kernel-fxtec-pro1x/arch/alpha/kernel/sys_marvel.c

499 lines
11 KiB
C
Raw Normal View History

/*
* linux/arch/alpha/kernel/sys_marvel.c
*
* Marvel / IO7 support
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/mmu_context.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/core_marvel.h>
#include <asm/hwrpb.h>
#include <asm/tlbflush.h>
#include "proto.h"
#include "err_impl.h"
#include "irq_impl.h"
#include "pci_impl.h"
#include "machvec_impl.h"
#if NR_IRQS < MARVEL_NR_IRQS
# error NR_IRQS < MARVEL_NR_IRQS !!!
#endif
/*
* Interrupt handling.
*/
static void
io7_device_interrupt(unsigned long vector)
{
unsigned int pid;
unsigned int irq;
/*
* Vector is 0x800 + (interrupt)
*
* where (interrupt) is:
*
* ...16|15 14|13 4|3 0
* -----+-----+--------+---
* PE | 0 | irq | 0
*
* where (irq) is
*
* 0x0800 - 0x0ff0 - 0x0800 + (LSI id << 4)
* 0x1000 - 0x2ff0 - 0x1000 + (MSI_DAT<8:0> << 4)
*/
pid = vector >> 16;
irq = ((vector & 0xffff) - 0x800) >> 4;
irq += 16; /* offset for legacy */
irq &= MARVEL_IRQ_VEC_IRQ_MASK; /* not too many bits */
irq |= pid << MARVEL_IRQ_VEC_PE_SHIFT; /* merge the pid */
handle_irq(irq);
}
static volatile unsigned long *
io7_get_irq_ctl(unsigned int irq, struct io7 **pio7)
{
volatile unsigned long *ctl;
unsigned int pid;
struct io7 *io7;
pid = irq >> MARVEL_IRQ_VEC_PE_SHIFT;
if (!(io7 = marvel_find_io7(pid))) {
printk(KERN_ERR
"%s for nonexistent io7 -- vec %x, pid %d\n",
__FUNCTION__, irq, pid);
return NULL;
}
irq &= MARVEL_IRQ_VEC_IRQ_MASK; /* isolate the vector */
irq -= 16; /* subtract legacy bias */
if (irq >= 0x180) {
printk(KERN_ERR
"%s for invalid irq -- pid %d adjusted irq %x\n",
__FUNCTION__, pid, irq);
return NULL;
}
ctl = &io7->csrs->PO7_LSI_CTL[irq & 0xff].csr; /* assume LSI */
if (irq >= 0x80) /* MSI */
ctl = &io7->csrs->PO7_MSI_CTL[((irq - 0x80) >> 5) & 0x0f].csr;
if (pio7) *pio7 = io7;
return ctl;
}
static void
io7_enable_irq(unsigned int irq)
{
volatile unsigned long *ctl;
struct io7 *io7;
ctl = io7_get_irq_ctl(irq, &io7);
if (!ctl || !io7) {
printk(KERN_ERR "%s: get_ctl failed for irq %x\n",
__FUNCTION__, irq);
return;
}
spin_lock(&io7->irq_lock);
*ctl |= 1UL << 24;
mb();
*ctl;
spin_unlock(&io7->irq_lock);
}
static void
io7_disable_irq(unsigned int irq)
{
volatile unsigned long *ctl;
struct io7 *io7;
ctl = io7_get_irq_ctl(irq, &io7);
if (!ctl || !io7) {
printk(KERN_ERR "%s: get_ctl failed for irq %x\n",
__FUNCTION__, irq);
return;
}
spin_lock(&io7->irq_lock);
*ctl &= ~(1UL << 24);
mb();
*ctl;
spin_unlock(&io7->irq_lock);
}
static unsigned int
io7_startup_irq(unsigned int irq)
{
io7_enable_irq(irq);
return 0; /* never anything pending */
}
static void
io7_end_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
io7_enable_irq(irq);
}
static void
marvel_irq_noop(unsigned int irq)
{
return;
}
static unsigned int
marvel_irq_noop_return(unsigned int irq)
{
return 0;
}
static struct hw_interrupt_type marvel_legacy_irq_type = {
.typename = "LEGACY",
.startup = marvel_irq_noop_return,
.shutdown = marvel_irq_noop,
.enable = marvel_irq_noop,
.disable = marvel_irq_noop,
.ack = marvel_irq_noop,
.end = marvel_irq_noop,
};
static struct hw_interrupt_type io7_lsi_irq_type = {
.typename = "LSI",
.startup = io7_startup_irq,
.shutdown = io7_disable_irq,
.enable = io7_enable_irq,
.disable = io7_disable_irq,
.ack = io7_disable_irq,
.end = io7_end_irq,
};
static struct hw_interrupt_type io7_msi_irq_type = {
.typename = "MSI",
.startup = io7_startup_irq,
.shutdown = io7_disable_irq,
.enable = io7_enable_irq,
.disable = io7_disable_irq,
.ack = marvel_irq_noop,
.end = io7_end_irq,
};
static void
io7_redirect_irq(struct io7 *io7,
volatile unsigned long *csr,
