kernel-fxtec-pro1x/arch/alpha/kernel/sys_alcor.c

327 lines
7.8 KiB
C
Raw Normal View History

/*
* linux/arch/alpha/kernel/sys_alcor.c
*
* Copyright (C) 1995 David A Rusling
* Copyright (C) 1996 Jay A Estabrook
* Copyright (C) 1998, 1999 Richard Henderson
*
* Code supporting the ALCOR and XLT (XL-300/366/433).
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/reboot.h>
#include <linux/bitops.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/mmu_context.h>
#include <asm/irq.h>
#include <asm/pgtable.h>
#include <asm/core_cia.h>
#include <asm/tlbflush.h>
#include "proto.h"
#include "irq_impl.h"
#include "pci_impl.h"
#include "machvec_impl.h"
/* Note mask bit is true for ENABLED irqs. */
static unsigned long cached_irq_mask;
static inline void
alcor_update_irq_hw(unsigned long mask)
{
*(vuip)GRU_INT_MASK = mask;
mb();
}
static inline void
alcor_enable_irq(unsigned int irq)
{
alcor_update_irq_hw(cached_irq_mask |= 1UL << (irq - 16));
}
static void
alcor_disable_irq(unsigned int irq)
{
alcor_update_irq_hw(cached_irq_mask &= ~(1UL << (irq - 16)));
}
static void
alcor_mask_and_ack_irq(unsigned int irq)
{
alcor_disable_irq(irq);
/* On ALCOR/XLT, need to dismiss interrupt via GRU. */
*(vuip)GRU_INT_CLEAR = 1 << (irq - 16); mb();
*(vuip)GRU_INT_CLEAR = 0; mb();
}
static unsigned int
alcor_startup_irq(unsigned int irq)
{
alcor_enable_irq(irq);
return 0;
}
static void
alcor_isa_mask_and_ack_irq(unsigned int irq)
{
i8259a_mask_and_ack_irq(irq);
/* On ALCOR/XLT, need to dismiss interrupt via GRU. */
*(vuip)GRU_INT_CLEAR = 0x80000000; mb();
*(vuip)GRU_INT_CLEAR = 0; mb();
}
static void
alcor_end_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
alcor_enable_irq(irq);
}
static struct hw_interrupt_type alcor_irq_type = {
.typename = "ALCOR",
.startup = alcor_startup_irq,
.shutdown = alcor_disable_irq,
.enable = alcor_enable_irq,
.disable = alcor_disable_irq,
.ack = alcor_mask_and_ack_irq,
.end = alcor_end_irq,
};
static void
alcor_device_interrupt(unsigned long vector)
{
unsigned long pld;
unsigned int i;
/* Read the interrupt summary register of the GRU */
pld = (*(vuip)GRU_INT_REQ) & GRU_INT_REQ_BITS;
/*
* Now for every possible bit set, work through them and call
* the appropriate interrupt handler.
*/
while (pld) {
i = ffz(~pld);
pld &= pld - 1; /* clear least bit set */
if (i == 31) {
isa_device_interrupt(vector);
} else {
handle_irq(16 + i);
}
}
}
static void __init
alcor_init_irq(void)
{
long i;
if (alpha_using_srm)
alpha_mv.device_interrupt = srm_device_interrupt;
*(vuip)GRU_INT_MASK = 0; mb(); /* all disabled */
*(vuip)GRU_INT_EDGE = 0; mb(); /* all are level */
*(vuip)GRU_INT_HILO = 0x80000000U; mb(); /* ISA only HI */
*(vuip)GRU_INT_CLEAR = 0; mb(); /* all clear */
for (i = 16; i < 48; ++i) {
/* On Alcor, at least, lines 20..30 are not connected
and can generate spurious interrupts if we turn them
on while IRQ probing. */
if (i >= 16+20 && i <= 16+30)
continue;
irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL;
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 03:24:36 -06:00
irq_desc[i].chip = &alcor_irq_type;
}
i8259a_irq_type.ack = alcor_isa_mask_and_ack_irq;
init_i8259a_irqs();
common_init_isa_dma();
setup_irq(16+31, &isa_cascade_irqaction);
}
/*
* PCI Fixup configuration.
*
* Summary @ GRU_INT_REQ:
* Bit Meaning
* 0 Interrupt Line A from slot 2
* 1 Interrupt Line B from slot 2
* 2 Interrupt Line C from slot 2
* 3 Interrupt Line D from slot 2
* 4 Interrupt Line A from slot 1
* 5 Interrupt line B from slot 1
* 6 Interrupt Line C from slot 1
* 7 Interrupt Line D from slot 1
* 8 Interrupt Line A from slot 0
* 9 Interrupt Line B from slot 0
*10 Interrupt Line C from slot 0
*11 Interrupt Line D from slot 0
*12 Interrupt Line A from slot 4
*13 Interrupt Line B from slot 4
*14 Interrupt Line C from slot 4
*15 Interrupt Line D from slot 4
*16 Interrupt Line D from slot 3
*17 Interrupt Line D from slot 3
*18 Interrupt Line D from slot 3
*19 Interrupt Line D from slot 3
*20-30 Reserved
*31 EISA interrupt
*
* The device to slot mapping looks like:
*
* Slot Device
* 6 built-in TULIP (XLT only)
* 7 PCI on board slot 0
* 8 PCI on board slot 3
* 9 PCI on board slot 4
* 10 PCEB (PCI-EISA bridge)
* 11 PCI on board slot 2
* 12 PCI on board slot 1
*
*
* This two layered interrupt approach means that we allocate IRQ 16 and
* above for PCI interrupts. The IRQ relates to which bit the interrupt
* comes in on. This makes interrupt processing much easier.
