2005-04-16 16:20:36 -06:00
|
|
|
/*
|
|
|
|
* arch/s390/mm/fault.c
|
|
|
|
*
|
|
|
|
* S390 version
|
|
|
|
* Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
|
|
|
|
* Author(s): Hartmut Penner (hp@de.ibm.com)
|
|
|
|
* Ulrich Weigand (uweigand@de.ibm.com)
|
|
|
|
*
|
|
|
|
* Derived from "arch/i386/mm/fault.c"
|
|
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/signal.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/mman.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/smp.h>
|
|
|
|
#include <linux/smp_lock.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/console.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/hardirq.h>
|
|
|
|
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
|
|
|
|
#ifndef CONFIG_ARCH_S390X
|
|
|
|
#define __FAIL_ADDR_MASK 0x7ffff000
|
|
|
|
#define __FIXUP_MASK 0x7fffffff
|
|
|
|
#define __SUBCODE_MASK 0x0200
|
|
|
|
#define __PF_RES_FIELD 0ULL
|
|
|
|
#else /* CONFIG_ARCH_S390X */
|
|
|
|
#define __FAIL_ADDR_MASK -4096L
|
|
|
|
#define __FIXUP_MASK ~0L
|
|
|
|
#define __SUBCODE_MASK 0x0600
|
|
|
|
#define __PF_RES_FIELD 0x8000000000000000ULL
|
|
|
|
#endif /* CONFIG_ARCH_S390X */
|
|
|
|
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
extern int sysctl_userprocess_debug;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
extern void die(const char *,struct pt_regs *,long);
|
|
|
|
|
|
|
|
extern spinlock_t timerlist_lock;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unlock any spinlocks which will prevent us from getting the
|
|
|
|
* message out (timerlist_lock is acquired through the
|
|
|
|
* console unblank code)
|
|
|
|
*/
|
|
|
|
void bust_spinlocks(int yes)
|
|
|
|
{
|
|
|
|
if (yes) {
|
|
|
|
oops_in_progress = 1;
|
|
|
|
} else {
|
|
|
|
int loglevel_save = console_loglevel;
|
|
|
|
console_unblank();
|
|
|
|
oops_in_progress = 0;
|
|
|
|
/*
|
|
|
|
* OK, the message is on the console. Now we call printk()
|
|
|
|
* without oops_in_progress set so that printk will give klogd
|
|
|
|
* a poke. Hold onto your hats...
|
|
|
|
*/
|
|
|
|
console_loglevel = 15;
|
|
|
|
printk(" ");
|
|
|
|
console_loglevel = loglevel_save;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check which address space is addressed by the access
|
|
|
|
* register in S390_lowcore.exc_access_id.
|
|
|
|
* Returns 1 for user space and 0 for kernel space.
|
|
|
|
*/
|
|
|
|
static int __check_access_register(struct pt_regs *regs, int error_code)
|
|
|
|
{
|
|
|
|
int areg = S390_lowcore.exc_access_id;
|
|
|
|
|
|
|
|
if (areg == 0)
|
|
|
|
/* Access via access register 0 -> kernel address */
|
|
|
|
return 0;
|
|
|
|
save_access_regs(current->thread.acrs);
|
|
|
|
if (regs && areg < NUM_ACRS && current->thread.acrs[areg] <= 1)
|
|
|
|
/*
|
|
|
|
* access register contains 0 -> kernel address,
|
|
|
|
* access register contains 1 -> user space address
|
|
|
|
*/
|
|
|
|
return current->thread.acrs[areg];
|
|
|
|
|
|
|
|
/* Something unhealthy was done with the access registers... */
|
|
|
|
die("page fault via unknown access register", regs, error_code);
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check which address space the address belongs to.
|
|
|
|
* Returns 1 for user space and 0 for kernel space.
|
|
|
|
*/
|
|
|
|
static inline int check_user_space(struct pt_regs *regs, int error_code)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The lowest two bits of S390_lowcore.trans_exc_code indicate
|
|
|
|
* which paging table was used:
|
|
|
|
* 0: Primary Segment Table Descriptor
|
|
|
|
* 1: STD determined via access register
|
|
|
|
* 2: Secondary Segment Table Descriptor
|
|
|
|
* 3: Home Segment Table Descriptor
|
|
|
|
*/
|
|
|
|
int descriptor = S390_lowcore.trans_exc_code & 3;
|
|
|
|
if (unlikely(descriptor == 1))
|
|
|
|
return __check_access_register(regs, error_code);
|
|
|
|
if (descriptor == 2)
|
|
|
|
return current->thread.mm_segment.ar4;
|
|
|
|
return descriptor != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send SIGSEGV to task. This is an external routine
|
|
|
|
* to keep the stack usage of do_page_fault small.
