kernel-fxtec-pro1x/drivers/net/tc35815.c

2945 lines
86 KiB
C
Raw Normal View History

/*
* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
*
* Based on skelton.c by Donald Becker.
*
* This driver is a replacement of older and less maintained version.
* This is a header of the older version:
* -----<snip>-----
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ahennessy@mvista.com
* Copyright (C) 2000-2001 Toshiba Corporation
* static const char *version =
* "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
* -----<snip>-----
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* (C) Copyright TOSHIBA CORPORATION 2004-2005
* All Rights Reserved.
*/
#ifdef TC35815_NAPI
#define DRV_VERSION "1.35-NAPI"
#else
#define DRV_VERSION "1.35"
#endif
static const char *version = "tc35815.c:v" DRV_VERSION "\n";
#define MODNAME "tc35815"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <asm/io.h>
#include <asm/byteorder.h>
/* First, a few definitions that the brave might change. */
#define GATHER_TXINT /* On-Demand Tx Interrupt */
#define WORKAROUND_LOSTCAR
#define WORKAROUND_100HALF_PROMISC
/* #define TC35815_USE_PACKEDBUFFER */
typedef enum {
TC35815CF = 0,
TC35815_NWU,
TC35815_TX4939,
} board_t;
/* indexed by board_t, above */
static const struct {
const char *name;
} board_info[] __devinitdata = {
{ "TOSHIBA TC35815CF 10/100BaseTX" },
{ "TOSHIBA TC35815 with Wake on LAN" },
{ "TOSHIBA TC35815/TX4939" },
};
static const struct pci_device_id tc35815_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
{0,}
};
MODULE_DEVICE_TABLE (pci, tc35815_pci_tbl);
/* see MODULE_PARM_DESC */
static struct tc35815_options {
int speed;
int duplex;
int doforce;
} options;
/*
* Registers
*/
struct tc35815_regs {
volatile __u32 DMA_Ctl; /* 0x00 */
volatile __u32 TxFrmPtr;
volatile __u32 TxThrsh;
volatile __u32 TxPollCtr;
volatile __u32 BLFrmPtr;
volatile __u32 RxFragSize;
volatile __u32 Int_En;
volatile __u32 FDA_Bas;
volatile __u32 FDA_Lim; /* 0x20 */
volatile __u32 Int_Src;
volatile __u32 unused0[2];
volatile __u32 PauseCnt;
volatile __u32 RemPauCnt;
volatile __u32 TxCtlFrmStat;
volatile __u32 unused1;
volatile __u32 MAC_Ctl; /* 0x40 */
volatile __u32 CAM_Ctl;
volatile __u32 Tx_Ctl;
volatile __u32 Tx_Stat;
volatile __u32 Rx_Ctl;
volatile __u32 Rx_Stat;
volatile __u32 MD_Data;
volatile __u32 MD_CA;
volatile __u32 CAM_Adr; /* 0x60 */
volatile __u32 CAM_Data;
volatile __u32 CAM_Ena;
volatile __u32 PROM_Ctl;
volatile __u32 PROM_Data;
volatile __u32 Algn_Cnt;
volatile __u32 CRC_Cnt;
volatile __u32 Miss_Cnt;
};
/*
* Bit assignments
*/
/* DMA_Ctl bit asign ------------------------------------------------------- */
#define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
#define DMA_RxAlign_1 0x00400000
#define DMA_RxAlign_2 0x00800000
#define DMA_RxAlign_3 0x00c00000
#define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
#define DMA_IntMask 0x00040000 /* 1:Interupt mask */
#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
#define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
#define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
#define DMA_TestMode 0x00002000 /* 1:Test Mode */
#define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
#define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
/* RxFragSize bit asign ---------------------------------------------------- */
#define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
#define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
/* MAC_Ctl bit asign ------------------------------------------------------- */
#define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
#define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
#define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
#define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
#define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
#define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
#define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
#define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
#define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
#define MAC_Reset 0x00000004 /* 1:Software Reset */
#define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
#define MAC_HaltReq 0x00000001 /* 1:Halt request */
/* PROM_Ctl bit asign ------------------------------------------------------ */
#define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
#define PROM_Read 0x00004000 /*10:Read operation */
#define PROM_Write 0x00002000 /*01:Write operation */
#define PROM_Erase 0x00006000 /*11:Erase operation */
/*00:Enable or Disable Writting, */
/* as specified in PROM_Addr. */
#define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
/*00xxxx: disable */
/* CAM_Ctl bit asign ------------------------------------------------------- */
#define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
#define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
/* accept other */
#define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
#define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
#define CAM_StationAcc 0x00000001 /* 1:unicast accept */
/* CAM_Ena bit asign ------------------------------------------------------- */
#define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
#define CAM_Ena_Bit(index) (1<<(index))
#define CAM_ENTRY_DESTINATION 0
#define CAM_ENTRY_SOURCE 1
#define CAM_ENTRY_MACCTL 20
/* Tx_Ctl bit asign -------------------------------------------------------- */
#define Tx_En 0x00000001 /* 1:Transmit enable */
#define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
#define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
#define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
#define Tx_FBack 0x00000010 /* 1:Fast Back-off */
#define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
#define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
#define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
#define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
#define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
#define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
#define Tx_EnComp 0x00004000 /* 1:Enable Completion */
/* Tx_Stat bit asign ------------------------------------------------------- */
#define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
#define Tx_ExColl 0x00000010 /* Excessive Collision */
#define Tx_TXDefer 0x00000020 /* Transmit Defered */
#define Tx_Paused 0x00000040 /* Transmit Paused */
#define Tx_IntTx 0x00000080 /* Interrupt on Tx */
#define Tx_Under 0x00000100 /* Underrun */
#define Tx_Defer 0x00000200 /* Deferral */
#define Tx_NCarr 0x00000400 /* No Carrier */
#define Tx_10Stat 0x00000800 /* 10Mbps Status */
#define Tx_LateColl 0x00001000 /* Late Collision */
#define Tx_TxPar 0x00002000 /* Tx Parity Error */
#define Tx_Comp 0x00004000 /* Completion */
#define Tx_Halted 0x00008000 /* Tx Halted */
#define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
/* Rx_Ctl bit asign -------------------------------------------------------- */
#define Rx_EnGood 0x00004000 /* 1:Enable Good */
#define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
#define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
#define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
#define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
#define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
#define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
#define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
#define Rx_ShortEn 0x00000008 /* 1:Short Enable */
