kernel-fxtec-pro1x/drivers/isdn/hisax/hfc_pci.c

1763 lines
54 KiB
C
Raw Normal View History

/* $Id: hfc_pci.c,v 1.48.2.4 2004/02/11 13:21:33 keil Exp $
*
* low level driver for CCD's hfc-pci based cards
*
* Author Werner Cornelius
* based on existing driver for CCD hfc ISA cards
* Copyright by Werner Cornelius <werner@isdn4linux.de>
* by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For changes and modifications please read
* Documentation/isdn/HiSax.cert
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "hfc_pci.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
static const char *hfcpci_revision = "$Revision: 1.48.2.4 $";
/* table entry in the PCI devices list */
typedef struct {
int vendor_id;
int device_id;
char *vendor_name;
char *card_name;
} PCI_ENTRY;
#define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
#define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
#define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
static const PCI_ENTRY id_list[] =
{
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B700, "Primux II S0", "B700"},
{PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B701, "Primux II S0 NT", "B701"},
{PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
{PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
{PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
{PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
{PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
{PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
{PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
{PCI_VENDOR_ID_SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2, "Sitecom Europe", "DC-105 ISDN PCI"},
{0, 0, NULL, NULL},
};
/******************************************/
/* free hardware resources used by driver */
/******************************************/
static void
release_io_hfcpci(struct IsdnCardState *cs)
{
printk(KERN_INFO "HiSax: release hfcpci at %p\n",
cs->hw.hfcpci.pci_io);
cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
mdelay(10);
Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
mdelay(10);
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, 0); /* disable memory mapped ports + busmaster */
del_timer(&cs->hw.hfcpci.timer);
pci_free_consistent(cs->hw.hfcpci.dev, 0x8000,
cs->hw.hfcpci.fifos, cs->hw.hfcpci.dma);
cs->hw.hfcpci.fifos = NULL;
iounmap((void *)cs->hw.hfcpci.pci_io);
}
/********************************************************************************/
/* function called to reset the HFC PCI chip. A complete software reset of chip */
/* and fifos is done. */
/********************************************************************************/
static void
reset_hfcpci(struct IsdnCardState *cs)
{
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
printk(KERN_INFO "HFC_PCI: resetting card\n");
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); /* enable memory ports + busmaster */
Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
mdelay(10);
Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
mdelay(10);
if (Read_hfc(cs, HFCPCI_STATUS) & 2)
printk(KERN_WARNING "HFC-PCI init bit busy\n");
cs->hw.hfcpci.fifo_en = 0x30; /* only D fifos enabled */
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE;
Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); /* S/T Auto awake */
cs->hw.hfcpci.bswapped = 0; /* no exchange */
cs->hw.hfcpci.nt_mode = 0; /* we are in TE mode */
cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCPCI_INT_S1));
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2); /* HFC ST 2 */
udelay(10);
Write_hfc(cs, HFCPCI_STATES, 2); /* HFC ST 2 */
cs->hw.hfcpci.mst_m = HFCPCI_MASTER; /* HFC Master Mode */
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
cs->hw.hfcpci.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
cs->hw.hfcpci.sctrl_r = 0;
Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
/* Init GCI/IOM2 in master mode */
/* Slots 0 and 1 are set for B-chan 1 and 2 */
/* D- and monitor/CI channel are not enabled */
/* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
/* STIO2 is used as data input, B1+B2 from IOM->ST */
/* ST B-channel send disabled -> continous 1s */
/* The IOM slots are always enabled */
cs->hw.hfcpci.conn = 0x36; /* set data flow directions */
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
/* Finally enable IRQ output */
cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE;
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
if (Read_hfc(cs, HFCPCI_INT_S1));
}
/***************************************************/
/* Timer function called when kernel timer expires */