|
|
|
|
*/
|
|
|
|
static void do_sigsegv(struct pt_regs *regs, unsigned long error_code,
|
|
|
|
int si_code, unsigned long address)
|
|
|
|
{
|
|
|
|
struct siginfo si;
|
|
|
|
|
|
|
|
#if defined(CONFIG_SYSCTL) || defined(CONFIG_PROCESS_DEBUG)
|
|
|
|
#if defined(CONFIG_SYSCTL)
|
|
|
|
if (sysctl_userprocess_debug)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
printk("User process fault: interruption code 0x%lX\n",
|
|
|
|
error_code);
|
|
|
|
printk("failing address: %lX\n", address);
|
|
|
|
show_regs(regs);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
si.si_signo = SIGSEGV;
|
|
|
|
si.si_code = si_code;
|
|
|
|
si.si_addr = (void *) address;
|
|
|
|
force_sig_info(SIGSEGV, &si, current);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine handles page faults. It determines the address,
|
|
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
|
|
* routines.
|
|
|
|
*
|
|
|
|
* error_code:
|
|
|
|
* 04 Protection -> Write-Protection (suprression)
|
|
|
|
* 10 Segment translation -> Not present (nullification)
|
|
|
|
* 11 Page translation -> Not present (nullification)
|
|
|
|
* 3b Region third trans. -> Not present (nullification)
|
|
|
|
*/
|
|
|
|
extern inline void
|
|
|
|
do_exception(struct pt_regs *regs, unsigned long error_code, int is_protection)
|
|
|
|
{
|
|
|
|
struct task_struct *tsk;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
struct vm_area_struct * vma;
|
|
|
|
unsigned long address;
|
|
|
|
int user_address;
|
|
|
|
const struct exception_table_entry *fixup;
|
|
|
|
int si_code = SEGV_MAPERR;
|
|
|
|
|
|
|
|
tsk = current;
|
|
|
|
mm = tsk->mm;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check for low-address protection. This needs to be treated
|
|
|
|
* as a special case because the translation exception code
|
|
|
|
* field is not guaranteed to contain valid data in this case.
|
|
|
|
*/
|
|
|
|
if (is_protection && !(S390_lowcore.trans_exc_code & 4)) {
|
|
|
|
|
|
|
|
/* Low-address protection hit in kernel mode means
|
|
|
|
NULL pointer write access in kernel mode. */
|
|
|
|
if (!(regs->psw.mask & PSW_MASK_PSTATE)) {
|
|
|
|
address = 0;
|
|
|
|
user_address = 0;
|
|
|
|
goto no_context;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Low-address protection hit in user mode 'cannot happen'. */
|
|
|
|
die ("Low-address protection", regs, error_code);
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* get the failing address
|
|
|
|
* more specific the segment and page table portion of
|
|
|
|
* the address
|
|
|
|
*/
|
|
|
|
address = S390_lowcore.trans_exc_code & __FAIL_ADDR_MASK;
|
|
|
|
user_address = check_user_space(regs, error_code);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Verify that the fault happened in user space, that
|
|
|
|
* we are not in an interrupt and that there is a
|
|
|
|
* user context.
|
|
|
|
*/
|
2005-06-04 16:43:32 -06:00
|
|
|
if (user_address == 0 || in_atomic() || !mm)
|
2005-04-16 16:20:36 -06:00
|
|
|
goto no_context;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When we get here, the fault happened in the current
|
|
|
|
* task's user address space, so we can switch on the
|
|
|
|
* interrupts again and then search the VMAs
|
|
|
|
*/
|
|
|
|
local_irq_enable();
|
|
|
|
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
|
|
|
|
vma = find_vma(mm, address);
|
|
|
|
if (!vma)
|
|
|
|
goto bad_area;
|
|
|
|
if (vma->vm_start <= address)
|
|
|
|
goto good_area;
|
|
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
|
|
goto bad_area;
|
|
|
|
if (expand_stack(vma, address))
|
|
|
|
goto bad_area;
|
|
|
|
/*
|
|
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
|
|
* we can handle it..
|
|
|
|
*/
|
|
|
|
good_area:
|
|
|
|
si_code = SEGV_ACCERR;
|
|
|
|
if (!is_protection) {
|
|
|
|
/* page not present, check vm flags */
|
|
|
|
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
|
|
|
goto bad_area;
|
|
|
|
} else {
|
|
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
|
|
goto bad_area;
|
|
|
|
}
|
|
|
|
|
|
|
|
survive:
|
|
|
|
/*
|
|
|
|
* If for any reason at all we couldn't handle the fault,
|
|
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
|
|
* the fault.