#define Rx_LongEn 0x00000004 /* 1:Long Enable */
#define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
#define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
/* Rx_Stat bit asign ------------------------------------------------------- */
#define Rx_Halted 0x00008000 /* Rx Halted */
#define Rx_Good 0x00004000 /* Rx Good */
#define Rx_RxPar 0x00002000 /* Rx Parity Error */
/* 0x00001000 not use */
#define Rx_LongErr 0x00000800 /* Rx Long Error */
#define Rx_Over 0x00000400 /* Rx Overflow */
#define Rx_CRCErr 0x00000200 /* Rx CRC Error */
#define Rx_Align 0x00000100 /* Rx Alignment Error */
#define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
#define Rx_IntRx 0x00000040 /* Rx Interrupt */
#define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
#define Rx_Stat_Mask 0x0000EFC0 /* Rx All Status Mask */
/* Int_En bit asign -------------------------------------------------------- */
#define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
#define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Control Complete Enable */
#define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
#define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
#define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
#define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
#define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
#define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
#define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
#define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
#define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
#define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
/* Exhausted Enable */
/* Int_Src bit asign ------------------------------------------------------- */
#define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
#define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
#define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
#define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
#define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
#define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
#define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
#define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
#define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
#define Int_SWInt 0x00000020 /* 1:Software request & Clear */
#define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
#define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
#define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
#define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
#define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
/* MD_CA bit asign --------------------------------------------------------- */
#define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */
#define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
/*
* Descriptors
*/
/* Frame descripter */
struct FDesc {
volatile __u32 FDNext;
volatile __u32 FDSystem;
volatile __u32 FDStat;
volatile __u32 FDCtl;
};
/* Buffer descripter */
struct BDesc {
volatile __u32 BuffData;
volatile __u32 BDCtl;
};
#define FD_ALIGN 16
/* Frame Descripter bit asign ---------------------------------------------- */
#define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
#define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
#define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
#define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
#define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
#define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
#define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
#define FD_FrmOpt_Packing 0x04000000 /* Rx only */
#define FD_CownsFD 0x80000000 /* FD Controller owner bit */
#define FD_Next_EOL 0x00000001 /* FD EOL indicator */
#define FD_BDCnt_SHIFT 16
/* Buffer Descripter bit asign --------------------------------------------- */
#define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */
#define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
#define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
#define BD_CownsBD 0x80000000 /* BD Controller owner bit */
#define BD_RxBDID_SHIFT 16
#define BD_RxBDSeqN_SHIFT 24
/* Some useful constants. */
#undef NO_CHECK_CARRIER /* Does not check No-Carrier with TP */
#ifdef NO_CHECK_CARRIER
#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7b01 */
#else
#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7b01 */
#endif
#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
#define INT_EN_CMD (Int_NRAbtEn | \
Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
Int_STargAbtEn | \
Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
#define DMA_CTL_CMD DMA_BURST_SIZE
#define HAVE_DMA_RXALIGN(lp) likely((lp)->boardtype != TC35815CF)
/* Tuning parameters */
#define DMA_BURST_SIZE 32
#define TX_THRESHOLD 1024
#define TX_THRESHOLD_MAX 1536 /* used threshold with packet max byte for low pci transfer ability.*/
#define TX_THRESHOLD_KEEP_LIMIT 10 /* setting threshold max value when overrun error occured this count. */
/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
#ifdef TC35815_USE_PACKEDBUFFER
#define FD_PAGE_NUM 2
#define RX_BUF_NUM 8 /* >= 2 */
#define RX_FD_NUM 250 /* >= 32 */
#define TX_FD_NUM 128
#define RX_BUF_SIZE PAGE_SIZE
#else /* TC35815_USE_PACKEDBUFFER */
#define FD_PAGE_NUM 4
#define RX_BUF_NUM 128 /* < 256 */
#define RX_FD_NUM 256 /* >= 32 */
#define TX_FD_NUM 128
#if RX_CTL_CMD & Rx_LongEn
#define RX_BUF_SIZE PAGE_SIZE
#elif RX_CTL_CMD & Rx_StripCRC
#define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 4 + 2, 32) /* +2: reserve */
#else
#define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 2, 32) /* +2: reserve */
#endif
#endif /* TC35815_USE_PACKEDBUFFER */
#define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
#define NAPI_WEIGHT 16
struct TxFD {
struct FDesc fd;
struct BDesc bd;
struct BDesc unused;
};
struct RxFD {
struct FDesc fd;
struct BDesc bd[0]; /* variable length */
};
struct FrFD {
struct FDesc fd;
struct BDesc bd[RX_BUF_NUM];
};
#define tc_readl(addr) readl(addr)
#define tc_writel(d, addr) writel(d, addr)
#define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
/* Timer state engine. */
enum tc35815_timer_state {
arbwait = 0, /* Waiting for auto negotiation to complete. */
lupwait = 1, /* Auto-neg complete, awaiting link-up status. */
ltrywait = 2, /* Forcing try of all modes, from fastest to slowest. */
asleep = 3, /* Time inactive. */
lcheck = 4, /* Check link status. */
};
/* Information that need to be kept for each board. */
struct tc35815_local {
struct pci_dev *pci_dev;
/* statistics */
struct net_device_stats stats;
struct {
int max_tx_qlen;
int tx_ints;
int rx_ints;
int tx_underrun;
} lstats;
/* Tx control lock. This protects the transmit buffer ring
* state along with the "tx full" state of the driver. This
* means all netif_queue flow control actions are protected
* by this lock as well.
*/
spinlock_t lock;
int phy_addr;
int fullduplex;
unsigned short saved_lpa;
struct timer_list timer;
enum tc35815_timer_state timer_state; /* State of auto-neg timer. */
unsigned int timer_ticks; /* Number of clicks at each state */
/*
* Transmitting: Batch Mode.
* 1 BD in 1 TxFD.
* Receiving: Packing Mode. (TC35815_USE_PACKEDBUFFER)
* 1 circular FD for Free Buffer List.
* RX_BUF_NUM BD in Free Buffer FD.
* One Free Buffer BD has PAGE_SIZE data buffer.
* Or Non-Packing Mode.
* 1 circular FD for Free Buffer List.
* RX_BUF_NUM BD in Free Buffer FD.
* One Free Buffer BD has ETH_FRAME_LEN data buffer.