*/
static int __init
alcor_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
static char irq_tab[7][5] __initdata = {
/*INT INTA INTB INTC INTD */
/* note: IDSEL 17 is XLT only */
{16+13, 16+13, 16+13, 16+13, 16+13}, /* IdSel 17, TULIP */
{ 16+8, 16+8, 16+9, 16+10, 16+11}, /* IdSel 18, slot 0 */
{16+16, 16+16, 16+17, 16+18, 16+19}, /* IdSel 19, slot 3 */
{16+12, 16+12, 16+13, 16+14, 16+15}, /* IdSel 20, slot 4 */
{ -1, -1, -1, -1, -1}, /* IdSel 21, PCEB */
{ 16+0, 16+0, 16+1, 16+2, 16+3}, /* IdSel 22, slot 2 */
{ 16+4, 16+4, 16+5, 16+6, 16+7}, /* IdSel 23, slot 1 */
};
const long min_idsel = 6, max_idsel = 12, irqs_per_slot = 5;
return COMMON_TABLE_LOOKUP;
}
static void
alcor_kill_arch(int mode)
{
cia_kill_arch(mode);
#ifndef ALPHA_RESTORE_SRM_SETUP
switch(mode) {
case LINUX_REBOOT_CMD_RESTART:
/* Who said DEC engineer's have no sense of humor? ;-) */
if (alpha_using_srm) {
*(vuip) GRU_RESET = 0x0000dead;
mb();
}
break;
case LINUX_REBOOT_CMD_HALT:
break;
case LINUX_REBOOT_CMD_POWER_OFF:
break;
}
halt();
#endif
}
static void __init
alcor_init_pci(void)
{
struct pci_dev *dev;
cia_init_pci();
/*
* Now we can look to see if we are really running on an XLT-type
* motherboard, by looking for a 21040 TULIP in slot 6, which is
* built into XLT and BRET/MAVERICK, but not available on ALCOR.
*/
dev = pci_get_device(PCI_VENDOR_ID_DEC,
PCI_DEVICE_ID_DEC_TULIP,
NULL);
if (dev && dev->devfn == PCI_DEVFN(6,0)) {
alpha_mv.sys.cia.gru_int_req_bits = XLT_GRU_INT_REQ_BITS;
printk(KERN_INFO "%s: Detected AS500 or XLT motherboard.\n",
__func__);
}
pci_dev_put(dev);
}
/*
* The System Vectors
*/
struct alpha_machine_vector alcor_mv __initmv = {
.vector_name = "Alcor",
DO_EV5_MMU,
DO_DEFAULT_RTC,
DO_CIA_IO,
.machine_check = cia_machine_check,
.max_isa_dma_address = ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS,
.min_io_address = EISA_DEFAULT_IO_BASE,
.min_mem_address = CIA_DEFAULT_MEM_BASE,
.nr_irqs = 48,
.device_interrupt = alcor_device_interrupt,
.init_arch = cia_init_arch,
.init_irq = alcor_init_irq,
.init_rtc = common_init_rtc,
.init_pci = alcor_init_pci,
.kill_arch = alcor_kill_arch,
.pci_map_irq = alcor_map_irq,
.pci_swizzle = common_swizzle,
.sys = { .cia = {
.gru_int_req_bits = ALCOR_GRU_INT_REQ_BITS
}}
};
ALIAS_MV(alcor)
struct alpha_machine_vector xlt_mv __initmv = {
.vector_name = "XLT",
DO_EV5_MMU,
DO_DEFAULT_RTC,
DO_CIA_IO,
.machine_check = cia_machine_check,
.max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
.min_io_address = EISA_DEFAULT_IO_BASE,
.min_mem_address = CIA_DEFAULT_MEM_BASE,
.nr_irqs = 48,
.device_interrupt = alcor_device_interrupt,
.init_arch = cia_init_arch,
.init_irq = alcor_init_irq,
.init_rtc = common_init_rtc,
.init_pci = alcor_init_pci,
.kill_arch = alcor_kill_arch,
.pci_map_irq = alcor_map_irq,
.pci_swizzle = common_swizzle,
.sys = { .cia = {
.gru_int_req_bits = XLT_GRU_INT_REQ_BITS
}}
};
/* No alpha_mv alias for XLT, since we compile it in unconditionally
with ALCOR; setup_arch knows how to cope. */