2005-04-16 16:20:36 -06:00
|
|
|
#ifndef __LINUX_NETLINK_H
|
|
|
|
#define __LINUX_NETLINK_H
|
|
|
|
|
2011-08-24 12:43:55 -06:00
|
|
|
#include <linux/socket.h> /* for __kernel_sa_family_t */
|
2005-04-16 16:20:36 -06:00
|
|
|
#include <linux/types.h>
|
|
|
|
|
|
|
|
#define NETLINK_ROUTE 0 /* Routing/device hook */
|
2006-03-23 09:11:58 -07:00
|
|
|
#define NETLINK_UNUSED 1 /* Unused number */
|
2005-04-16 16:20:36 -06:00
|
|
|
#define NETLINK_USERSOCK 2 /* Reserved for user mode socket protocols */
|
|
|
|
#define NETLINK_FIREWALL 3 /* Firewalling hook */
|
2011-12-06 00:56:43 -07:00
|
|
|
#define NETLINK_SOCK_DIAG 4 /* socket monitoring */
|
2005-04-16 16:20:36 -06:00
|
|
|
#define NETLINK_NFLOG 5 /* netfilter/iptables ULOG */
|
|
|
|
#define NETLINK_XFRM 6 /* ipsec */
|
|
|
|
#define NETLINK_SELINUX 7 /* SELinux event notifications */
|
2005-08-08 14:48:02 -06:00
|
|
|
#define NETLINK_ISCSI 8 /* Open-iSCSI */
|
2005-04-16 16:20:36 -06:00
|
|
|
#define NETLINK_AUDIT 9 /* auditing */
|
2005-06-20 14:36:39 -06:00
|
|
|
#define NETLINK_FIB_LOOKUP 10
|
2005-09-11 20:15:07 -06:00
|
|
|
#define NETLINK_CONNECTOR 11
|
2005-07-11 15:29:11 -06:00
|
|
|
#define NETLINK_NETFILTER 12 /* netfilter subsystem */
|
2005-04-16 16:20:36 -06:00
|
|
|
#define NETLINK_IP6_FW 13
|
|
|
|
#define NETLINK_DNRTMSG 14 /* DECnet routing messages */
|
|
|
|
#define NETLINK_KOBJECT_UEVENT 15 /* Kernel messages to userspace */
|
2005-09-14 21:52:37 -06:00
|
|
|
#define NETLINK_GENERIC 16
|
[SCSI] SCSI and FC Transport: add netlink support for posting of transport events
This patch formally adds support for the posting of FC events via netlink.
It is a followup to the original RFC at:
http://marc.theaimsgroup.com/?l=linux-scsi&m=114530667923464&w=2
and the initial posting at:
http://marc.theaimsgroup.com/?l=linux-scsi&m=115507374832500&w=2
The patch has been updated to optimize the send path, per the discussions
in the initial posting.
Per discussions at the Storage Summit and at OLS, we are to use netlink for
async events from transports. Also per discussions, to avoid a netlink
protocol per transport, I've create a single NETLINK_SCSITRANSPORT protocol,
which can then be used by all transports.
This patch:
- Creates new files scsi_netlink.c and scsi_netlink.h, which contains the
single and shared definitions for the SCSI Transport. It is tied into the
base SCSI subsystem intialization.
Contains a single interface routine, scsi_send_transport_event(), for a
transport to send an event (via multicast to a protocol specific group).
- Creates a new scsi_netlink_fc.h file, which contains the FC netlink event
messages
- Adds 3 new routines to the fc transport:
fc_get_event_number() - to get a FC event #
fc_host_post_event() - to send a simple FC event (32 bits of data)
fc_host_post_vendor_event() - to send a Vendor unique event, with
arbitrary amounts of data.
Note: the separation of event number allows for a LLD to send a standard
event, followed by vendor-specific data for the event.
Note: This patch assumes 2 prior fc transport patches have been installed:
http://marc.theaimsgroup.com/?l=linux-scsi&m=115555807316329&w=2
http://marc.theaimsgroup.com/?l=linux-scsi&m=115581614930261&w=2
Sorry - next time I'll do something like making these individual
patches of the same posting when I know they'll be posted closely
together.