|
|
|
|
*/
|
|
|
|
switch (handle_mm_fault(mm, vma, address, is_protection)) {
|
|
|
|
case VM_FAULT_MINOR:
|
|
|
|
tsk->min_flt++;
|
|
|
|
break;
|
|
|
|
case VM_FAULT_MAJOR:
|
|
|
|
tsk->maj_flt++;
|
|
|
|
break;
|
|
|
|
case VM_FAULT_SIGBUS:
|
|
|
|
goto do_sigbus;
|
|
|
|
case VM_FAULT_OOM:
|
|
|
|
goto out_of_memory;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
|
|
* The instruction that caused the program check will
|
|
|
|
* be repeated. Don't signal single step via SIGTRAP.
|
|
|
|
*/
|
|
|
|
clear_tsk_thread_flag(current, TIF_SINGLE_STEP);
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Something tried to access memory that isn't in our memory map..
|
|
|
|
* Fix it, but check if it's kernel or user first..
|
|
|
|
*/
|
|
|
|
bad_area:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
|
|
if (regs->psw.mask & PSW_MASK_PSTATE) {
|
|
|
|
tsk->thread.prot_addr = address;
|
|
|
|
tsk->thread.trap_no = error_code;
|
|
|
|
do_sigsegv(regs, error_code, si_code, address);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
no_context:
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
|
|
fixup = search_exception_tables(regs->psw.addr & __FIXUP_MASK);
|
|
|
|
if (fixup) {
|
|
|
|
regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
|
|
* terminate things with extreme prejudice.
|
|
|
|
*/
|
|
|
|
if (user_address == 0)
|
|
|
|
printk(KERN_ALERT "Unable to handle kernel pointer dereference"
|
|
|
|
" at virtual kernel address %p\n", (void *)address);
|
|
|
|
else
|
|
|
|
printk(KERN_ALERT "Unable to handle kernel paging request"
|
|
|
|
" at virtual user address %p\n", (void *)address);
|
|
|
|
|
|
|
|
die("Oops", regs, error_code);
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We ran out of memory, or some other thing happened to us that made
|
|
|
|
* us unable to handle the page fault gracefully.
|
|
|
|
*/
|
|
|
|
out_of_memory:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
if (tsk->pid == 1) {
|
|
|
|
yield();
|
|
|
|
goto survive;
|
|
|
|
}
|
|
|
|
printk("VM: killing process %s\n", tsk->comm);
|
|
|
|
if (regs->psw.mask & PSW_MASK_PSTATE)
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
goto no_context;
|
|
|
|
|
|
|
|
do_sigbus:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send a sigbus, regardless of whether we were in kernel
|
|
|
|
* or user mode.
|
|
|
|
*/
|
|
|
|
tsk->thread.prot_addr = address;
|
|
|
|
tsk->thread.trap_no = error_code;
|
|
|
|
force_sig(SIGBUS, tsk);
|
|
|
|
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
|
|
if (!(regs->psw.mask & PSW_MASK_PSTATE))
|
|
|
|
goto no_context;
|
|
|
|
}
|
|
|
|
|
|
|
|
void do_protection_exception(struct pt_regs *regs, unsigned long error_code)
|
|
|
|
{
|
|
|
|
regs->psw.addr -= (error_code >> 16);
|
|
|
|
do_exception(regs, 4, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void do_dat_exception(struct pt_regs *regs, unsigned long error_code)
|
|
|
|
{
|
|
|
|
do_exception(regs, error_code & 0xff, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef CONFIG_ARCH_S390X
|
|
|
|
|
|
|
|
typedef struct _pseudo_wait_t {
|
|
|
|
struct _pseudo_wait_t *next;
|
|
|
|
wait_queue_head_t queue;
|
|
|
|
unsigned long address;
|
|
|
|
int resolved;
|
|
|
|
} pseudo_wait_t;
|
|
|
|
|
|
|
|
static pseudo_wait_t *pseudo_lock_queue = NULL;
|
|
|
|
static spinlock_t pseudo_wait_spinlock; /* spinlock to protect lock queue */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine handles 'pagex' pseudo page faults.