*/
void * fd_buf; /* for TxFD, RxFD, FrFD */
dma_addr_t fd_buf_dma;
struct TxFD *tfd_base;
unsigned int tfd_start;
unsigned int tfd_end;
struct RxFD *rfd_base;
struct RxFD *rfd_limit;
struct RxFD *rfd_cur;
struct FrFD *fbl_ptr;
#ifdef TC35815_USE_PACKEDBUFFER
unsigned char fbl_curid;
void * data_buf[RX_BUF_NUM]; /* packing */
dma_addr_t data_buf_dma[RX_BUF_NUM];
struct {
struct sk_buff *skb;
dma_addr_t skb_dma;
} tx_skbs[TX_FD_NUM];
#else
unsigned int fbl_count;
struct {
struct sk_buff *skb;
dma_addr_t skb_dma;
} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
#endif
struct mii_if_info mii;
unsigned short mii_id[2];
u32 msg_enable;
board_t boardtype;
};
static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
{
return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
}
#ifdef DEBUG
static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
{
return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
}
#endif
#ifdef TC35815_USE_PACKEDBUFFER
static inline void *rxbuf_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
{
int i;
for (i = 0; i < RX_BUF_NUM; i++) {
if (bus >= lp->data_buf_dma[i] &&
bus < lp->data_buf_dma[i] + PAGE_SIZE)
return (void *)((u8 *)lp->data_buf[i] +
(bus - lp->data_buf_dma[i]));
}
return NULL;
}
#define TC35815_DMA_SYNC_ONDEMAND
static void* alloc_rxbuf_page(struct pci_dev *hwdev, dma_addr_t *dma_handle)
{
#ifdef TC35815_DMA_SYNC_ONDEMAND
void *buf;
/* pci_map + pci_dma_sync will be more effective than
* pci_alloc_consistent on some archs. */
if ((buf = (void *)__get_free_page(GFP_ATOMIC)) == NULL)
return NULL;
*dma_handle = pci_map_single(hwdev, buf, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(*dma_handle)) {
free_page((unsigned long)buf);
return NULL;
}
return buf;
#else
return pci_alloc_consistent(hwdev, PAGE_SIZE, dma_handle);
#endif
}
static void free_rxbuf_page(struct pci_dev *hwdev, void *buf, dma_addr_t dma_handle)
{
#ifdef TC35815_DMA_SYNC_ONDEMAND
pci_unmap_single(hwdev, dma_handle, PAGE_SIZE, PCI_DMA_FROMDEVICE);
free_page((unsigned long)buf);
#else
pci_free_consistent(hwdev, PAGE_SIZE, buf, dma_handle);
#endif
}
#else /* TC35815_USE_PACKEDBUFFER */
static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
struct pci_dev *hwdev,
dma_addr_t *dma_handle)
{
struct sk_buff *skb;
skb = dev_alloc_skb(RX_BUF_SIZE);
if (!skb)
return NULL;
*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(*dma_handle)) {
dev_kfree_skb_any(skb);
return NULL;
}
skb_reserve(skb, 2); /* make IP header 4byte aligned */
return skb;
}
static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
{
pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
}
#endif /* TC35815_USE_PACKEDBUFFER */
/* Index to functions, as function prototypes. */
static int tc35815_open(struct net_device *dev);
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
#ifdef TC35815_NAPI
static int tc35815_rx(struct net_device *dev, int limit);
static int tc35815_poll(struct net_device *dev, int *budget);
#else
static void tc35815_rx(struct net_device *dev);
#endif
static void tc35815_txdone(struct net_device *dev);
static int tc35815_close(struct net_device *dev);
static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
static void tc35815_set_multicast_list(struct net_device *dev);
static void tc35815_tx_timeout(struct net_device *dev);
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev);
#endif
static const struct ethtool_ops tc35815_ethtool_ops;
/* Example routines you must write ;->. */
static void tc35815_chip_reset(struct net_device *dev);
static void tc35815_chip_init(struct net_device *dev);
static void tc35815_find_phy(struct net_device *dev);
static void tc35815_phy_chip_init(struct net_device *dev);
#ifdef DEBUG
static void panic_queues(struct net_device *dev);
#endif
static void tc35815_timer(unsigned long data);
static void tc35815_start_auto_negotiation(struct net_device *dev,
struct ethtool_cmd *ep);
static int tc_mdio_read(struct net_device *dev, int phy_id, int location);
static void tc_mdio_write(struct net_device *dev, int phy_id, int location,
int val);
static void __devinit tc35815_init_dev_addr (struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
/* dev_addr will be overwritten on NETDEV_REGISTER event */
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
for (i = 0; i < 6; i += 2) {
unsigned short data;
tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
data = tc_readl(&tr->PROM_Data);
dev->dev_addr[i] = data & 0xff;
dev->dev_addr[i+1] = data >> 8;
}
}
static int __devinit tc35815_init_one (struct pci_dev *pdev,
const struct pci_device_id *ent)
{
void __iomem *ioaddr = NULL;
struct net_device *dev;
struct tc35815_local *lp;
int rc;
unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
static int printed_version;
if (!printed_version++) {
printk(version);
dev_printk(KERN_DEBUG, &pdev->dev,
"speed:%d duplex:%d doforce:%d\n",
options.speed, options.duplex, options.doforce);
}
if (!pdev->irq) {
dev_warn(&pdev->dev, "no IRQ assigned.\n");
return -ENODEV;
}
/* dev zeroed in alloc_etherdev */
dev = alloc_etherdev (sizeof (*lp));
if (dev == NULL) {
dev_err(&pdev->dev, "unable to alloc new ethernet\n");
return -ENOMEM;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
lp = dev->priv;
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pci_enable_device (pdev);
if (rc)
goto err_out;
mmio_start = pci_resource_start (pdev, 1);
mmio_end = pci_resource_end (pdev, 1);
mmio_flags = pci_resource_flags (pdev, 1);
mmio_len = pci_resource_len (pdev, 1);
/* set this immediately, we need to know before
* we talk to the chip directly */
/* make sure PCI base addr 1 is MMIO */
if (!(mmio_flags & IORESOURCE_MEM)) {
dev_err(&pdev->dev, "region #1 not an MMIO resource, aborting\n");
rc = -ENODEV;
goto err_out;
}
/* check for weird/broken PCI region reporting */
if ((mmio_len < sizeof(struct tc35815_regs))) {
dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n");
rc = -ENODEV;
goto err_out;
}
rc = pci_request_regions (pdev, MODNAME);
if (rc)
goto err_out;
pci_set_master (pdev);
/* ioremap MMIO region */
ioaddr = ioremap (mmio_start, mmio_len);
if (ioaddr == NULL) {
dev_err(&pdev->dev, "cannot remap MMIO, aborting\n");
rc = -EIO;
goto err_out_free_res;
}
/* Initialize the device structure. */
dev->open = tc35815_open;
dev->hard_start_xmit = tc35815_send_packet;
dev->stop = tc35815_close;
dev->get_stats = tc35815_get_stats;
dev->set_multicast_list = tc35815_set_multicast_list;
dev->do_ioctl = tc35815_ioctl;
dev->ethtool_ops = &tc35815_ethtool_ops;
dev->tx_timeout = tc35815_tx_timeout;
dev->watchdog_timeo = TC35815_TX_TIMEOUT;
#ifdef TC35815_NAPI
dev->poll = tc35815_poll;
dev->weight = NAPI_WEIGHT;
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = tc35815_poll_controller;
#endif
dev->irq = pdev->irq;
dev->base_addr = (unsigned long) ioaddr;
/* dev->priv/lp zeroed and aligned in alloc_etherdev */
lp = dev->priv;
spin_lock_init(&lp->lock);
lp->pci_dev = pdev;
lp->boardtype = ent->driver_data;
lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
pci_set_drvdata(pdev, dev);
/* Soft reset the chip. */
tc35815_chip_reset(dev);
/* Retrieve the ethernet address. */
tc35815_init_dev_addr(dev);
rc = register_netdev (dev);
if (rc)
goto err_out_unmap;
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
printk(KERN_INFO "%s: %s at 0x%lx, "
"%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "
"IRQ %d\n",
dev->name,
board_info[ent->driver_data].name,
dev->base_addr,
dev->dev_addr[0], dev->dev_addr[1],
dev->dev_addr[2], dev->dev_addr[3],
dev->dev_addr[4], dev->dev_addr[5],
dev->irq);
setup_timer(&lp->timer, tc35815_timer, (unsigned long) dev);
lp->mii.dev = dev;
lp->mii.mdio_read = tc_mdio_read;
lp->mii.mdio_write = tc_mdio_write;
lp->mii.phy_id_mask = 0x1f;
lp->mii.reg_num_mask = 0x1f;
tc35815_find_phy(dev);
lp->mii.phy_id = lp->phy_addr;
lp->mii.full_duplex = 0;
lp->mii.force_media = 0;