unsigned int where)
{
unsigned long val;
val = *csr;
val &= ~(0x1ffUL << 24); /* clear the target pid */
val |= ((unsigned long)where << 24); /* set the new target pid */
*csr = val;
mb();
*csr;
}
static void
io7_redirect_one_lsi(struct io7 *io7, unsigned int which, unsigned int where)
{
unsigned long val;
/*
* LSI_CTL has target PID @ 14
*/
val = io7->csrs->PO7_LSI_CTL[which].csr;
val &= ~(0x1ffUL << 14); /* clear the target pid */
val |= ((unsigned long)where << 14); /* set the new target pid */
io7->csrs->PO7_LSI_CTL[which].csr = val;
mb();
io7->csrs->PO7_LSI_CTL[which].csr;
}
static void
io7_redirect_one_msi(struct io7 *io7, unsigned int which, unsigned int where)
{
unsigned long val;
/*
* MSI_CTL has target PID @ 14
*/
val = io7->csrs->PO7_MSI_CTL[which].csr;
val &= ~(0x1ffUL << 14); /* clear the target pid */
val |= ((unsigned long)where << 14); /* set the new target pid */
io7->csrs->PO7_MSI_CTL[which].csr = val;
mb();
io7->csrs->PO7_MSI_CTL[which].csr;
}
static void __init
init_one_io7_lsi(struct io7 *io7, unsigned int which, unsigned int where)
{
/*
* LSI_CTL has target PID @ 14
*/
io7->csrs->PO7_LSI_CTL[which].csr = ((unsigned long)where << 14);
mb();
io7->csrs->PO7_LSI_CTL[which].csr;
}
static void __init
init_one_io7_msi(struct io7 *io7, unsigned int which, unsigned int where)
{
/*
* MSI_CTL has target PID @ 14
*/
io7->csrs->PO7_MSI_CTL[which].csr = ((unsigned long)where << 14);
mb();
io7->csrs->PO7_MSI_CTL[which].csr;
}
static void __init
init_io7_irqs(struct io7 *io7,
struct hw_interrupt_type *lsi_ops,
struct hw_interrupt_type *msi_ops)
{
long base = (io7->pe << MARVEL_IRQ_VEC_PE_SHIFT) + 16;
long i;
printk("Initializing interrupts for IO7 at PE %u - base %lx\n",
io7->pe, base);
/*
* Where should interrupts from this IO7 go?
*
* They really should be sent to the local CPU to avoid having to
* traverse the mesh, but if it's not an SMP kernel, they have to
* go to the boot CPU. Send them all to the boot CPU for now,
* as each secondary starts, it can redirect it's local device
* interrupts.
*/
printk(" Interrupts reported to CPU at PE %u\n", boot_cpuid);
spin_lock(&io7->irq_lock);
/* set up the error irqs */
io7_redirect_irq(io7, &io7->csrs->HLT_CTL.csr, boot_cpuid);
io7_redirect_irq(io7, &io7->csrs->HPI_CTL.csr, boot_cpuid);
io7_redirect_irq(io7, &io7->csrs->CRD_CTL.csr, boot_cpuid);
io7_redirect_irq(io7, &io7->csrs->STV_CTL.csr, boot_cpuid);
io7_redirect_irq(io7, &io7->csrs->HEI_CTL.csr, boot_cpuid);
/* Set up the lsi irqs. */
for (i = 0; i < 128; ++i) {
irq_desc[base + i].status = IRQ_DISABLED | IRQ_LEVEL;
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 03:24:36 -06:00
irq_desc[base + i].chip = lsi_ops;
}
/* Disable the implemented irqs in hardware. */
for (i = 0; i < 0x60; ++i)
init_one_io7_lsi(io7, i, boot_cpuid);
init_one_io7_lsi(io7, 0x74, boot_cpuid);
init_one_io7_lsi(io7, 0x75, boot_cpuid);
/* Set up the msi irqs. */
for (i = 128; i < (128 + 512); ++i) {
irq_desc[base + i].status = IRQ_DISABLED | IRQ_LEVEL;
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 03:24:36 -06:00
irq_desc[base + i].chip = msi_ops;
}
for (i = 0; i < 16; ++i)
init_one_io7_msi(io7, i, boot_cpuid);
spin_unlock(&io7->irq_lock);
}
static void __init
marvel_init_irq(void)
{
int i;
struct io7 *io7 = NULL;
/* Reserve the legacy irqs. */
for (i = 0; i < 16; ++i) {
irq_desc[i].status = IRQ_DISABLED;
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 03:24:36 -06:00
irq_desc[i].chip = &marvel_legacy_irq_type;
}
/* Init the io7 irqs. */
for (io7 = NULL; (io7 = marvel_next_io7(io7)) != NULL; )
init_io7_irqs(io7, &io7_lsi_irq_type, &io7_msi_irq_type);
}
static int