/***************************************************/
static void
hfcpci_Timer(struct IsdnCardState *cs)
{
cs->hw.hfcpci.timer.expires = jiffies + 75;
/* WD RESET */
/* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80);
add_timer(&cs->hw.hfcpci.timer);
*/
}
/*********************************/
/* schedule a new D-channel task */
/*********************************/
static void
sched_event_D_pci(struct IsdnCardState *cs, int event)
{
test_and_set_bit(event, &cs->event);
schedule_work(&cs->tqueue);
}
/*********************************/
/* schedule a new b_channel task */
/*********************************/
static void
hfcpci_sched_event(struct BCState *bcs, int event)
{
test_and_set_bit(event, &bcs->event);
schedule_work(&bcs->tqueue);
}
/************************************************/
/* select a b-channel entry matching and active */
/************************************************/
static
struct BCState *
Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return (&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return (&cs->bcs[1]);
else
return (NULL);
}
/***************************************/
/* clear the desired B-channel rx fifo */
/***************************************/
static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo)
{ u_char fifo_state;
bzfifo_type *bzr;
if (fifo) {
bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX;
} else {
bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX;
}
if (fifo_state)
cs->hw.hfcpci.fifo_en ^= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0;
bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1;
bzr->f1 = MAX_B_FRAMES;
bzr->f2 = bzr->f1; /* init F pointers to remain constant */
if (fifo_state)
cs->hw.hfcpci.fifo_en |= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
}
/***************************************/
/* clear the desired B-channel tx fifo */
/***************************************/
static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo)
{ u_char fifo_state;
bzfifo_type *bzt;
if (fifo) {
bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX;
} else {
bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX;
}
if (fifo_state)
cs->hw.hfcpci.fifo_en ^= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1;
bzt->f1 = MAX_B_FRAMES;
bzt->f2 = bzt->f1; /* init F pointers to remain constant */
if (fifo_state)
cs->hw.hfcpci.fifo_en |= fifo_state;
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
}
/*********************************************/
/* read a complete B-frame out of the buffer */
/*********************************************/
static struct sk_buff
*
hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count)
{
u_char *ptr, *ptr1, new_f2;
struct sk_buff *skb;
struct IsdnCardState *cs = bcs->cs;
int total, maxlen, new_z2;
z_type *zp;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfcpci_empty_fifo");
zp = &bz->za[bz->f2]; /* point to Z-Regs */
new_z2 = zp->z2 + count; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
if ((count > HSCX_BUFMAX + 3) || (count < 4) ||
(*(bdata + (zp->z1 - B_SUB_VAL)))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count);
#ifdef ERROR_STATISTIC
bcs->err_inv++;
#endif
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
skb = NULL;
} else if (!(skb = dev_alloc_skb(count - 3)))
printk(KERN_WARNING "HFCPCI: receive out of memory\n");
else {
total = count;
count -= 3;
ptr = skb_put(skb, count);
if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = count; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
count -= maxlen;
if (count) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, count); /* rest */
}
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
}
return (skb);
}
/*******************************/
/* D-channel receive procedure */
/*******************************/
static
int
receive_dmsg(struct IsdnCardState *cs)
{
struct sk_buff *skb;
int maxlen;
int rcnt, total;
int count = 5;
u_char *ptr, *ptr1;
dfifo_type *df;
z_type *zp;
df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_dmsg blocked");
return (1);
}
while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
zp = &df->za[df->f2 & D_FREG_MASK];
rcnt = zp->z1 - zp->z2;
if (rcnt < 0)
rcnt += D_FIFO_SIZE;
rcnt++;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
df->f1, df->f2, zp->z1, zp->z2, rcnt);
if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
(df->data[zp->z1])) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]);
#ifdef ERROR_STATISTIC
cs->err_rx++;
#endif
df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1);
} else if ((skb = dev_alloc_skb(rcnt - 3))) {