Signed-off-by: James Smart <James.Smart@emulex.com>
Tidy up configuration not to make SCSI always select NET
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-08-18 15:30:09 -06:00
|
|
|
/* leave room for NETLINK_DM (DM Events) */
|
|
|
|
#define NETLINK_SCSITRANSPORT 18 /* SCSI Transports */
|
[PATCH] eCryptfs: Public key transport mechanism
This is the transport code for public key functionality in eCryptfs. It
manages encryption/decryption request queues with a transport mechanism.
Currently, netlink is the only implemented transport.
Each inode has a unique File Encryption Key (FEK). Under passphrase, a File
Encryption Key Encryption Key (FEKEK) is generated from a salt/passphrase
combo on mount. This FEKEK encrypts each FEK and writes it into the header of
each file using the packet format specified in RFC 2440. This is all
symmetric key encryption, so it can all be done via the kernel crypto API.
These new patches introduce public key encryption of the FEK. There is no
asymmetric key encryption support in the kernel crypto API, so eCryptfs pushes
the FEK encryption and decryption out to a userspace daemon. After
considering our requirements and determining the complexity of using various
transport mechanisms, we settled on netlink for this communication.
eCryptfs stores authentication tokens into the kernel keyring. These tokens
correlate with individual keys. For passphrase mode of operation, the
authentication token contains the symmetric FEKEK. For public key, the
authentication token contains a PKI type and an opaque data blob managed by
individual PKI modules in userspace.
Each user who opens a file under an eCryptfs partition mounted in public key
mode must be running a daemon. That daemon has the user's credentials and has
access to all of the keys to which the user should have access. The daemon,
when started, initializes the pluggable PKI modules available on the system
and registers itself with the eCryptfs kernel module. Userspace utilities
register public key authentication tokens into the user session keyring.
These authentication tokens correlate key signatures with PKI modules and PKI
blobs. The PKI blobs contain PKI-specific information necessary for the PKI
module to carry out asymmetric key encryption and decryption.
When the eCryptfs module parses the header of an existing file and finds a Tag
1 (Public Key) packet (see RFC 2440), it reads in the public key identifier
(signature). The asymmetrically encrypted FEK is in the Tag 1 packet;
eCryptfs puts together a decrypt request packet containing the signature and
the encrypted FEK, then it passes it to the daemon registered for the
current->euid via a netlink unicast to the PID of the daemon, which was
registered at the time the daemon was started by the user.
The daemon actually just makes calls to libecryptfs, which implements request
packet parsing and manages PKI modules. libecryptfs grabs the public key
authentication token for the given signature from the user session keyring.
This auth tok tells libecryptfs which PKI module should receive the request.
libecryptfs then makes a decrypt() call to the PKI module, and it passes along
the PKI block from the auth tok. The PKI uses the blob to figure out how it
should decrypt the data passed to it; it performs the decryption and passes
the decrypted data back to libecryptfs. libecryptfs then puts together a
reply packet with the decrypted FEK and passes that back to the eCryptfs
module.
The eCryptfs module manages these request callouts to userspace code via
message context structs. The module maintains an array of message context
structs and places the elements of the array on two lists: a free and an
allocated list. When eCryptfs wants to make a request, it moves a msg ctx
from the free list to the allocated list, sets its state to pending, and fires
off the message to the user's registered daemon.
When eCryptfs receives a netlink message (via the callback), it correlates the
msg ctx struct in the alloc list with the data in the message itself. The
msg->index contains the offset of the array of msg ctx structs. It verifies
that the registered daemon PID is the same as the PID of the process that sent
the message. It also validates a sequence number between the received packet
and the msg ctx. Then, it copies the contents of the message (the reply
packet) into the msg ctx struct, sets the state in the msg ctx to done, and
wakes up the process that was sleeping while waiting for the reply.
The sleeping process was whatever was performing the sys_open(). This process
originally called ecryptfs_send_message(); it is now in
ecryptfs_wait_for_response(). When it wakes up and sees that the msg ctx
state was set to done, it returns a pointer to the message contents (the reply
packet) and returns. If all went well, this packet contains the decrypted
FEK, which is then copied into the crypt_stat struct, and life continues as
normal.
The case for creation of a new file is very similar, only instead of a decrypt
request, eCryptfs sends out an encrypt request.
> - We have a great clod of key mangement code in-kernel. Why is that
> not suitable (or growable) for public key management?
eCryptfs uses Howells' keyring to store persistent key data and PKI state
information. It defers public key cryptographic transformations to userspace
code. The userspace data manipulation request really is orthogonal to key
management in and of itself. What eCryptfs basically needs is a secure way to
communicate with a particular daemon for a particular task doing a syscall,
based on the UID. Nothing running under another UID should be able to access
that channel of communication.