marvel_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
struct pci_controller *hose = dev->sysdata;
struct io7_port *io7_port = hose->sysdata;
struct io7 *io7 = io7_port->io7;
int msi_loc, msi_data_off;
u16 msg_ctl;
u16 msg_dat;
u8 intline;
int irq;
pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &intline);
irq = intline;
msi_loc = pci_find_capability(dev, PCI_CAP_ID_MSI);
msg_ctl = 0;
if (msi_loc)
pci_read_config_word(dev, msi_loc + PCI_MSI_FLAGS, &msg_ctl);
if (msg_ctl & PCI_MSI_FLAGS_ENABLE) {
msi_data_off = PCI_MSI_DATA_32;
if (msg_ctl & PCI_MSI_FLAGS_64BIT)
msi_data_off = PCI_MSI_DATA_64;
pci_read_config_word(dev, msi_loc + msi_data_off, &msg_dat);
irq = msg_dat & 0x1ff; /* we use msg_data<8:0> */
irq += 0x80; /* offset for lsi */
#if 1
printk("PCI:%d:%d:%d (hose %d) is using MSI\n",
dev->bus->number,
PCI_SLOT(dev->devfn),
PCI_FUNC(dev->devfn),
hose->index);
printk(" %d message(s) from 0x%04x\n",
1 << ((msg_ctl & PCI_MSI_FLAGS_QSIZE) >> 4),
msg_dat);
printk(" reporting on %d IRQ(s) from %d (0x%x)\n",
1 << ((msg_ctl & PCI_MSI_FLAGS_QSIZE) >> 4),
(irq + 16) | (io7->pe << MARVEL_IRQ_VEC_PE_SHIFT),
(irq + 16) | (io7->pe << MARVEL_IRQ_VEC_PE_SHIFT));
#endif
#if 0
pci_write_config_word(dev, msi_loc + PCI_MSI_FLAGS,
msg_ctl & ~PCI_MSI_FLAGS_ENABLE);
pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &intline);
irq = intline;
printk(" forcing LSI interrupt on irq %d [0x%x]\n", irq, irq);
#endif
}
irq += 16; /* offset for legacy */
irq |= io7->pe << MARVEL_IRQ_VEC_PE_SHIFT; /* merge the pid */
return irq;
}
static void __init
marvel_init_pci(void)
{
struct io7 *io7;
marvel_register_error_handlers();
pci_probe_only = 1;
common_init_pci();
#ifdef CONFIG_VGA_HOSE
locate_and_init_vga(NULL);
#endif
/* Clear any io7 errors. */
for (io7 = NULL; (io7 = marvel_next_io7(io7)) != NULL; )
io7_clear_errors(io7);
}
static void
marvel_init_rtc(void)
{
init_rtc_irq();
}
static void
marvel_smp_callin(void)
{
int cpuid = hard_smp_processor_id();
struct io7 *io7 = marvel_find_io7(cpuid);
unsigned int i;
if (!io7)
return;
/*
* There is a local IO7 - redirect all of its interrupts here.
*/
printk("Redirecting IO7 interrupts to local CPU at PE %u\n", cpuid);
/* Redirect the error IRQS here. */
io7_redirect_irq(io7, &io7->csrs->HLT_CTL.csr, cpuid);
io7_redirect_irq(io7, &io7->csrs->HPI_CTL.csr, cpuid);
io7_redirect_irq(io7, &io7->csrs->CRD_CTL.csr, cpuid);
io7_redirect_irq(io7, &io7->csrs->STV_CTL.csr, cpuid);
io7_redirect_irq(io7, &io7->csrs->HEI_CTL.csr, cpuid);
/* Redirect the implemented LSIs here. */
for (i = 0; i < 0x60; ++i)
io7_redirect_one_lsi(io7, i, cpuid);
io7_redirect_one_lsi(io7, 0x74, cpuid);
io7_redirect_one_lsi(io7, 0x75, cpuid);
/* Redirect the MSIs here. */
for (i = 0; i < 16; ++i)
io7_redirect_one_msi(io7, i, cpuid);
}
/*
* System Vectors
*/
struct alpha_machine_vector marvel_ev7_mv __initmv = {
.vector_name = "MARVEL/EV7",
DO_EV7_MMU,
DO_DEFAULT_RTC,
DO_MARVEL_IO,
.machine_check = marvel_machine_check,
.max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
.min_io_address = DEFAULT_IO_BASE,
.min_mem_address = DEFAULT_MEM_BASE,
.pci_dac_offset = IO7_DAC_OFFSET,
.nr_irqs = MARVEL_NR_IRQS,
.device_interrupt = io7_device_interrupt,
.agp_info = marvel_agp_info,
.smp_callin = marvel_smp_callin,
.init_arch = marvel_init_arch,
.init_irq = marvel_init_irq,
.init_rtc = marvel_init_rtc,
.init_pci = marvel_init_pci,
.kill_arch = marvel_kill_arch,
.pci_map_irq = marvel_map_irq,
.pci_swizzle = common_swizzle,
.pa_to_nid = marvel_pa_to_nid,
.cpuid_to_nid = marvel_cpuid_to_nid,
.node_mem_start = marvel_node_mem_start,
.node_mem_size = marvel_node_mem_size,
};
ALIAS_MV(marvel_ev7)