|
|
|
|
*/
|
|
|
|
asmlinkage void
|
|
|
|
do_pseudo_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|
|
|
{
|
|
|
|
pseudo_wait_t wait_struct;
|
|
|
|
pseudo_wait_t *ptr, *last, *next;
|
|
|
|
unsigned long address;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* get the failing address
|
|
|
|
* more specific the segment and page table portion of
|
|
|
|
* the address
|
|
|
|
*/
|
|
|
|
address = S390_lowcore.trans_exc_code & 0xfffff000;
|
|
|
|
|
|
|
|
if (address & 0x80000000) {
|
|
|
|
/* high bit set -> a page has been swapped in by VM */
|
|
|
|
address &= 0x7fffffff;
|
|
|
|
spin_lock(&pseudo_wait_spinlock);
|
|
|
|
last = NULL;
|
|
|
|
ptr = pseudo_lock_queue;
|
|
|
|
while (ptr != NULL) {
|
|
|
|
next = ptr->next;
|
|
|
|
if (address == ptr->address) {
|
|
|
|
/*
|
|
|
|
* This is one of the processes waiting
|
|
|
|
* for the page. Unchain from the queue.
|
|
|
|
* There can be more than one process
|
|
|
|
* waiting for the same page. VM presents
|
|
|
|
* an initial and a completion interrupt for
|
|
|
|
* every process that tries to access a
|
|
|
|
* page swapped out by VM.
|
|
|
|
*/
|
|
|
|
if (last == NULL)
|
|
|
|
pseudo_lock_queue = next;
|
|
|
|
else
|
|
|
|
last->next = next;
|
|
|
|
/* now wake up the process */
|
|
|
|
ptr->resolved = 1;
|
|
|
|
wake_up(&ptr->queue);
|
|
|
|
} else
|
|
|
|
last = ptr;
|
|
|
|
ptr = next;
|
|
|
|
}
|
|
|
|
spin_unlock(&pseudo_wait_spinlock);
|
|
|
|
} else {
|
|
|
|
/* Pseudo page faults in kernel mode is a bad idea */
|
|
|
|
if (!(regs->psw.mask & PSW_MASK_PSTATE)) {
|
|
|
|
/*
|
|
|
|
* VM presents pseudo page faults if the interrupted
|
|
|
|
* state was not disabled for interrupts. So we can
|
|
|
|
* get pseudo page fault interrupts while running
|
|
|
|
* in kernel mode. We simply access the page here
|
|
|
|
* while we are running disabled. VM will then swap
|
|
|
|
* in the page synchronously.
|
|
|
|
*/
|
|
|
|
if (check_user_space(regs, error_code) == 0)
|
|
|
|
/* dereference a virtual kernel address */
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
" ic 0,0(%0)"
|
|
|
|
: : "a" (address) : "0");
|
|
|
|
else
|
|
|
|
/* dereference a virtual user address */
|
|
|
|
__asm__ __volatile__ (
|
|
|
|
" la 2,0(%0)\n"
|
|
|
|
" sacf 512\n"
|
|
|
|
" ic 2,0(2)\n"
|
|
|
|
"0:sacf 0\n"
|
|
|
|
".section __ex_table,\"a\"\n"
|
|
|
|
" .align 4\n"
|
|
|
|
" .long 0b,0b\n"
|
|
|
|
".previous"
|
|
|
|
: : "a" (address) : "2" );
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* initialize and add element to pseudo_lock_queue */
|
|
|
|
init_waitqueue_head (&wait_struct.queue);
|
|
|
|
wait_struct.address = address;
|
|
|
|
wait_struct.resolved = 0;
|
|
|
|
spin_lock(&pseudo_wait_spinlock);
|
|
|
|
wait_struct.next = pseudo_lock_queue;
|
|
|
|
pseudo_lock_queue = &wait_struct;
|
|
|
|
spin_unlock(&pseudo_wait_spinlock);
|
|
|
|
/*
|
|
|
|
* The instruction that caused the program check will
|
|
|
|
* be repeated. Don't signal single step via SIGTRAP.
|
|
|
|
*/
|
|
|
|
clear_tsk_thread_flag(current, TIF_SINGLE_STEP);
|
|
|
|
/* go to sleep */
|
|
|
|
wait_event(wait_struct.queue, wait_struct.resolved);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_ARCH_S390X */
|
|
|
|
|
|
|
|
#ifdef CONFIG_PFAULT
|
|
|
|
/*
|
|
|
|
* 'pfault' pseudo page faults routines.