> - Is it appropriate that new infrastructure for public key
> management be private to a particular fs?
The messaging.c file contains a lot of code that, perhaps, could be extracted
into a separate kernel service. In essence, this would be a sort of
request/reply mechanism that would involve a userspace daemon. I am not aware
of anything that does quite what eCryptfs does, so I was not aware of any
existing tools to do just what we wanted.
> What happens if one of these daemons exits without sending a quit
> message?
There is a stale uid<->pid association in the hash table for that user. When
the user registers a new daemon, eCryptfs cleans up the old association and
generates a new one. See ecryptfs_process_helo().
> - _why_ does it use netlink?
Netlink provides the transport mechanism that would minimize the complexity of
the implementation, given that we can have multiple daemons (one per user). I
explored the possibility of using relayfs, but that would involve having to
introduce control channels and a protocol for creating and tearing down
channels for the daemons. We do not have to worry about any of that with
netlink.
Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 01:53:43 -07:00
|
|
|
#define NETLINK_ECRYPTFS 19
|
2011-05-20 12:46:11 -06:00
|
|
|
#define NETLINK_RDMA 20
|
2011-09-26 23:23:50 -06:00
|
|
|
#define NETLINK_CRYPTO 21 /* Crypto layer */
|
2005-04-16 16:20:36 -06:00
|
|
|
|
2011-12-06 00:56:43 -07:00
|
|
|
#define NETLINK_INET_DIAG NETLINK_SOCK_DIAG
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
#define MAX_LINKS 32
|
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct sockaddr_nl {
|
2011-08-07 23:48:07 -06:00
|
|
|
__kernel_sa_family_t nl_family; /* AF_NETLINK */
|
2005-04-16 16:20:36 -06:00
|
|
|
unsigned short nl_pad; /* zero */
|
2007-05-05 12:42:03 -06:00
|
|
|
__u32 nl_pid; /* port ID */
|
2005-04-16 16:20:36 -06:00
|
|
|
__u32 nl_groups; /* multicast groups mask */
|
|
|
|
};
|
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct nlmsghdr {
|
2005-04-16 16:20:36 -06:00
|
|
|
__u32 nlmsg_len; /* Length of message including header */
|
|
|
|
__u16 nlmsg_type; /* Message content */
|
|
|
|
__u16 nlmsg_flags; /* Additional flags */
|
|
|
|
__u32 nlmsg_seq; /* Sequence number */
|
2007-05-05 12:42:03 -06:00
|
|
|
__u32 nlmsg_pid; /* Sending process port ID */
|
2005-04-16 16:20:36 -06:00
|
|
|
};
|
|
|
|
|
|
|
|
/* Flags values */
|
|
|
|
|
|
|
|
#define NLM_F_REQUEST 1 /* It is request message. */
|
|
|
|
#define NLM_F_MULTI 2 /* Multipart message, terminated by NLMSG_DONE */
|
|
|
|
#define NLM_F_ACK 4 /* Reply with ack, with zero or error code */
|
|
|
|
#define NLM_F_ECHO 8 /* Echo this request */
|
netlink: advertise incomplete dumps
Consider the following situation:
* a dump that would show 8 entries, four in the first
round, and four in the second
* between the first and second rounds, 6 entries are
removed
* now the second round will not show any entry, and
even if there is a sequence/generation counter the
application will not know
To solve this problem, add a new flag NLM_F_DUMP_INTR
to the netlink header that indicates the dump wasn't
consistent, this flag can also be set on the MSG_DONE
message that terminates the dump, and as such above
situation can be detected.
To achieve this, add a sequence counter to the netlink
callback struct. Of course, netlink code still needs
to use this new functionality. The correct way to do
that is to always set cb->seq when a dumpit callback
is invoked and call nl_dump_check_consistent() for
each new message. The core code will also call this
function for the final MSG_DONE message.