return 0;
err_out_unmap:
iounmap(ioaddr);
err_out_free_res:
pci_release_regions (pdev);
err_out:
free_netdev (dev);
return rc;
}
static void __devexit tc35815_remove_one (struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata (pdev);
unsigned long mmio_addr;
mmio_addr = dev->base_addr;
unregister_netdev (dev);
if (mmio_addr) {
iounmap ((void __iomem *)mmio_addr);
pci_release_regions (pdev);
}
free_netdev (dev);
pci_set_drvdata (pdev, NULL);
}
static int
tc35815_init_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
unsigned long fd_addr;
if (!lp->fd_buf) {
BUG_ON(sizeof(struct FDesc) +
sizeof(struct BDesc) * RX_BUF_NUM +
sizeof(struct FDesc) * RX_FD_NUM +
sizeof(struct TxFD) * TX_FD_NUM >
PAGE_SIZE * FD_PAGE_NUM);
if ((lp->fd_buf = pci_alloc_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, &lp->fd_buf_dma)) == 0)
return -ENOMEM;
for (i = 0; i < RX_BUF_NUM; i++) {
#ifdef TC35815_USE_PACKEDBUFFER
if ((lp->data_buf[i] = alloc_rxbuf_page(lp->pci_dev, &lp->data_buf_dma[i])) == NULL) {
while (--i >= 0) {
free_rxbuf_page(lp->pci_dev,
lp->data_buf[i],
lp->data_buf_dma[i]);
lp->data_buf[i] = NULL;
}
pci_free_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf,
lp->fd_buf_dma);
lp->fd_buf = NULL;
return -ENOMEM;
}
#else
lp->rx_skbs[i].skb =
alloc_rxbuf_skb(dev, lp->pci_dev,
&lp->rx_skbs[i].skb_dma);
if (!lp->rx_skbs[i].skb) {
while (--i >= 0) {
free_rxbuf_skb(lp->pci_dev,
lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
pci_free_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf,
lp->fd_buf_dma);
lp->fd_buf = NULL;
return -ENOMEM;
}
#endif
}
printk(KERN_DEBUG "%s: FD buf %p DataBuf",
dev->name, lp->fd_buf);
#ifdef TC35815_USE_PACKEDBUFFER
printk(" DataBuf");
for (i = 0; i < RX_BUF_NUM; i++)
printk(" %p", lp->data_buf[i]);
#endif
printk("\n");
} else {
for (i = 0; i < FD_PAGE_NUM; i++) {
clear_page((void *)((unsigned long)lp->fd_buf + i * PAGE_SIZE));
}
}
fd_addr = (unsigned long)lp->fd_buf;
/* Free Descriptors (for Receive) */
lp->rfd_base = (struct RxFD *)fd_addr;
fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
for (i = 0; i < RX_FD_NUM; i++) {
lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
}
lp->rfd_cur = lp->rfd_base;
lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
/* Transmit Descriptors */
lp->tfd_base = (struct TxFD *)fd_addr;
fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
for (i = 0; i < TX_FD_NUM; i++) {
lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
}
lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
lp->tfd_start = 0;
lp->tfd_end = 0;
/* Buffer List (for Receive) */
lp->fbl_ptr = (struct FrFD *)fd_addr;
lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
#ifndef TC35815_USE_PACKEDBUFFER
/*
* move all allocated skbs to head of rx_skbs[] array.
* fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
* tc35815_rx() had failed.
*/
lp->fbl_count = 0;
for (i = 0; i < RX_BUF_NUM; i++) {
if (lp->rx_skbs[i].skb) {
if (i != lp->fbl_count) {
lp->rx_skbs[lp->fbl_count].skb =
lp->rx_skbs[i].skb;
lp->rx_skbs[lp->fbl_count].skb_dma =
lp->rx_skbs[i].skb_dma;
}
lp->fbl_count++;
}
}
#endif
for (i = 0; i < RX_BUF_NUM; i++) {
#ifdef TC35815_USE_PACKEDBUFFER
lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(lp->data_buf_dma[i]);
#else
if (i >= lp->fbl_count) {
lp->fbl_ptr->bd[i].BuffData = 0;
lp->fbl_ptr->bd[i].BDCtl = 0;
continue;
}
lp->fbl_ptr->bd[i].BuffData =
cpu_to_le32(lp->rx_skbs[i].skb_dma);
#endif
/* BDID is index of FrFD.bd[] */
lp->fbl_ptr->bd[i].BDCtl =
cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
RX_BUF_SIZE);
}
#ifdef TC35815_USE_PACKEDBUFFER
lp->fbl_curid = 0;
#endif
printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
return 0;
}
static void
tc35815_clear_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
for (i = 0; i < TX_FD_NUM; i++) {
u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
struct sk_buff *skb =
fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
dev_kfree_skb_any(skb);
}
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
}
tc35815_init_queues(dev);
}
static void
tc35815_free_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
if (lp->tfd_base) {
for (i = 0; i < TX_FD_NUM; i++) {
u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
struct sk_buff *skb =
fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
dev_kfree_skb(skb);
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
}
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
}
}
lp->rfd_base = NULL;
lp->rfd_limit = NULL;
lp->rfd_cur = NULL;
lp->fbl_ptr = NULL;
for (i = 0; i < RX_BUF_NUM; i++) {
#ifdef TC35815_USE_PACKEDBUFFER
if (lp->data_buf[i]) {
free_rxbuf_page(lp->pci_dev,
lp->data_buf[i], lp->data_buf_dma[i]);
lp->data_buf[i] = NULL;
}
#else
if (lp->rx_skbs[i].skb) {
free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
#endif
}
if (lp->fd_buf) {
pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf, lp->fd_buf_dma);
lp->fd_buf = NULL;
}
}
static void
dump_txfd(struct TxFD *fd)
{
printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
printk(" %08x %08x",
le32_to_cpu(fd->bd.BuffData),
le32_to_cpu(fd->bd.BDCtl));
printk("\n");
}
static int
dump_rxfd(struct RxFD *fd)
{
int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
if (bd_count > 8)
bd_count = 8;
printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
return 0;
printk("BD: ");
for (i = 0; i < bd_count; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
return bd_count;
}
#if defined(DEBUG) || defined(TC35815_USE_PACKEDBUFFER)
static void
dump_frfd(struct FrFD *fd)
{
int i;
printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
le32_to_cpu(fd->fd.FDNext),
le32_to_cpu(fd->fd.FDSystem),
le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl));
printk("BD: ");
for (i = 0; i < RX_BUF_NUM; i++)
printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl));
printk("\n");
}
#endif
#ifdef DEBUG
static void
panic_queues(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int i;
printk("TxFD base %p, start %u, end %u\n",
lp->tfd_base, lp->tfd_start, lp->tfd_end);
printk("RxFD base %p limit %p cur %p\n",
lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
printk("FrFD %p\n", lp->fbl_ptr);
for (i = 0; i < TX_FD_NUM; i++)
dump_txfd(&lp->tfd_base[i]);
for (i = 0; i < RX_FD_NUM; i++) {
int bd_count = dump_rxfd(&lp->rfd_base[i]);
i += (bd_count + 1) / 2; /* skip BDs */
}
dump_frfd(lp->fbl_ptr);
panic("%s: Illegal queue state.", dev->name);
}
#endif
static void print_eth(char *add)
{
int i;
printk("print_eth(%p)\n", add);
for (i = 0; i < 6; i++)
printk(" %2.2X", (unsigned char) add[i + 6]);
printk(" =>");
for (i = 0; i < 6; i++)
printk(" %2.2X", (unsigned char) add[i]);
printk(" : %2.2X%2.2X\n", (unsigned char) add[12], (unsigned char) add[13]);
}
static int tc35815_tx_full(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
}
static void tc35815_restart(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
int do_phy_reset = 1;
del_timer(&lp->timer); /* Kill if running */
if (lp->mii_id[0] == 0x0016 && (lp->mii_id[1] & 0xfc00) == 0xf800) {
/* Resetting PHY cause problem on some chip... (SEEQ 80221) */
do_phy_reset = 0;
}
if (do_phy_reset) {
int timeout;
tc_mdio_write(dev, pid, MII_BMCR, BMCR_RESET);
timeout = 100;
while (--timeout) {
if (!(tc_mdio_read(dev, pid, MII_BMCR) & BMCR_RESET))
break;
udelay(1);
}
if (!timeout)
printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
}
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
tc35815_set_multicast_list(dev);
}
static void tc35815_tx_timeout(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
spin_lock_irq(&lp->lock);
tc35815_restart(dev);
spin_unlock_irq(&lp->lock);
lp->stats.tx_errors++;
/* If we have space available to accept new transmit
* requests, wake up the queueing layer. This would
* be the case if the chipset_init() call above just
* flushes out the tx queue and empties it.