total = rcnt;
rcnt -= 3;
ptr = skb_put(skb, rcnt);
if (zp->z2 + rcnt <= D_FIFO_SIZE)
maxlen = rcnt; /* complete transfer */
else
maxlen = D_FIFO_SIZE - zp->z2; /* maximum */
ptr1 = df->data + zp->z2; /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
rcnt -= maxlen;
if (rcnt) { /* rest remaining */
ptr += maxlen;
ptr1 = df->data; /* start of buffer */
memcpy(ptr, ptr1, rcnt); /* rest */
}
df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1);
skb_queue_tail(&cs->rq, skb);
sched_event_D_pci(cs, D_RCVBUFREADY);
} else
printk(KERN_WARNING "HFC-PCI: D receive out of memory\n");
}
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return (1);
}
/*******************************************************************************/
/* check for transparent receive data and read max one threshold size if avail */
/*******************************************************************************/
static int
hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata)
{
unsigned short *z1r, *z2r;
int new_z2, fcnt, maxlen;
struct sk_buff *skb;
u_char *ptr, *ptr1;
z1r = &bz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
z2r = z1r + 1;
if (!(fcnt = *z1r - *z2r))
return (0); /* no data avail */
if (fcnt <= 0)
fcnt += B_FIFO_SIZE; /* bytes actually buffered */
if (fcnt > HFCPCI_BTRANS_THRESHOLD)
fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */
new_z2 = *z2r + fcnt; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
if (!(skb = dev_alloc_skb(fcnt)))
printk(KERN_WARNING "HFCPCI: receive out of memory\n");
else {
ptr = skb_put(skb, fcnt);
if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = fcnt; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r; /* maximum */
ptr1 = bdata + (*z2r - B_SUB_VAL); /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
fcnt -= maxlen;
if (fcnt) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, fcnt); /* rest */
}
skb_queue_tail(&bcs->rqueue, skb);
hfcpci_sched_event(bcs, B_RCVBUFREADY);
}
*z2r = new_z2; /* new position */
return (1);
} /* hfcpci_empty_fifo_trans */
/**********************************/
/* B-channel main receive routine */
/**********************************/
static void
main_rec_hfcpci(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int rcnt, real_fifo;
int receive, count = 5;
struct sk_buff *skb;
bzfifo_type *bz;
u_char *bdata;
z_type *zp;
if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
real_fifo = 1;
} else {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1;
real_fifo = 0;
}
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_data %d blocked", bcs->channel);
return;
}
if (bz->f1 != bz->f2) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)",
bcs->channel, bz->f1, bz->f2);
zp = &bz->za[bz->f2];
rcnt = zp->z1 - zp->z2;
if (rcnt < 0)
rcnt += B_FIFO_SIZE;
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, zp->z1, zp->z2, rcnt);
if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) {
skb_queue_tail(&bcs->rqueue, skb);
hfcpci_sched_event(bcs, B_RCVBUFREADY);
}
rcnt = bz->f1 - bz->f2;
if (rcnt < 0)
rcnt += MAX_B_FRAMES + 1;
if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) {
rcnt = 0;
hfcpci_clear_fifo_rx(cs, real_fifo);
}
cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt;
if (rcnt > 1)
receive = 1;
else
receive = 0;
} else if (bcs->mode == L1_MODE_TRANS)
receive = hfcpci_empty_fifo_trans(bcs, bz, bdata);
else
receive = 0;
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && receive)
goto Begin;
}
/**************************/
/* D-channel send routine */
/**************************/
static void
hfcpci_fill_dfifo(struct IsdnCardState *cs)
{
int fcnt;
int count, new_z1, maxlen;
dfifo_type *df;
u_char *src, *dst, new_f1;
if (!cs->tx_skb)
return;
if (cs->tx_skb->len <= 0)
return;
df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)",
df->f1, df->f2,
df->za[df->f1 & D_FREG_MASK].z1);
fcnt = df->f1 - df->f2; /* frame count actually buffered */
if (fcnt < 0)
fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
if (fcnt > (MAX_D_FRAMES - 1)) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames");
#ifdef ERROR_STATISTIC
cs->err_tx++;
#endif
return;
}
/* now determine free bytes in FIFO buffer */
count = df->za[df->f2 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1 - 1;
if (count <= 0)
count += D_FIFO_SIZE; /* count now contains available bytes */
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)",
cs->tx_skb->len, count);
if (count < cs->tx_skb->len) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci_fill_Dfifo no fifo mem");
return;
}
count = cs->tx_skb->len; /* get frame len */