To make it usable with generic netlink, a new function
genlmsg_nlhdr() is needed to obtain the netlink header
from the genetlink user header.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-06-20 05:40:46 -06:00
|
|
|
#define NLM_F_DUMP_INTR 16 /* Dump was inconsistent due to sequence change */
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
/* Modifiers to GET request */
|
|
|
|
#define NLM_F_ROOT 0x100 /* specify tree root */
|
|
|
|
#define NLM_F_MATCH 0x200 /* return all matching */
|
|
|
|
#define NLM_F_ATOMIC 0x400 /* atomic GET */
|
|
|
|
#define NLM_F_DUMP (NLM_F_ROOT|NLM_F_MATCH)
|
|
|
|
|
|
|
|
/* Modifiers to NEW request */
|
|
|
|
#define NLM_F_REPLACE 0x100 /* Override existing */
|
|
|
|
#define NLM_F_EXCL 0x200 /* Do not touch, if it exists */
|
|
|
|
#define NLM_F_CREATE 0x400 /* Create, if it does not exist */
|
|
|
|
#define NLM_F_APPEND 0x800 /* Add to end of list */
|
|
|
|
|
|
|
|
/*
|
|
|
|
4.4BSD ADD NLM_F_CREATE|NLM_F_EXCL
|
|
|
|
4.4BSD CHANGE NLM_F_REPLACE
|
|
|
|
|
|
|
|
True CHANGE NLM_F_CREATE|NLM_F_REPLACE
|
|
|
|
Append NLM_F_CREATE
|
|
|
|
Check NLM_F_EXCL
|
|
|
|
*/
|
|
|
|
|
2010-12-17 13:03:14 -07:00
|
|
|
#define NLMSG_ALIGNTO 4U
|
2005-04-16 16:20:36 -06:00
|
|
|
#define NLMSG_ALIGN(len) ( ((len)+NLMSG_ALIGNTO-1) & ~(NLMSG_ALIGNTO-1) )
|
2005-11-09 18:25:51 -07:00
|
|
|
#define NLMSG_HDRLEN ((int) NLMSG_ALIGN(sizeof(struct nlmsghdr)))
|
|
|
|
#define NLMSG_LENGTH(len) ((len)+NLMSG_ALIGN(NLMSG_HDRLEN))
|
2005-04-16 16:20:36 -06:00
|
|
|
#define NLMSG_SPACE(len) NLMSG_ALIGN(NLMSG_LENGTH(len))
|
|
|
|
#define NLMSG_DATA(nlh) ((void*)(((char*)nlh) + NLMSG_LENGTH(0)))
|
|
|
|
#define NLMSG_NEXT(nlh,len) ((len) -= NLMSG_ALIGN((nlh)->nlmsg_len), \
|
|
|
|
(struct nlmsghdr*)(((char*)(nlh)) + NLMSG_ALIGN((nlh)->nlmsg_len)))
|
|
|
|
#define NLMSG_OK(nlh,len) ((len) >= (int)sizeof(struct nlmsghdr) && \
|
|
|
|
(nlh)->nlmsg_len >= sizeof(struct nlmsghdr) && \
|
|
|
|
(nlh)->nlmsg_len <= (len))
|
|
|
|
#define NLMSG_PAYLOAD(nlh,len) ((nlh)->nlmsg_len - NLMSG_SPACE((len)))
|
|
|
|
|
|
|
|
#define NLMSG_NOOP 0x1 /* Nothing. */
|
|
|
|
#define NLMSG_ERROR 0x2 /* Error */
|
|
|
|
#define NLMSG_DONE 0x3 /* End of a dump */
|
|
|
|
#define NLMSG_OVERRUN 0x4 /* Data lost */
|
|
|
|
|
2005-11-09 18:25:51 -07:00
|
|
|
#define NLMSG_MIN_TYPE 0x10 /* < 0x10: reserved control messages */
|
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct nlmsgerr {
|
2005-04-16 16:20:36 -06:00
|
|
|
int error;
|
|
|
|
struct nlmsghdr msg;
|
|
|
|
};
|
|
|
|
|
2005-08-15 13:32:15 -06:00
|
|
|
#define NETLINK_ADD_MEMBERSHIP 1
|
|
|
|
#define NETLINK_DROP_MEMBERSHIP 2
|
|
|
|
#define NETLINK_PKTINFO 3
|
2009-02-17 18:40:43 -07:00
|
|
|
#define NETLINK_BROADCAST_ERROR 4
|
netlink: add NETLINK_NO_ENOBUFS socket flag
This patch adds the NETLINK_NO_ENOBUFS socket flag. This flag can
be used by unicast and broadcast listeners to avoid receiving
ENOBUFS errors.