*
* If instead, the tx queue is retained then the
* netif_wake_queue() call should be placed in the
* TX completion interrupt handler of the driver instead
* of here.
*/
if (!tc35815_tx_full(dev))
netif_wake_queue(dev);
}
/*
* Open/initialize the board. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int
tc35815_open(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
/*
* This is used if the interrupt line can turned off (shared).
* See 3c503.c for an example of selecting the IRQ at config-time.
*/
if (request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED, dev->name, dev)) {
return -EAGAIN;
}
del_timer(&lp->timer); /* Kill if running */
tc35815_chip_reset(dev);
if (tc35815_init_queues(dev) != 0) {
free_irq(dev->irq, dev);
return -EAGAIN;
}
/* Reset the hardware here. Don't forget to set the station address. */
spin_lock_irq(&lp->lock);
tc35815_chip_init(dev);
spin_unlock_irq(&lp->lock);
/* We are now ready to accept transmit requeusts from
* the queueing layer of the networking.
*/
netif_start_queue(dev);
return 0;
}
/* This will only be invoked if your driver is _not_ in XOFF state.
* What this means is that you need not check it, and that this
* invariant will hold if you make sure that the netif_*_queue()
* calls are done at the proper times.
*/
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct TxFD *txfd;
unsigned long flags;
/* If some error occurs while trying to transmit this
* packet, you should return '1' from this function.
* In such a case you _may not_ do anything to the
* SKB, it is still owned by the network queueing
* layer when an error is returned. This means you
* may not modify any SKB fields, you may not free
* the SKB, etc.
*/
/* This is the most common case for modern hardware.
* The spinlock protects this code from the TX complete
* hardware interrupt handler. Queue flow control is
* thus managed under this lock as well.
*/
spin_lock_irqsave(&lp->lock, flags);
/* failsafe... (handle txdone now if half of FDs are used) */
if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
TX_FD_NUM / 2)
tc35815_txdone(dev);
if (netif_msg_pktdata(lp))
print_eth(skb->data);
#ifdef DEBUG
if (lp->tx_skbs[lp->tfd_start].skb) {
printk("%s: tx_skbs conflict.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
#endif
lp->tx_skbs[lp->tfd_start].skb = skb;
lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
/*add to ring */
txfd = &lp->tfd_base[lp->tfd_start];
txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
txfd->bd.BDCtl = cpu_to_le32(skb->len);
txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
if (lp->tfd_start == lp->tfd_end) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
/* Start DMA Transmitter. */
txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
#ifdef GATHER_TXINT
txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
#endif
if (netif_msg_tx_queued(lp)) {
printk("%s: starting TxFD.\n", dev->name);
dump_txfd(txfd);
}
tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
} else {
txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
if (netif_msg_tx_queued(lp)) {
printk("%s: queueing TxFD.\n", dev->name);
dump_txfd(txfd);
}
}
lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
dev->trans_start = jiffies;
/* If we just used up the very last entry in the
* TX ring on this device, tell the queueing
* layer to send no more.
*/
if (tc35815_tx_full(dev)) {
if (netif_msg_tx_queued(lp))
printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
netif_stop_queue(dev);
}
/* When the TX completion hw interrupt arrives, this
* is when the transmit statistics are updated.