new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1);
new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
src = cs->tx_skb->data; /* source pointer */
dst = df->data + df->za[df->f1 & D_FREG_MASK].z1;
maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1; /* end fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = df->data; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
df->za[new_f1 & D_FREG_MASK].z1 = new_z1; /* for next buffer */
df->za[df->f1 & D_FREG_MASK].z1 = new_z1; /* new pos actual buffer */
df->f1 = new_f1; /* next frame */
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
/**************************/
/* B-channel send routine */
/**************************/
static void
hfcpci_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int maxlen, fcnt;
int count, new_z1;
bzfifo_type *bz;
u_char *bdata;
u_char new_f1, *src, *dst;
unsigned short *z1t, *z2t;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2;
} else {
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1;
}
if (bcs->mode == L1_MODE_TRANS) {
z1t = &bz->za[MAX_B_FRAMES].z1;
z2t = z1t + 1;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)",
bcs->channel, *z1t, *z2t);
fcnt = *z2t - *z1t;
if (fcnt <= 0)
fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */
fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send */
while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) {
if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) {
/* data is suitable for fifo */
count = bcs->tx_skb->len;
new_z1 = *z1t + count; /* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
src = bcs->tx_skb->data; /* source pointer */
dst = bdata + (*z1t - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t; /* end of fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
bcs->tx_cnt -= bcs->tx_skb->len;
fcnt += bcs->tx_skb->len;
*z1t = new_z1; /* now send data */
} else if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded",
bcs->channel, bcs->tx_skb->len);
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = skb_dequeue(&bcs->squeue); /* fetch next data */
}
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
return;
}
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)",
bcs->channel, bz->f1, bz->f2,
bz->za[bz->f1].z1);
fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
if (fcnt < 0)
fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
if (fcnt > (MAX_B_FRAMES - 1)) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames");
return;
}
/* now determine free bytes in FIFO buffer */
count = bz->za[bz->f2].z2 - bz->za[bz->f1].z1 - 1;
if (count <= 0)
count += B_FIFO_SIZE; /* count now contains available bytes */
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx",
bcs->channel, bcs->tx_skb->len,
count, current->state);
if (count < bcs->tx_skb->len) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfcpci_fill_fifo no fifo mem");
return;
}
count = bcs->tx_skb->len; /* get frame len */
new_z1 = bz->za[bz->f1].z1 + count; /* new buffer Position */
if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z1 -= B_FIFO_SIZE; /* buffer wrap */
new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
src = bcs->tx_skb->data; /* source pointer */
dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL);
maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1; /* end fifo */
if (maxlen > count)
maxlen = count; /* limit size */
memcpy(dst, src, maxlen); /* first copy */
count -= maxlen; /* remaining bytes */
if (count) {
dst = bdata; /* start of buffer */
src += maxlen; /* new position */
memcpy(dst, src, count);
}
bcs->tx_cnt -= bcs->tx_skb->len;
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
bz->za[new_f1].z1 = new_z1; /* for next buffer */
bz->f1 = new_f1; /* next frame */
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
/**********************************************/
/* D-channel l1 state call for leased NT-mode */
/**********************************************/
static void
dch_nt_l2l1(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
switch (pr) {
case (PH_DATA | REQUEST):
case (PH_PULL | REQUEST):
case (PH_PULL | INDICATION):
st->l1.l1hw(st, pr, arg);
break;
case (PH_ACTIVATE | REQUEST):
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
break;
case (PH_TESTLOOP | REQUEST):
if (1 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B1");
if (2 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B2");
if (!(3 & (long) arg))
debugl1(cs, "PH_TEST_LOOP DISABLED");
st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
break;
default:
if (cs->debug)
debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
break;
}
}
/***********************/
/* set/reset echo mode */
/***********************/
static int
hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
{
u_long flags;
int i = *(unsigned int *) ic->parm.num;
if ((ic->arg == 98) &&
(!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) {
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0); /* HFC ST G0 */
udelay(10);
cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT;
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); /* set NT-mode */
udelay(10);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1); /* HFC ST G1 */
udelay(10);
Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
cs->dc.hfcpci.ph_state = 1;
cs->hw.hfcpci.nt_mode = 1;
cs->hw.hfcpci.nt_timer = 0;
cs->stlist->l2.l2l1 = dch_nt_l2l1;
spin_unlock_irqrestore(&cs->lock, flags);
debugl1(cs, "NT mode activated");
return (0);
}
if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) ||
(cs->hw.hfcpci.nt_mode) || (ic->arg != 12))
return (-EINVAL);
spin_lock_irqsave(&cs->lock, flags);
if (i) {
cs->logecho = 1;
cs->hw.hfcpci.trm |= 0x20; /* enable echo chan */
cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC;
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX;
} else {
cs->logecho = 0;
cs->hw.hfcpci.trm &= ~0x20; /* disable echo chan */
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC;
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX;
}
cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcpci.conn |= 0x10; /* B2-IOM -> B2-ST */
cs->hw.hfcpci.ctmt &= ~2;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
} /* hfcpci_auxcmd */
/*****************************/
/* E-channel receive routine */
/*****************************/
static void
receive_emsg(struct IsdnCardState *cs)
{
int rcnt;
int receive, count = 5;
bzfifo_type *bz;
u_char *bdata;
z_type *zp;
u_char *ptr, *ptr1, new_f2;
int total, maxlen, new_z2;
u_char e_buffer[256];
bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "echo_rec_data blocked");
return;
}
if (bz->f1 != bz->f2) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)",
bz->f1, bz->f2);
zp = &bz->za[bz->f2];
rcnt = zp->z1 - zp->z2;
if (rcnt < 0)
rcnt += B_FIFO_SIZE;
rcnt++;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)",
zp->z1, zp->z2, rcnt);
new_z2 = zp->z2 + rcnt; /* new position in fifo */
if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
new_z2 -= B_FIFO_SIZE; /* buffer wrap */
new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
if ((rcnt > 256 + 3) || (count < 4) ||
(*(bdata + (zp->z1 - B_SUB_VAL)))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt);
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
} else {
total = rcnt;
rcnt -= 3;
ptr = e_buffer;
if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL)
maxlen = rcnt; /* complete transfer */
else
maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
memcpy(ptr, ptr1, maxlen); /* copy data */
rcnt -= maxlen;
if (rcnt) { /* rest remaining */
ptr += maxlen;
ptr1 = bdata; /* start of buffer */
memcpy(ptr, ptr1, rcnt); /* rest */
}
bz->za[new_f2].z2 = new_z2;
bz->f2 = new_f2; /* next buffer */
if (cs->debug & DEB_DLOG_HEX) {
ptr = cs->dlog;
if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) {
*ptr++ = 'E';
*ptr++ = 'C';
*ptr++ = 'H';
*ptr++ = 'O';
*ptr++ = ':';
ptr += QuickHex(ptr, e_buffer, total - 3);
ptr--;
*ptr++ = '\n';
*ptr = 0;
HiSax_putstatus(cs, NULL, cs->dlog);
} else
HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3);
}
}
rcnt = bz->f1 - bz->f2;
if (rcnt < 0)
rcnt += MAX_B_FRAMES + 1;
if (rcnt > 1)
receive = 1;
else
receive = 0;
} else
receive = 0;
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && receive)
goto Begin;
} /* receive_emsg */
/*********************/
/* Interrupt handler */
/*********************/
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
hfcpci_interrupt(int intno, void *dev_id)
{
u_long flags;
struct IsdnCardState *cs = dev_id;
u_char exval;
struct BCState *bcs;
int count = 15;
u_char val, stat;
if (!(cs->hw.hfcpci.int_m2 & 0x08)) {
debugl1(cs, "HFC-PCI: int_m2 %x not initialised", cs->hw.hfcpci.int_m2);
return IRQ_NONE; /* not initialised */
}
spin_lock_irqsave(&cs->lock, flags);
if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) {
val = Read_hfc(cs, HFCPCI_INT_S1);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val);
} else {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE;
}
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-PCI irq %x %s", val,
test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
"locked" : "unlocked");
val &= cs->hw.hfcpci.int_m1;