Generally speaking, ENOBUFS errors are useful to notify two things
to the listener:
a) You may increase the receiver buffer size via setsockopt().
b) You have lost messages, you may be out of sync.
In some cases, ignoring ENOBUFS errors can be useful. For example:
a) nfnetlink_queue: this subsystem does not have any sort of resync
method and you can decide to ignore ENOBUFS once you have set a
given buffer size.
b) ctnetlink: you can use this together with the socket flag
NETLINK_BROADCAST_SEND_ERROR to stop getting ENOBUFS errors as
you do not need to resync (packets whose event are not delivered
are drop to provide reliable logging and state-synchronization).
Moreover, the use of NETLINK_NO_ENOBUFS also reduces a "go up, go down"
effect in terms of performance which is due to the netlink congestion
control when the listener cannot back off. The effect is the following:
1) throughput rate goes up and netlink messages are inserted in the
receiver buffer.
2) Then, netlink buffer fills and overruns (set on nlk->state bit 0).
3) While the listener empties the receiver buffer, netlink keeps
dropping messages. Thus, throughput goes dramatically down.
4) Then, once the listener has emptied the buffer (nlk->state
bit 0 is set off), goto step 1.
This effect is easy to trigger with netlink broadcast under heavy
load, and it is more noticeable when using a big receiver buffer.
You can find some results in [1] that show this problem.
[1] http://1984.lsi.us.es/linux/netlink/
This patch also includes the use of sk_drop to account the number of
netlink messages drop due to overrun. This value is shown in
/proc/net/netlink.
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-24 17:37:55 -06:00
|
|
|
#define NETLINK_NO_ENOBUFS 5
|
2005-08-15 13:32:15 -06:00
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct nl_pktinfo {
|
2005-08-15 13:32:15 -06:00
|
|
|
__u32 group;
|
|
|
|
};
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
#define NET_MAJOR 36 /* Major 36 is reserved for networking */
|
|
|
|
|
|
|
|
enum {
|
|
|
|
NETLINK_UNCONNECTED = 0,
|
|
|
|
NETLINK_CONNECTED,
|
|
|
|
};
|
|
|
|
|
2005-11-09 18:25:51 -07:00
|
|
|
/*
|
|
|
|
* <------- NLA_HDRLEN ------> <-- NLA_ALIGN(payload)-->
|
|
|
|
* +---------------------+- - -+- - - - - - - - - -+- - -+
|
|
|
|
* | Header | Pad | Payload | Pad |
|
|
|
|
* | (struct nlattr) | ing | | ing |
|
|
|
|
* +---------------------+- - -+- - - - - - - - - -+- - -+
|
|
|
|
* <-------------- nlattr->nla_len -------------->
|
|
|
|
*/
|
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct nlattr {
|
2005-11-09 18:25:51 -07:00
|
|
|
__u16 nla_len;
|
|
|
|
__u16 nla_type;
|
|
|
|
};
|
|
|
|
|
2007-09-12 06:44:36 -06:00
|
|
|
/*
|
|
|
|
* nla_type (16 bits)
|
|
|
|
* +---+---+-------------------------------+
|
|
|
|
* | N | O | Attribute Type |
|
|
|
|
* +---+---+-------------------------------+
|
|
|
|
* N := Carries nested attributes
|
|
|
|
* O := Payload stored in network byte order
|
|
|
|
*
|
|
|
|
* Note: The N and O flag are mutually exclusive.