*/
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
#define FATAL_ERROR_INT \
(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
{
static int count;
printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
dev->name, status);
if (status & Int_IntPCI)
printk(" IntPCI");
if (status & Int_DmParErr)
printk(" DmParErr");
if (status & Int_IntNRAbt)
printk(" IntNRAbt");
printk("\n");
if (count++ > 100)
panic("%s: Too many fatal errors.", dev->name);
printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
/* Try to restart the adaptor. */
tc35815_restart(dev);
}
#ifdef TC35815_NAPI
static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
#else
static int tc35815_do_interrupt(struct net_device *dev, u32 status)
#endif
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int ret = -1;
/* Fatal errors... */
if (status & FATAL_ERROR_INT) {
tc35815_fatal_error_interrupt(dev, status);
return 0;
}
/* recoverable errors */
if (status & Int_IntFDAEx) {
/* disable FDAEx int. (until we make rooms...) */
tc_writel(tc_readl(&tr->Int_En) & ~Int_FDAExEn, &tr->Int_En);
printk(KERN_WARNING
"%s: Free Descriptor Area Exhausted (%#x).\n",
dev->name, status);
lp->stats.rx_dropped++;
ret = 0;
}
if (status & Int_IntBLEx) {
/* disable BLEx int. (until we make rooms...) */
tc_writel(tc_readl(&tr->Int_En) & ~Int_BLExEn, &tr->Int_En);
printk(KERN_WARNING
"%s: Buffer List Exhausted (%#x).\n",
dev->name, status);
lp->stats.rx_dropped++;
ret = 0;
}
if (status & Int_IntExBD) {
printk(KERN_WARNING
"%s: Excessive Buffer Descriptiors (%#x).\n",
dev->name, status);
lp->stats.rx_length_errors++;
ret = 0;
}
/* normal notification */
if (status & Int_IntMacRx) {
/* Got a packet(s). */
#ifdef TC35815_NAPI
ret = tc35815_rx(dev, limit);
#else
tc35815_rx(dev);
ret = 0;
#endif
lp->lstats.rx_ints++;
}
if (status & Int_IntMacTx) {
/* Transmit complete. */
lp->lstats.tx_ints++;
tc35815_txdone(dev);
netif_wake_queue(dev);
ret = 0;
}
return ret;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 07:55:46 -06:00
static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
#ifdef TC35815_NAPI
u32 dmactl = tc_readl(&tr->DMA_Ctl);
if (!(dmactl & DMA_IntMask)) {
/* disable interrupts */
tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
if (netif_rx_schedule_prep(dev))
__netif_rx_schedule(dev);
else {
printk(KERN_ERR "%s: interrupt taken in poll\n",
dev->name);
BUG();
}
(void)tc_readl(&tr->Int_Src); /* flush */
return IRQ_HANDLED;
}
return IRQ_NONE;
#else
struct tc35815_local *lp = dev->priv;
int handled;
u32 status;
spin_lock(&lp->lock);
status = tc_readl(&tr->Int_Src);
tc_writel(status, &tr->Int_Src); /* write to clear */
handled = tc35815_do_interrupt(dev, status);
(void)tc_readl(&tr->Int_Src); /* flush */
spin_unlock(&lp->lock);
return IRQ_RETVAL(handled >= 0);
#endif /* TC35815_NAPI */
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
tc35815_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* We have a good packet(s), get it/them out of the buffers. */
#ifdef TC35815_NAPI
static int
tc35815_rx(struct net_device *dev, int limit)
#else
static void
tc35815_rx(struct net_device *dev)
#endif
{
struct tc35815_local *lp = dev->priv;
unsigned int fdctl;
int i;
int buf_free_count = 0;
int fd_free_count = 0;
#ifdef TC35815_NAPI
int received = 0;
#endif
while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
int pkt_len = fdctl & FD_FDLength_MASK;
int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
#ifdef DEBUG
struct RxFD *next_rfd;
#endif
#if (RX_CTL_CMD & Rx_StripCRC) == 0
pkt_len -= 4;
#endif
if (netif_msg_rx_status(lp))
dump_rxfd(lp->rfd_cur);
if (status & Rx_Good) {
struct sk_buff *skb;
unsigned char *data;
int cur_bd;
#ifdef TC35815_USE_PACKEDBUFFER
int offset;
#endif
#ifdef TC35815_NAPI
if (--limit < 0)
break;
#endif
#ifdef TC35815_USE_PACKEDBUFFER
BUG_ON(bd_count > 2);
skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */
if (skb == NULL) {
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
dev->name);
lp->stats.rx_dropped++;
break;
}
skb_reserve(skb, 2); /* 16 bit alignment */
data = skb_put(skb, pkt_len);
/* copy from receive buffer */
cur_bd = 0;
offset = 0;
while (offset < pkt_len && cur_bd < bd_count) {
int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) &
BD_BuffLength_MASK;
dma_addr_t dma = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData);
void *rxbuf = rxbuf_bus_to_virt(lp, dma);
if (offset + len > pkt_len)
len = pkt_len - offset;
#ifdef TC35815_DMA_SYNC_ONDEMAND
pci_dma_sync_single_for_cpu(lp->pci_dev,
dma, len,
PCI_DMA_FROMDEVICE);
#endif
memcpy(data + offset, rxbuf, len);
#ifdef TC35815_DMA_SYNC_ONDEMAND
pci_dma_sync_single_for_device(lp->pci_dev,
dma, len,
PCI_DMA_FROMDEVICE);
#endif
offset += len;
cur_bd++;
}
#else /* TC35815_USE_PACKEDBUFFER */
BUG_ON(bd_count > 1);
cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
& BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
#ifdef DEBUG
if (cur_bd >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
(le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
if (!lp->rx_skbs[cur_bd].skb) {
printk("%s: NULL skb.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(cur_bd >= RX_BUF_NUM);
#endif
skb = lp->rx_skbs[cur_bd].skb;
prefetch(skb->data);
lp->rx_skbs[cur_bd].skb = NULL;
lp->fbl_count--;
pci_unmap_single(lp->pci_dev,
lp->rx_skbs[cur_bd].skb_dma,
RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
if (!HAVE_DMA_RXALIGN(lp))
memmove(skb->data, skb->data - 2, pkt_len);
data = skb_put(skb, pkt_len);
#endif /* TC35815_USE_PACKEDBUFFER */
if (netif_msg_pktdata(lp))
print_eth(data);
skb->protocol = eth_type_trans(skb, dev);
#ifdef TC35815_NAPI
netif_receive_skb(skb);
received++;
#else
netif_rx(skb);
#endif
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len;
} else {
lp->stats.rx_errors++;
printk(KERN_DEBUG "%s: Rx error (status %x)\n",
dev->name, status & Rx_Stat_Mask);
/* WORKAROUND: LongErr and CRCErr means Overflow. */
if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
status &= ~(Rx_LongErr|Rx_CRCErr);
status |= Rx_Over;
}
if (status & Rx_LongErr) lp->stats.rx_length_errors++;
if (status & Rx_Over) lp->stats.rx_fifo_errors++;
if (status & Rx_CRCErr) lp->stats.rx_crc_errors++;
if (status & Rx_Align) lp->stats.rx_frame_errors++;
}
if (bd_count > 0) {
/* put Free Buffer back to controller */
int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
unsigned char id =
(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
#ifdef DEBUG
if (id >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(id >= RX_BUF_NUM);
#endif
/* free old buffers */
#ifdef TC35815_USE_PACKEDBUFFER
while (lp->fbl_curid != id)
#else
while (lp->fbl_count < RX_BUF_NUM)
#endif
{
#ifdef TC35815_USE_PACKEDBUFFER
unsigned char curid = lp->fbl_curid;