if (val & 0x40) { /* state machine irq */
exval = Read_hfc(cs, HFCPCI_STATES) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state,
exval);
cs->dc.hfcpci.ph_state = exval;
sched_event_D_pci(cs, D_L1STATECHANGE);
val &= ~0x40;
}
if (val & 0x80) { /* timer irq */
if (cs->hw.hfcpci.nt_mode) {
if ((--cs->hw.hfcpci.nt_timer) < 0)
sched_event_D_pci(cs, D_L1STATECHANGE);
}
val &= ~0x80;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
}
while (val) {
if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
cs->hw.hfcpci.int_s1 |= val;
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
if (cs->hw.hfcpci.int_s1 & 0x18) {
exval = val;
val = cs->hw.hfcpci.int_s1;
cs->hw.hfcpci.int_s1 = exval;
}
if (val & 0x08) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x08 IRQ");
} else
main_rec_hfcpci(bcs);
}
if (val & 0x10) {
if (cs->logecho)
receive_emsg(cs);
else if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x10 IRQ");
} else
main_rec_hfcpci(bcs);
}
if (val & 0x01) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x01 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
hfcpci_sched_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x02) {
if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcpci spurious 0x02 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
hfcpci_sched_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x20) { /* receive dframe */
receive_dmsg(cs);
}
if (val & 0x04) { /* dframe transmitted */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
sched_event_D_pci(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcpci_fill_dfifo irq blocked");
}
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcpci_fill_dfifo irq blocked");
}
} else
sched_event_D_pci(cs, D_XMTBUFREADY);
}
afterXPR:
if (cs->hw.hfcpci.int_s1 && count--) {
val = cs->hw.hfcpci.int_s1;
cs->hw.hfcpci.int_s1 = 0;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count);
} else
val = 0;
}
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
/********************************************************************/
/* timer callback for D-chan busy resolution. Currently no function */
/********************************************************************/
static void
hfcpci_dbusy_timer(struct IsdnCardState *cs)
{
}
/*************************************/
/* Layer 1 D-channel hardware access */
/*************************************/
static void
HFCPCI_l1hw(struct PStack *st, int pr, void *arg)
{
u_long flags;
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcpci_fill_dfifo blocked");
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcpci_fill_dfifo blocked");
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */
udelay(6);
Write_hfc(cs, HFCPCI_STATES, 3); /* HFC ST 2 */
cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER;
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_TESTLOOP | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
switch ((long) arg) {
case (1):
Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* tx slot */
Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* rx slot */
cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1;
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
break;
case (2):
Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* tx slot */
Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* rx slot */
cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08;
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
break;
default:
spin_unlock_irqrestore(&cs->lock, flags);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_l1hw loop invalid %4lx", (long) arg);
return;
}
cs->hw.hfcpci.trm |= 0x80; /* enable IOM-loop */
Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr);
break;
}
}
/***********************************************/
/* called during init setting l1 stack pointer */
/***********************************************/
static void
setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = HFCPCI_l1hw;
}
/**************************************/
/* send B-channel data if not blocked */
/**************************************/
static void
hfcpci_send_data(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcpci_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "send_data %d blocked", bcs->channel);
}
/***************************************************************/
/* activate/deactivate hardware for selected channels and mode */
/***************************************************************/
static void
mode_hfcpci(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int fifo2;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
