is swapped out, and then brought back the first read will also cause a SEGV. Thus, any arbitrary read on a page can potentially result in a SEGV. According to the SuSv3 spec, "if the application requests only PROT_WRITE, the implementation may also allow read access." Also as mentioned, some archtectures, such as alpha, shown above already take the approach that i am suggesting. The counter-argument to this raised by Arjan, is that the kernel is enforcing the write only mapping the best it can given the h/w limitations. This is true, however Alan Cox, and myself would argue that the inconsitency in behavior, that is applications can sometimes work/sometimes fails is highly undesireable. If you read through the thread, i think people, came to an agreement on the last patch i posted, as nobody has objected to it... Signed-off-by: Jason Baron <jbaron@redhat.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Andi Kleen <ak@muc.de> Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Ian Molton <spyro@f2s.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 02:58:58 -06:00
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
goto bad_area;
}
survive:
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
switch (handle_mm_fault(mm, vma, address, write)) {
case VM_FAULT_MINOR:
tsk->min_flt++;
break;
case VM_FAULT_MAJOR:
tsk->maj_flt++;
break;
case VM_FAULT_SIGBUS:
goto do_sigbus;
case VM_FAULT_OOM:
goto out_of_memory;
default:
BUG();
}
/*
* Did it hit the DOS screen memory VA from vm86 mode?
*/
if (regs->eflags & VM_MASK) {
unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
if (bit < 32)
tsk->thread.screen_bitmap |= 1 << bit;
}
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if (error_code & 4) {
/*
* Valid to do another page fault here because this one came
* from user space.
*/
if (is_prefetch(regs, address, error_code))
return;
tsk->thread.cr2 = address;
/* Kernel addresses are always protection faults */
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
tsk->thread.trap_no = 14;
force_sig_info_fault(SIGSEGV, si_code, address, tsk);
return;
}
#ifdef CONFIG_X86_F00F_BUG
/*
* Pentium F0 0F C7 C8 bug workaround.
*/
if (boot_cpu_data.f00f_bug) {
unsigned long nr;
nr = (address - idt_descr.address) >> 3;
if (nr == 6) {
do_invalid_op(regs, 0);
return;
}
}
#endif
no_context:
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))
return;
/*
* Valid to do another page fault here, because if this fault
* had been triggered by is_prefetch fixup_exception would have
* handled it.
*/
if (is_prefetch(regs, address, error_code))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice.
*/
bust_spinlocks(1);
if (oops_may_print()) {
#ifdef CONFIG_X86_PAE
if (error_code & 16) {
pte_t *pte = lookup_address(address);
if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
printk(KERN_CRIT "kernel tried to execute "
"NX-protected page - exploit attempt? "
"(uid: %d)\n", current->uid);
}
#endif
if (address < PAGE_SIZE)
printk(KERN_ALERT "BUG: unable to handle kernel NULL "
"pointer dereference");
else
printk(KERN_ALERT "BUG: unable to handle kernel paging"
" request");
printk(" at virtual address %08lx\n",address);
printk(KERN_ALERT " printing eip:\n");
printk("%08lx\n", regs->eip);
}
page = read_cr3();
page = ((unsigned long *) __va(page))[address >> 22];
if (oops_may_print())
printk(KERN_ALERT "*pde = %08lx\n", page);
/*
* We must not directly access the pte in the highpte
* case, the page table might be allocated in highmem.
* And lets rather not kmap-atomic the pte, just in case
* it's allocated already.
*/
#ifndef CONFIG_HIGHPTE
if ((page & 1) && oops_may_print()) {
page &= PAGE_MASK;
address &= 0x003ff000;
page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
printk(KERN_ALERT "*pte = %08lx\n", page);
}
#endif
tsk->thread.cr2 = address;
tsk->thread.trap_no = 14;
tsk->thread.error_code = error_code;
die("Oops", regs, error_code);
bust_spinlocks(0);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (is_init(tsk)) {
yield();
down_read(&mm->mmap_sem);
goto survive;
}
printk("VM: killing process %s\n", tsk->comm);
if (error_code & 4)
do_exit(SIGKILL);
goto no_context;
do_sigbus:
up_read(&mm->mmap_sem);
/* Kernel mode? Handle exceptions or die */
if (!(error_code & 4))
goto no_context;
/* User space => ok to do another page fault */
if (is_prefetch(regs, address, error_code))
return;
tsk->thread.cr2 = address;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 14;
force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
}
#ifndef CONFIG_X86_PAE
void vmalloc_sync_all(void)
{
/*
* Note that races in the updates of insync and start aren't
* problematic: insync can only get set bits added, and updates to
* start are only improving performance (without affecting correctness
* if undone).
*/
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
static unsigned long start = TASK_SIZE;
unsigned long address;
BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
if (!test_bit(pgd_index(address), insync)) {
unsigned long flags;
struct page *page;
spin_lock_irqsave(&pgd_lock, flags);
for (page = pgd_list; page; page =
(struct page *)page->index)
if (!vmalloc_sync_one(page_address(page),
address)) {
BUG_ON(page != pgd_list);
break;
}
spin_unlock_irqrestore(&pgd_lock, flags);
if (!page)
set_bit(pgd_index(address), insync);
}
if (address == start && test_bit(pgd_index(address), insync))
start = address + PGDIR_SIZE;
}
}
#endif