#else
unsigned char curid =
(id + 1 + lp->fbl_count) % RX_BUF_NUM;
#endif
struct BDesc *bd = &lp->fbl_ptr->bd[curid];
#ifdef DEBUG
bdctl = le32_to_cpu(bd->BDCtl);
if (bdctl & BD_CownsBD) {
printk("%s: Freeing invalid BD.\n",
dev->name);
panic_queues(dev);
}
#endif
/* pass BD to controler */
#ifndef TC35815_USE_PACKEDBUFFER
if (!lp->rx_skbs[curid].skb) {
lp->rx_skbs[curid].skb =
alloc_rxbuf_skb(dev,
lp->pci_dev,
&lp->rx_skbs[curid].skb_dma);
if (!lp->rx_skbs[curid].skb)
break; /* try on next reception */
bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
}
#endif /* TC35815_USE_PACKEDBUFFER */
/* Note: BDLength was modified by chip. */
bd->BDCtl = cpu_to_le32(BD_CownsBD |
(curid << BD_RxBDID_SHIFT) |
RX_BUF_SIZE);
#ifdef TC35815_USE_PACKEDBUFFER
lp->fbl_curid = (curid + 1) % RX_BUF_NUM;
if (netif_msg_rx_status(lp)) {
printk("%s: Entering new FBD %d\n",
dev->name, lp->fbl_curid);
dump_frfd(lp->fbl_ptr);
}
#else
lp->fbl_count++;
#endif
buf_free_count++;
}
}
/* put RxFD back to controller */
#ifdef DEBUG
next_rfd = fd_bus_to_virt(lp,
le32_to_cpu(lp->rfd_cur->fd.FDNext));
if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
printk("%s: RxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
#endif
for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
/* pass FD to controler */
#ifdef DEBUG
lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
#else
lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
#endif
lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
lp->rfd_cur++;
fd_free_count++;
}
if (lp->rfd_cur > lp->rfd_limit)
lp->rfd_cur = lp->rfd_base;
#ifdef DEBUG
if (lp->rfd_cur != next_rfd)
printk("rfd_cur = %p, next_rfd %p\n",
lp->rfd_cur, next_rfd);
#endif
}
/* re-enable BL/FDA Exhaust interrupts. */
if (fd_free_count) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 en, en_old = tc_readl(&tr->Int_En);
en = en_old | Int_FDAExEn;
if (buf_free_count)
en |= Int_BLExEn;
if (en != en_old)
tc_writel(en, &tr->Int_En);
}
#ifdef TC35815_NAPI
return received;
#endif
}
#ifdef TC35815_NAPI
static int
tc35815_poll(struct net_device *dev, int *budget)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int limit = min(*budget, dev->quota);
int received = 0, handled;
u32 status;
spin_lock(&lp->lock);
status = tc_readl(&tr->Int_Src);
do {
tc_writel(status, &tr->Int_Src); /* write to clear */
handled = tc35815_do_interrupt(dev, status, limit);
if (handled >= 0) {
received += handled;
limit -= handled;
if (limit <= 0)
break;
}
status = tc_readl(&tr->Int_Src);
} while (status);
spin_unlock(&lp->lock);
dev->quota -= received;
*budget -= received;
if (limit <= 0)
return 1;
netif_rx_complete(dev);
/* enable interrupts */
tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
return 0;
}
#endif
#ifdef NO_CHECK_CARRIER
#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr)
#else
#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
#endif
static void
tc35815_check_tx_stat(struct net_device *dev, int status)
{
struct tc35815_local *lp = dev->priv;
const char *msg = NULL;
/* count collisions */
if (status & Tx_ExColl)
lp->stats.collisions += 16;
if (status & Tx_TxColl_MASK)
lp->stats.collisions += status & Tx_TxColl_MASK;
#ifndef NO_CHECK_CARRIER
/* TX4939 does not have NCarr */
if (lp->boardtype == TC35815_TX4939)
status &= ~Tx_NCarr;
#ifdef WORKAROUND_LOSTCAR
/* WORKAROUND: ignore LostCrS in full duplex operation */
if ((lp->timer_state != asleep && lp->timer_state != lcheck)
|| lp->fullduplex)
status &= ~Tx_NCarr;
#endif
#endif
if (!(status & TX_STA_ERR)) {
/* no error. */
lp->stats.tx_packets++;
return;
}
lp->stats.tx_errors++;
if (status & Tx_ExColl) {
lp->stats.tx_aborted_errors++;
msg = "Excessive Collision.";
}
if (status & Tx_Under) {
lp->stats.tx_fifo_errors++;
msg = "Tx FIFO Underrun.";
if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
lp->lstats.tx_underrun++;
if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
msg = "Tx FIFO Underrun.Change Tx threshold to max.";
}
}
}
if (status & Tx_Defer) {
lp->stats.tx_fifo_errors++;
msg = "Excessive Deferral.";
}
#ifndef NO_CHECK_CARRIER
if (status & Tx_NCarr) {
lp->stats.tx_carrier_errors++;
msg = "Lost Carrier Sense.";
}
#endif
if (status & Tx_LateColl) {
lp->stats.tx_aborted_errors++;
msg = "Late Collision.";
}
if (status & Tx_TxPar) {
lp->stats.tx_fifo_errors++;
msg = "Transmit Parity Error.";
}
if (status & Tx_SQErr) {
lp->stats.tx_heartbeat_errors++;
msg = "Signal Quality Error.";
}
if (msg && netif_msg_tx_err(lp))
printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
}
/* This handles TX complete events posted by the device
* via interrupts.
*/
static void
tc35815_txdone(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct TxFD *txfd;
unsigned int fdctl;
txfd = &lp->tfd_base[lp->tfd_end];
while (lp->tfd_start != lp->tfd_end &&
!((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(txfd->fd.FDStat);
struct sk_buff *skb;
unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
if (netif_msg_tx_done(lp)) {
printk("%s: complete TxFD.\n", dev->name);
dump_txfd(txfd);
}
tc35815_check_tx_stat(dev, status);
skb = fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[lp->tfd_end].skb != skb) {
printk("%s: tx_skbs mismatch.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
#endif
if (skb) {
lp->stats.tx_bytes += skb->len;
pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[lp->tfd_end].skb = NULL;
lp->tx_skbs[lp->tfd_end].skb_dma = 0;
#ifdef TC35815_NAPI
dev_kfree_skb_any(skb);
#else
dev_kfree_skb_irq(skb);
#endif
}
txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
txfd = &lp->tfd_base[lp->tfd_end];
#ifdef DEBUG
if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
printk("%s: TxFD FDNext invalid.\n", dev->name);
panic_queues(dev);
}
#endif
if (fdnext & FD_Next_EOL) {
/* DMA Transmitter has been stopping... */
if (lp->tfd_end != lp->tfd_start) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
struct TxFD* txhead = &lp->tfd_base[head];
int qlen = (lp->tfd_start + TX_FD_NUM
- lp->tfd_end) % TX_FD_NUM;
#ifdef DEBUG
if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
printk("%s: TxFD FDCtl invalid.\n", dev->name);
panic_queues(dev);
}
#endif
/* log max queue length */
if (lp->lstats.max_tx_qlen < qlen)
lp->lstats.max_tx_qlen = qlen;
/* start DMA Transmitter again */
txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
#ifdef GATHER_TXINT
txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
#endif
if (netif_msg_tx_queued(lp)) {
printk("%s: start TxFD on queue.\n",
dev->name);
dump_txfd(txfd);
}
tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
}
break;
}
}
/* If we had stopped the queue due to a "tx full"
* condition, and space has now been made available,
* wake up the queue.