fifo2 = bc;
if (cs->chanlimit > 1) {
cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcpci.sctrl_e &= ~0x80;
} else {
if (bc) {
if (mode != L1_MODE_NULL) {
cs->hw.hfcpci.bswapped = 1; /* B1 and B2 exchanged */
cs->hw.hfcpci.sctrl_e |= 0x80;
} else {
cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcpci.sctrl_e &= ~0x80;
}
fifo2 = 0;
} else {
cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcpci.sctrl_e &= ~0x80;
}
}
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
} else {
cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
} else {
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
}
break;
case (L1_MODE_TRANS):
hfcpci_clear_fifo_rx(cs, fifo2);
hfcpci_clear_fifo_tx(cs, fifo2);
if (bc) {
cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
cs->hw.hfcpci.ctmt |= 2;
cs->hw.hfcpci.conn &= ~0x18;
} else {
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
cs->hw.hfcpci.ctmt |= 1;
cs->hw.hfcpci.conn &= ~0x03;
}
break;
case (L1_MODE_HDLC):
hfcpci_clear_fifo_rx(cs, fifo2);
hfcpci_clear_fifo_tx(cs, fifo2);
if (bc) {
cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcpci.last_bfifo_cnt[1] = 0;
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
cs->hw.hfcpci.ctmt &= ~2;
cs->hw.hfcpci.conn &= ~0x18;
} else {
cs->hw.hfcpci.last_bfifo_cnt[0] = 0;
cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
cs->hw.hfcpci.ctmt &= ~1;
cs->hw.hfcpci.conn &= ~0x03;
}
break;
case (L1_MODE_EXTRN):
if (bc) {
cs->hw.hfcpci.conn |= 0x10;
cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
} else {
cs->hw.hfcpci.conn |= 0x02;
cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
}
break;
}
Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
}
/******************************/
/* Layer2 -> Layer 1 Transfer */
/******************************/
static void
hfcpci_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
u_long flags;
struct sk_buff *skb = arg;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
spin_unlock_irqrestore(&bcs->cs->lock, flags);
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
break;
}
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_hfcpci(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_hfcpci(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
/******************************************/
/* deactivate B-channel access and queues */
/******************************************/
static void
close_hfcpci(struct BCState *bcs)
{
mode_hfcpci(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
/*************************************/
/* init B-channel queues and control */
/*************************************/
static int
open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
/*********************************/
/* inits the stack for B-channel */
/*********************************/
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcpcistate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfcpci_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
/***************************/
/* handle L1 state changes */
/***************************/
static void
hfcpci_bh(struct work_struct *work)
{
struct IsdnCardState *cs =
container_of(work, struct IsdnCardState, tqueue);
u_long flags;
// struct PStack *stptr;
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
if (!cs->hw.hfcpci.nt_mode)
switch (cs->dc.hfcpci.ph_state) {
case (0):
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (3):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (8):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (6):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (7):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
default:
break;
} else {
spin_lock_irqsave(&cs->lock, flags);
switch (cs->dc.hfcpci.ph_state) {
case (2):
if (cs->hw.hfcpci.nt_timer < 0) {
cs->hw.hfcpci.nt_timer = 0;
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCPCI_INT_S1));
Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
udelay(10);
Write_hfc(cs, HFCPCI_STATES, 4);
cs->dc.hfcpci.ph_state = 4;
} else {
cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER;
cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125;
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
cs->hw.hfcpci.nt_timer = NT_T1_COUNT;
Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); /* allow G2 -> G3 transition */
}
break;
case (1):
case (3):
case (4):
cs->hw.hfcpci.nt_timer = 0;
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
break;
default:
break;
}
spin_unlock_irqrestore(&cs->lock, flags);
}
}
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
}
/********************************/