|
|
|
|
*/
|
|
|
|
#define NLA_F_NESTED (1 << 15)
|
|
|
|
#define NLA_F_NET_BYTEORDER (1 << 14)
|
|
|
|
#define NLA_TYPE_MASK ~(NLA_F_NESTED | NLA_F_NET_BYTEORDER)
|
|
|
|
|
2005-11-09 18:25:51 -07:00
|
|
|
#define NLA_ALIGNTO 4
|
|
|
|
#define NLA_ALIGN(len) (((len) + NLA_ALIGNTO - 1) & ~(NLA_ALIGNTO - 1))
|
|
|
|
#define NLA_HDRLEN ((int) NLA_ALIGN(sizeof(struct nlattr)))
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
#include <linux/capability.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
|
2010-09-21 23:54:54 -06:00
|
|
|
struct net;
|
|
|
|
|
2007-04-25 20:08:35 -06:00
|
|
|
static inline struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return (struct nlmsghdr *)skb->data;
|
|
|
|
}
|
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct netlink_skb_parms {
|
2005-04-16 16:20:36 -06:00
|
|
|
struct ucred creds; /* Skb credentials */
|
|
|
|
__u32 pid;
|
2005-08-14 20:27:50 -06:00
|
|
|
__u32 dst_group;
|
2005-04-16 16:20:36 -06:00
|
|
|
};
|
|
|
|
|
|
|
|
#define NETLINK_CB(skb) (*(struct netlink_skb_parms*)&((skb)->cb))
|
|
|
|
#define NETLINK_CREDS(skb) (&NETLINK_CB((skb)).creds)
|
|
|
|
|
|
|
|
|
2009-09-11 21:03:15 -06:00
|
|
|
extern void netlink_table_grab(void);
|
|
|
|
extern void netlink_table_ungrab(void);
|
|
|
|
|
2007-09-12 05:05:38 -06:00
|
|
|
extern struct sock *netlink_kernel_create(struct net *net,
|
|
|
|
int unit,unsigned int groups,
|
2007-10-10 22:15:29 -06:00
|
|
|
void (*input)(struct sk_buff *skb),
|
2007-04-20 15:14:21 -06:00
|
|
|
struct mutex *cb_mutex,
|
|
|
|
struct module *module);
|
2008-01-28 15:41:19 -07:00
|
|
|
extern void netlink_kernel_release(struct sock *sk);
|
2009-09-11 21:03:15 -06:00
|
|
|
extern int __netlink_change_ngroups(struct sock *sk, unsigned int groups);
|
2007-07-18 16:46:06 -06:00
|
|
|
extern int netlink_change_ngroups(struct sock *sk, unsigned int groups);
|
2009-09-24 16:44:05 -06:00
|
|
|
extern void __netlink_clear_multicast_users(struct sock *sk, unsigned int group);
|
2007-07-18 16:47:05 -06:00
|
|
|
extern void netlink_clear_multicast_users(struct sock *sk, unsigned int group);
|
2005-04-16 16:20:36 -06:00
|
|
|
extern void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err);
|
2006-03-20 19:52:01 -07:00
|
|
|
extern int netlink_has_listeners(struct sock *sk, unsigned int group);
|
2005-04-16 16:20:36 -06:00
|
|
|
extern int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 pid, int nonblock);
|
|
|
|
extern int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 pid,
|
2005-10-07 00:46:04 -06:00
|
|
|
__u32 group, gfp_t allocation);
|
2010-05-04 18:36:46 -06:00
|
|
|
extern int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb,
|
|
|
|
__u32 pid, __u32 group, gfp_t allocation,
|
|
|
|
int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
|
|
|
|
void *filter_data);
|
2010-03-18 08:24:42 -06:00
|
|
|
extern int netlink_set_err(struct sock *ssk, __u32 pid, __u32 group, int code);
|
2005-04-16 16:20:36 -06:00
|
|
|
extern int netlink_register_notifier(struct notifier_block *nb);
|
|
|
|
extern int netlink_unregister_notifier(struct notifier_block *nb);
|
|
|
|
|
|
|
|
/* finegrained unicast helpers: */
|
|
|
|
struct sock *netlink_getsockbyfilp(struct file *filp);
|
2008-06-05 12:23:39 -06:00
|
|
|
int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
|
2007-11-07 03:42:09 -07:00
|
|
|
long *timeo, struct sock *ssk);
|
2005-04-16 16:20:36 -06:00
|
|
|
void netlink_detachskb(struct sock *sk, struct sk_buff *skb);
|
2007-10-10 22:14:03 -06:00
|
|
|
int netlink_sendskb(struct sock *sk, struct sk_buff *skb);
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
/*
|
|
|
|
* skb should fit one page. This choice is good for headerless malloc.
|
2007-03-25 21:27:59 -06:00
|
|
|
* But we should limit to 8K so that userspace does not have to
|
|
|
|
* use enormous buffer sizes on recvmsg() calls just to avoid
|
|
|
|
* MSG_TRUNC when PAGE_SIZE is very large.