|
|
|
|
*/
|
|
|
|
static int pfault_disable = 0;
|
|
|
|
|
|
|
|
static int __init nopfault(char *str)
|
|
|
|
{
|
|
|
|
pfault_disable = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__setup("nopfault", nopfault);
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
__u16 refdiagc;
|
|
|
|
__u16 reffcode;
|
|
|
|
__u16 refdwlen;
|
|
|
|
__u16 refversn;
|
|
|
|
__u64 refgaddr;
|
|
|
|
__u64 refselmk;
|
|
|
|
__u64 refcmpmk;
|
|
|
|
__u64 reserved;
|
|
|
|
} __attribute__ ((packed)) pfault_refbk_t;
|
|
|
|
|
|
|
|
int pfault_init(void)
|
|
|
|
{
|
|
|
|
pfault_refbk_t refbk =
|
|
|
|
{ 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48,
|
|
|
|
__PF_RES_FIELD };
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
if (pfault_disable)
|
|
|
|
return -1;
|
|
|
|
__asm__ __volatile__(
|
|
|
|
" diag %1,%0,0x258\n"
|
|
|
|
"0: j 2f\n"
|
|
|
|
"1: la %0,8\n"
|
|
|
|
"2:\n"
|
|
|
|
".section __ex_table,\"a\"\n"
|
|
|
|
" .align 4\n"
|
|
|
|
#ifndef CONFIG_ARCH_S390X
|
|
|
|
" .long 0b,1b\n"
|
|
|
|
#else /* CONFIG_ARCH_S390X */
|
|
|
|
" .quad 0b,1b\n"
|
|
|
|
#endif /* CONFIG_ARCH_S390X */
|
|
|
|
".previous"
|
|
|
|
: "=d" (rc) : "a" (&refbk) : "cc" );
|
|
|
|
__ctl_set_bit(0, 9);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
void pfault_fini(void)
|
|
|
|
{
|
|
|
|
pfault_refbk_t refbk =
|
|
|
|
{ 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL };
|
|
|
|
|
|
|
|
if (pfault_disable)
|
|
|
|
return;
|
|
|
|
__ctl_clear_bit(0,9);
|
|
|
|
__asm__ __volatile__(
|
|
|
|
" diag %0,0,0x258\n"
|
|
|
|
"0:\n"
|
|
|
|
".section __ex_table,\"a\"\n"
|
|
|
|
" .align 4\n"
|
|
|
|
#ifndef CONFIG_ARCH_S390X
|
|
|
|
" .long 0b,0b\n"
|
|
|
|
#else /* CONFIG_ARCH_S390X */
|
|
|
|
" .quad 0b,0b\n"
|
|
|
|
#endif /* CONFIG_ARCH_S390X */
|
|
|
|
".previous"
|
|
|
|
: : "a" (&refbk) : "cc" );
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage void
|
|
|
|
pfault_interrupt(struct pt_regs *regs, __u16 error_code)
|
|
|
|
{
|
|
|
|
struct task_struct *tsk;
|
|
|
|
__u16 subcode;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the external interruption subcode & pfault
|
|
|
|
* initial/completion signal bit. VM stores this
|
|
|
|
* in the 'cpu address' field associated with the
|
|
|
|
* external interrupt.
|
|
|
|
*/
|
|
|
|
subcode = S390_lowcore.cpu_addr;
|
|
|
|
if ((subcode & 0xff00) != __SUBCODE_MASK)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the token (= address of the task structure of the affected task).
|
|
|
|
*/
|
|
|
|
tsk = *(struct task_struct **) __LC_PFAULT_INTPARM;
|
|
|
|
|
|
|
|
if (subcode & 0x0080) {
|
|
|
|
/* signal bit is set -> a page has been swapped in by VM */
|
|
|
|
if (xchg(&tsk->thread.pfault_wait, -1) != 0) {
|
|
|
|
/* Initial interrupt was faster than the completion
|
|
|
|
* interrupt. pfault_wait is valid. Set pfault_wait
|
|
|
|
* back to zero and wake up the process. This can
|
|
|
|
* safely be done because the task is still sleeping
|
|
|
|
* and can't procude new pfaults. */
|
|
|
|
tsk->thread.pfault_wait = 0;
|
|
|
|
wake_up_process(tsk);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* signal bit not set -> a real page is missing. */
|
|
|
|
set_task_state(tsk, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (xchg(&tsk->thread.pfault_wait, 1) != 0) {
|
|
|
|
/* Completion interrupt was faster than the initial
|
|
|
|
* interrupt (swapped in a -1 for pfault_wait). Set
|
|
|
|
* pfault_wait back to zero and exit. This can be
|
|
|
|
* done safely because tsk is running in kernel
|
|
|
|
* mode and can't produce new pfaults. */
|
|
|
|
tsk->thread.pfault_wait = 0;
|
|
|
|
set_task_state(tsk, TASK_RUNNING);
|
|
|
|
} else
|
|
|
|
set_tsk_need_resched(tsk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|