/* called for card init message */
/********************************/
static void
inithfcpci(struct IsdnCardState *cs)
{
cs->bcs[0].BC_SetStack = setstack_2b;
cs->bcs[1].BC_SetStack = setstack_2b;
cs->bcs[0].BC_Close = close_hfcpci;
cs->bcs[1].BC_Close = close_hfcpci;
cs->dbusytimer.function = (void *) hfcpci_dbusy_timer;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
mode_hfcpci(cs->bcs, 0, 0);
mode_hfcpci(cs->bcs + 1, 0, 1);
}
/*******************************************/
/* handle card messages from control layer */
/*******************************************/
static int
hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_long flags;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCPCI: card_msg %x", mt);
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_hfcpci(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_hfcpci(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
inithfcpci(cs);
reset_hfcpci(cs);
spin_unlock_irqrestore(&cs->lock, flags);
msleep(80); /* Timeout 80ms */
/* now switch timer interrupt off */
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
/* reinit mode reg */
Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
return (0);
}
return (0);
}
/* this variable is used as card index when more than one cards are present */
static struct pci_dev *dev_hfcpci __devinitdata = NULL;
int __devinit
setup_hfcpci(struct IsdnCard *card)
{
u_long flags;
struct IsdnCardState *cs = card->cs;
char tmp[64];
int i;
struct pci_dev *tmp_hfcpci = NULL;
#ifdef __BIG_ENDIAN
#error "not running on big endian machines now"
#endif
strcpy(tmp, hfcpci_revision);
printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp));
cs->hw.hfcpci.int_s1 = 0;
cs->dc.hfcpci.ph_state = 0;
cs->hw.hfcpci.fifo = 255;
if (cs->typ != ISDN_CTYPE_HFC_PCI)
return(0);
i = 0;
while (id_list[i].vendor_id) {
tmp_hfcpci = pci_find_device(id_list[i].vendor_id,
id_list[i].device_id,
dev_hfcpci);
i++;
if (tmp_hfcpci) {
dma_addr_t dma_mask = DMA_BIT_MASK(32) & ~0x7fffUL;
if (pci_enable_device(tmp_hfcpci))
continue;
if (pci_set_dma_mask(tmp_hfcpci, dma_mask)) {
printk(KERN_WARNING
"HiSax hfc_pci: No suitable DMA available.\n");
continue;
}
if (pci_set_consistent_dma_mask(tmp_hfcpci, dma_mask)) {
printk(KERN_WARNING
"HiSax hfc_pci: No suitable consistent DMA available.\n");
continue;
}
pci_set_master(tmp_hfcpci);
if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK)))
continue;
else
break;
}
}
if (!tmp_hfcpci) {
printk(KERN_WARNING "HFC-PCI: No PCI card found\n");
return (0);
}
i--;
dev_hfcpci = tmp_hfcpci; /* old device */
cs->hw.hfcpci.dev = dev_hfcpci;
cs->irq = dev_hfcpci->irq;
if (!cs->irq) {
printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
return (0);
}
cs->hw.hfcpci.pci_io = (char *)(unsigned long)dev_hfcpci->resource[1].start;
printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name);
if (!cs->hw.hfcpci.pci_io) {
printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
return (0);
}
/* Allocate memory for FIFOS */
cs->hw.hfcpci.fifos = pci_alloc_consistent(cs->hw.hfcpci.dev,
0x8000, &cs->hw.hfcpci.dma);
if (!cs->hw.hfcpci.fifos) {
printk(KERN_WARNING "HFC-PCI: Error allocating FIFO memory!\n");
return 0;
}
if (cs->hw.hfcpci.dma & 0x7fff) {
printk(KERN_WARNING
"HFC-PCI: Error DMA memory not on 32K boundary (%lx)\n",
(u_long)cs->hw.hfcpci.dma);
pci_free_consistent(cs->hw.hfcpci.dev, 0x8000,
cs->hw.hfcpci.fifos, cs->hw.hfcpci.dma);
return 0;
}
pci_write_config_dword(cs->hw.hfcpci.dev, 0x80, (u32)cs->hw.hfcpci.dma);
cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256);
printk(KERN_INFO
"HFC-PCI: defined at mem %p fifo %p(%lx) IRQ %d HZ %d\n",
cs->hw.hfcpci.pci_io,
cs->hw.hfcpci.fifos,
(u_long)cs->hw.hfcpci.dma,
cs->irq, HZ);
spin_lock_irqsave(&cs->lock, flags);
pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
cs->hw.hfcpci.int_m2 = 0; /* disable alle interrupts */
cs->hw.hfcpci.int_m1 = 0;
Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
/* At this point the needed PCI config is done */
/* fifos are still not enabled */
INIT_WORK(&cs->tqueue, hfcpci_bh);
cs->setstack_d = setstack_hfcpci;
cs->BC_Send_Data = &hfcpci_send_data;
cs->readisac = NULL;
cs->writeisac = NULL;
cs->readisacfifo = NULL;
cs->writeisacfifo = NULL;
cs->BC_Read_Reg = NULL;
cs->BC_Write_Reg = NULL;
cs->irq_func = &hfcpci_interrupt;
cs->irq_flags |= IRQF_SHARED;
cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer;
cs->hw.hfcpci.timer.data = (long) cs;
init_timer(&cs->hw.hfcpci.timer);
cs->cardmsg = &hfcpci_card_msg;
cs->auxcmd = &hfcpci_auxcmd;
spin_unlock_irqrestore(&cs->lock, flags);
return (1);
}