[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
/*
|
|
|
|
* arch/arm/mach-kirkwood/rd88f6281-setup.c
|
|
|
|
*
|
|
|
|
* Marvell RD-88F6281 Reference Board Setup
|
|
|
|
*
|
|
|
|
* This file is licensed under the terms of the GNU General Public
|
|
|
|
* License version 2. This program is licensed "as is" without any
|
|
|
|
* warranty of any kind, whether express or implied.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/irq.h>
|
2009-02-26 19:35:59 -07:00
|
|
|
#include <linux/mtd/partitions.h>
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
#include <linux/ata_platform.h>
|
|
|
|
#include <linux/mv643xx_eth.h>
|
2008-07-14 06:29:40 -06:00
|
|
|
#include <linux/ethtool.h>
|
2008-09-25 08:23:48 -06:00
|
|
|
#include <net/dsa.h>
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
#include <asm/mach-types.h>
|
|
|
|
#include <asm/mach/arch.h>
|
2008-08-05 09:14:15 -06:00
|
|
|
#include <mach/kirkwood.h>
|
2009-02-14 01:15:55 -07:00
|
|
|
#include <plat/mvsdio.h>
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
#include "common.h"
|
2009-02-14 01:15:55 -07:00
|
|
|
#include "mpp.h"
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
|
|
|
|
static struct mtd_partition rd88f6281_nand_parts[] = {
|
|
|
|
{
|
|
|
|
.name = "u-boot",
|
|
|
|
.offset = 0,
|
|
|
|
.size = SZ_1M
|
|
|
|
}, {
|
|
|
|
.name = "uImage",
|
|
|
|
.offset = MTDPART_OFS_NXTBLK,
|
|
|
|
.size = SZ_2M
|
|
|
|
}, {
|
|
|
|
.name = "root",
|
|
|
|
.offset = MTDPART_OFS_NXTBLK,
|
|
|
|
.size = MTDPART_SIZ_FULL
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct mv643xx_eth_platform_data rd88f6281_ge00_data = {
|
2008-08-26 06:06:47 -06:00
|
|
|
.phy_addr = MV643XX_ETH_PHY_NONE,
|
2008-07-14 06:29:40 -06:00
|
|
|
.speed = SPEED_1000,
|
|
|
|
.duplex = DUPLEX_FULL,
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
};
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
static struct dsa_chip_data rd88f6281_switch_chip_data = {
|
2008-09-25 08:23:48 -06:00
|
|
|
.port_names[0] = "lan1",
|
|
|
|
.port_names[1] = "lan2",
|
|
|
|
.port_names[2] = "lan3",
|
|
|
|
.port_names[3] = "lan4",
|
|
|
|
.port_names[5] = "cpu",
|
|
|
|
};
|
|
|
|
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
static struct dsa_platform_data rd88f6281_switch_plat_data = {
|
|
|
|
.nr_chips = 1,
|
|
|
|
.chip = &rd88f6281_switch_chip_data,
|
|
|
|
};
|
|
|
|
|
2008-10-19 15:19:07 -06:00
|
|
|
static struct mv643xx_eth_platform_data rd88f6281_ge01_data = {
|
|
|
|
.phy_addr = MV643XX_ETH_PHY_ADDR(11),
|
|
|
|
};
|
|
|
|
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
static struct mv_sata_platform_data rd88f6281_sata_data = {
|
|
|
|
.n_ports = 2,
|
|
|
|
};
|
|
|
|
|
2009-02-14 01:15:55 -07:00
|
|
|
static struct mvsdio_platform_data rd88f6281_mvsdio_data = {
|
|
|
|
.gpio_card_detect = 28,
|
|
|
|
};
|
|
|
|
|
|
|
|
static unsigned int rd88f6281_mpp_config[] __initdata = {
|
|
|
|
MPP28_GPIO,
|
|
|
|
0
|
|
|
|
};
|
|
|
|
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
static void __init rd88f6281_init(void)
|
|
|
|
{
|
2008-10-19 15:19:07 -06:00
|
|
|
u32 dev, rev;
|
|
|
|
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
/*
|
|
|
|
* Basic setup. Needs to be called early.
|
|
|
|
*/
|
|
|
|
kirkwood_init();
|
2009-02-14 01:15:55 -07:00
|
|
|
kirkwood_mpp_conf(rd88f6281_mpp_config);
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
|
2009-06-01 13:36:36 -06:00
|
|
|
kirkwood_nand_init(ARRAY_AND_SIZE(rd88f6281_nand_parts), 25);
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
kirkwood_ehci_init();
|
2008-10-19 15:19:07 -06:00
|
|
|
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
kirkwood_ge00_init(&rd88f6281_ge00_data);
|
2008-10-19 15:19:07 -06:00
|
|
|
kirkwood_pcie_id(&dev, &rev);
|
|
|
|
if (rev == MV88F6281_REV_A0) {
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
rd88f6281_switch_chip_data.sw_addr = 10;
|
2008-10-19 15:19:07 -06:00
|
|
|
kirkwood_ge01_init(&rd88f6281_ge01_data);
|
|
|
|
} else {
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
rd88f6281_switch_chip_data.port_names[4] = "wan";
|
2008-10-19 15:19:07 -06:00
|
|
|
}
|
dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips. This patch adds support
for multiple switch chips on a network interface.