|
2005-04-16 16:20:36 -06:00
|
|
|
*/
|
2007-03-25 21:27:59 -06:00
|
|
|
#if PAGE_SIZE < 8192UL
|
|
|
|
#define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(PAGE_SIZE)
|
|
|
|
#else
|
|
|
|
#define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(8192UL)
|
|
|
|
#endif
|
|
|
|
|
2006-11-10 15:10:15 -07:00
|
|
|
#define NLMSG_DEFAULT_SIZE (NLMSG_GOODSIZE - NLMSG_HDRLEN)
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct netlink_callback {
|
2009-08-25 08:07:40 -06:00
|
|
|
struct sk_buff *skb;
|
|
|
|
const struct nlmsghdr *nlh;
|
|
|
|
int (*dump)(struct sk_buff * skb,
|
|
|
|
struct netlink_callback *cb);
|
|
|
|
int (*done)(struct netlink_callback *cb);
|
2012-02-24 07:30:16 -07:00
|
|
|
void *data;
|
2011-06-09 19:27:09 -06:00
|
|
|
u16 family;
|
|
|
|
u16 min_dump_alloc;
|
netlink: advertise incomplete dumps
Consider the following situation:
* a dump that would show 8 entries, four in the first
round, and four in the second
* between the first and second rounds, 6 entries are
removed
* now the second round will not show any entry, and
even if there is a sequence/generation counter the
application will not know
To solve this problem, add a new flag NLM_F_DUMP_INTR
to the netlink header that indicates the dump wasn't
consistent, this flag can also be set on the MSG_DONE
message that terminates the dump, and as such above
situation can be detected.
To achieve this, add a sequence counter to the netlink
callback struct. Of course, netlink code still needs
to use this new functionality. The correct way to do
that is to always set cb->seq when a dumpit callback
is invoked and call nl_dump_check_consistent() for
each new message. The core code will also call this
function for the final MSG_DONE message.
To make it usable with generic netlink, a new function
genlmsg_nlhdr() is needed to obtain the netlink header
from the genetlink user header.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-06-20 05:40:46 -06:00
|
|
|
unsigned int prev_seq, seq;
|
2009-08-25 08:07:40 -06:00
|
|
|
long args[6];
|
2005-04-16 16:20:36 -06:00
|
|
|
};
|
|
|
|
|
2009-11-04 10:50:58 -07:00
|
|
|
struct netlink_notify {
|
2007-09-12 05:05:38 -06:00
|
|
|
struct net *net;
|
2005-04-16 16:20:36 -06:00
|
|
|
int pid;
|
|
|
|
int protocol;
|
|
|
|
};
|
|
|
|
|
2012-01-30 13:22:06 -07:00
|
|
|
struct nlmsghdr *
|
|
|
|
__nlmsg_put(struct sk_buff *skb, u32 pid, u32 seq, int type, int len, int flags);
|
2005-04-16 16:20:36 -06:00
|
|
|
|
2005-06-18 23:53:48 -06:00
|
|
|
#define NLMSG_NEW(skb, pid, seq, type, len, flags) \
|
2007-12-05 04:31:53 -07:00
|
|
|
({ if (unlikely(skb_tailroom(skb) < (int)NLMSG_SPACE(len))) \
|
2005-06-18 23:50:12 -06:00
|
|
|
goto nlmsg_failure; \
|
2005-06-18 23:53:48 -06:00
|
|
|
__nlmsg_put(skb, pid, seq, type, len, flags); })
|
|
|
|
|
|
|
|
#define NLMSG_PUT(skb, pid, seq, type, len) \
|
|
|
|
NLMSG_NEW(skb, pid, seq, type, len, 0)
|
2005-06-18 23:50:12 -06:00
|
|
|
|
2012-02-24 07:30:15 -07:00
|
|
|
struct netlink_dump_control {
|
|
|
|
int (*dump)(struct sk_buff *skb, struct netlink_callback *);
|
|
|
|
int (*done)(struct netlink_callback*);
|
2012-02-24 07:30:16 -07:00
|
|
|
void *data;
|
2012-02-24 07:30:15 -07:00
|
|
|
u16 min_dump_alloc;
|
|
|
|
};
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
extern int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
|
2009-08-25 08:07:40 -06:00
|
|
|
const struct nlmsghdr *nlh,
|
2012-02-24 07:30:15 -07:00
|
|
|
struct netlink_dump_control *control);
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
|
|
|
|
#define NL_NONROOT_RECV 0x1
|
|
|
|
#define NL_NONROOT_SEND 0x2
|
|
|
|
extern void netlink_set_nonroot(int protocol, unsigned flag);
|
|
|
|
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
|
|
|
#endif /* __LINUX_NETLINK_H */
|