An example topology for a 16-port device with an embedded CPU is as
follows:
+-----+ +--------+ +--------+
| |eth0 10| switch |9 10| switch |
| CPU +----------+ +-------+ |
| | | chip 0 | | chip 1 |
+-----+ +---++---+ +---++---+
|| ||
|| ||
||1000baseT ||1000baseT
||ports 1-8 ||ports 9-16
This requires a couple of interdependent changes in the DSA layer:
- The dsa platform driver data needs to be extended: there is still
only one netdevice per DSA driver instance (eth0 in the example
above), but each of the switch chips in the tree needs its own
mii_bus device pointer, MII management bus address, and port name
array. (include/net/dsa.h) The existing in-tree dsa users need
some small changes to deal with this. (arch/arm)
- The DSA and Ethertype DSA tagging modules need to be extended to
use the DSA device ID field on receive and demultiplex the packet
accordingly, and fill in the DSA device ID field on transmit
according to which switch chip the packet is heading to.
(net/dsa/tag_{dsa,edsa}.c)
- The concept of "CPU port", which is the switch chip port that the
CPU is connected to (port 10 on switch chip 0 in the example), needs
to be extended with the concept of "upstream port", which is the
port on the switch chip that will bring us one hop closer to the CPU
(port 10 for both switch chips in the example above).
- The dsa platform data needs to specify which ports on which switch
chips are links to other switch chips, so that we can enable DSA
tagging mode on them. (For inter-switch links, we always use
non-EtherType DSA tagging, since it has lower overhead. The CPU
link uses dsa or edsa tagging depending on what the 'root' switch
chip supports.) This is done by specifying "dsa" for the given
port in the port array.
- The dsa platform data needs to be extended with information on via
which port to reach any given switch chip from any given switch chip.
This info is specified via the per-switch chip data struct ->rtable[]
array, which gives the nexthop ports for each of the other switches
in the tree.
For the example topology above, the dsa platform data would look
something like this:
static struct dsa_chip_data sw[2] = {
{
.mii_bus = &foo,
.sw_addr = 1,
.port_names[0] = "p1",
.port_names[1] = "p2",
.port_names[2] = "p3",
.port_names[3] = "p4",
.port_names[4] = "p5",
.port_names[5] = "p6",
.port_names[6] = "p7",
.port_names[7] = "p8",
.port_names[9] = "dsa",
.port_names[10] = "cpu",
.rtable = (s8 []){ -1, 9, },
}, {
.mii_bus = &foo,
.sw_addr = 2,
.port_names[0] = "p9",
.port_names[1] = "p10",
.port_names[2] = "p11",
.port_names[3] = "p12",
.port_names[4] = "p13",
.port_names[5] = "p14",
.port_names[6] = "p15",
.port_names[7] = "p16",
.port_names[10] = "dsa",
.rtable = (s8 []){ 10, -1, },
},
},
static struct dsa_platform_data pd = {
.netdev = &foo,
.nr_switches = 2,
.sw = sw,
};
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 03:52:09 -06:00
|
|
|
kirkwood_ge00_switch_init(&rd88f6281_switch_plat_data, NO_IRQ);
|
2008-10-19 15:19:07 -06:00
|
|
|
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
kirkwood_sata_init(&rd88f6281_sata_data);
|
2009-02-14 01:15:55 -07:00
|
|
|
kirkwood_sdio_init(&rd88f6281_mvsdio_data);
|
[ARM] add Marvell Kirkwood (88F6000) SoC support
The Marvell Kirkwood (88F6000) is a family of ARM SoCs based on a
Shiva CPU core, and features a DDR2 controller, a x1 PCIe interface,
a USB 2.0 interface, a SPI controller, a crypto accelerator, a TS
interface, and IDMA/XOR engines, and depending on the model, also
features one or two Gigabit Ethernet interfaces, two SATA II
interfaces, one or two TWSI interfaces, one or two UARTs, a
TDM/SLIC interface, a NAND controller, an I2S/SPDIF interface, and
an SDIO interface.
This patch adds supports for the Marvell DB-88F6281-BP Development
Board and the RD-88F6192-NAS and the RD-88F6281 Reference Designs,
enabling support for the PCIe interface, the USB interface, the
ethernet interfaces, the SATA interfaces, the TWSI interfaces, the
UARTs, and the NAND controller.
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
2008-06-22 14:45:06 -06:00
|
|
|
kirkwood_uart0_init();
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init rd88f6281_pci_init(void)
|
|
|
|
{
|
|
|
|
if (machine_is_rd88f6281())
|
|
|
|
kirkwood_pcie_init();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
subsys_initcall(rd88f6281_pci_init);
|
|
|
|
|
|
|
|
MACHINE_START(RD88F6281, "Marvell RD-88F6281 Reference Board")
|
|
|
|
/* Maintainer: Saeed Bishara <saeed@marvell.com> */
|
|
|
|
.phys_io = KIRKWOOD_REGS_PHYS_BASE,
|
|
|
|
.io_pg_offst = ((KIRKWOOD_REGS_VIRT_BASE) >> 18) & 0xfffc,
|
|
|
|
.boot_params = 0x00000100,
|
|
|
|
.init_machine = rd88f6281_init,
|
|
|
|
.map_io = kirkwood_map_io,
|
|
|
|
.init_irq = kirkwood_init_irq,
|
|
|
|
.timer = &kirkwood_timer,
|
|
|
|
MACHINE_END
|