*/
if (netif_queue_stopped(dev) && ! tc35815_tx_full(dev))
netif_wake_queue(dev);
}
/* The inverse routine to tc35815_open(). */
static int
tc35815_close(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
netif_stop_queue(dev);
/* Flush the Tx and disable Rx here. */
del_timer(&lp->timer); /* Kill if running */
tc35815_chip_reset(dev);
free_irq(dev->irq, dev);
tc35815_free_queues(dev);
return 0;
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
if (netif_running(dev)) {
/* Update the statistics from the device registers. */
lp->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt);
}
return &lp->stats;
}
static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int cam_index = index * 6;
u32 cam_data;
u32 saved_addr;
saved_addr = tc_readl(&tr->CAM_Adr);
if (netif_msg_hw(lp)) {
int i;
printk(KERN_DEBUG "%s: CAM %d:", dev->name, index);
for (i = 0; i < 6; i++)
printk(" %02x", addr[i]);
printk("\n");
}
if (index & 1) {
/* read modify write */
tc_writel(cam_index - 2, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
cam_data |= addr[0] << 8 | addr[1];
tc_writel(cam_data, &tr->CAM_Data);
/* write whole word */
tc_writel(cam_index + 2, &tr->CAM_Adr);
cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
tc_writel(cam_data, &tr->CAM_Data);
} else {
/* write whole word */
tc_writel(cam_index, &tr->CAM_Adr);
cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
tc_writel(cam_data, &tr->CAM_Data);
/* read modify write */
tc_writel(cam_index + 4, &tr->CAM_Adr);
cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
cam_data |= addr[4] << 24 | (addr[5] << 16);
tc_writel(cam_data, &tr->CAM_Data);
}
tc_writel(saved_addr, &tr->CAM_Adr);
}
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void
tc35815_set_multicast_list(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
if (dev->flags&IFF_PROMISC)
{
#ifdef WORKAROUND_100HALF_PROMISC
/* With some (all?) 100MHalf HUB, controller will hang
* if we enabled promiscuous mode before linkup... */
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
if (!(tc_mdio_read(dev, pid, MII_BMSR) & BMSR_LSTATUS))
return;
#endif
/* Enable promiscuous mode */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
}
else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > CAM_ENTRY_MAX - 3)
{
/* CAM 0, 1, 20 are reserved. */
/* Disable promiscuous mode, use normal mode. */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
}
else if(dev->mc_count)
{
struct dev_mc_list* cur_addr = dev->mc_list;
int i;
int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
tc_writel(0, &tr->CAM_Ctl);
/* Walk the address list, and load the filter */
for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
if (!cur_addr)
break;
/* entry 0,1 is reserved. */
tc35815_set_cam_entry(dev, i + 2, cur_addr->dmi_addr);
ena_bits |= CAM_Ena_Bit(i + 2);
}
tc_writel(ena_bits, &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
}
else {
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
}
}
static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct tc35815_local *lp = dev->priv;
strcpy(info->driver, MODNAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(lp->pci_dev));
}
static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = dev->priv;
spin_lock_irq(&lp->lock);
mii_ethtool_gset(&lp->mii, cmd);
spin_unlock_irq(&lp->lock);
return 0;
}
static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = dev->priv;
int rc;
#if 1 /* use our negotiation method... */
/* Verify the settings we care about. */
if (cmd->autoneg != AUTONEG_ENABLE &&
cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
((cmd->speed != SPEED_100 &&
cmd->speed != SPEED_10) ||
(cmd->duplex != DUPLEX_HALF &&
cmd->duplex != DUPLEX_FULL)))
return -EINVAL;
/* Ok, do it to it. */
spin_lock_irq(&lp->lock);
del_timer(&lp->timer);
tc35815_start_auto_negotiation(dev, cmd);
spin_unlock_irq(&lp->lock);
rc = 0;
#else
spin_lock_irq(&lp->lock);
rc = mii_ethtool_sset(&lp->mii, cmd);
spin_unlock_irq(&lp->lock);
#endif
return rc;
}
static int tc35815_nway_reset(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int rc;
spin_lock_irq(&lp->lock);
rc = mii_nway_restart(&lp->mii);
spin_unlock_irq(&lp->lock);
return rc;
}
static u32 tc35815_get_link(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int rc;
spin_lock_irq(&lp->lock);
rc = mii_link_ok(&lp->mii);
spin_unlock_irq(&lp->lock);
return rc;
}
static u32 tc35815_get_msglevel(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
return lp->msg_enable;
}
static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
{
struct tc35815_local *lp = dev->priv;
lp->msg_enable = datum;
}
static int tc35815_get_stats_count(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
return sizeof(lp->lstats) / sizeof(int);
}
static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
{
struct tc35815_local *lp = dev->priv;
data[0] = lp->lstats.max_tx_qlen;
data[1] = lp->lstats.tx_ints;
data[2] = lp->lstats.rx_ints;
data[3] = lp->lstats.tx_underrun;
}
static struct {
const char str[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "max_tx_qlen" },
{ "tx_ints" },
{ "rx_ints" },
{ "tx_underrun" },
};
static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
}
static const struct ethtool_ops tc35815_ethtool_ops = {
.get_drvinfo = tc35815_get_drvinfo,
.get_settings = tc35815_get_settings,
.set_settings = tc35815_set_settings,
.nway_reset = tc35815_nway_reset,
.get_link = tc35815_get_link,
.get_msglevel = tc35815_get_msglevel,
.set_msglevel = tc35815_set_msglevel,
.get_strings = tc35815_get_strings,
.get_stats_count = tc35815_get_stats_count,
.get_ethtool_stats = tc35815_get_ethtool_stats,
.get_perm_addr = ethtool_op_get_perm_addr,
};
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct tc35815_local *lp = dev->priv;
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
rc = generic_mii_ioctl(&lp->mii, if_mii(rq), cmd, NULL);
spin_unlock_irq(&lp->lock);
return rc;
}
static int tc_mdio_read(struct net_device *dev, int phy_id, int location)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 data;
tc_writel(MD_CA_Busy | (phy_id << 5) | location, &tr->MD_CA);
while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
;
data = tc_readl(&tr->MD_Data);
return data & 0xffff;
}
static void tc_mdio_write(struct net_device *dev, int phy_id, int location,
int val)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
tc_writel(val, &tr->MD_Data);
tc_writel(MD_CA_Busy | MD_CA_Wr | (phy_id << 5) | location, &tr->MD_CA);
while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
;
}
/* Auto negotiation. The scheme is very simple. We have a timer routine
* that keeps watching the auto negotiation process as it progresses.
* The DP83840 is first told to start doing it's thing, we set up the time
* and place the timer state machine in it's initial state.
*
* Here the timer peeks at the DP83840 status registers at each click to see
* if the auto negotiation has completed, we assume here that the DP83840 PHY
* will time out at some point and just tell us what (didn't) happen. For
* complete coverage we only allow so many of the ticks at this level to run,
* when this has expired we print a warning message and try another strategy.
* This "other" strategy is to force the interface into various speed/duplex
* configurations and we stop when we see a link-up condition before the
* maximum number of "peek" ticks have occurred.
*
* Once a valid link status has been detected we configure the BigMAC and
* the rest of the Happy Meal to speak the most efficient protocol we could
* get a clean link for. The priority for link configurations, highest first
* is:
* 100 Base-T Full Duplex
* 100 Base-T Half Duplex
* 10 Base-T Full Duplex
* 10 Base-T Half Duplex
*
* We start a new timer now, after a successful auto negotiation status has
* been detected. This timer just waits for the link-up bit to get set in
* the BMCR of the DP83840. When this occurs we print a kernel log message
* describing the link type in use and the fact that it is up.
*
* If a fatal error of some sort is signalled and detected in the interrupt
* service routine, and the chip is reset, or the link is ifconfig'd down
* and then back up, this entire process repeats itself all over again.
*/
/* Note: Above comments are come from sunhme driver. */
static int tc35815_try_next_permutation(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmcr;
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
/* Downgrade from full to half duplex. Only possible via ethtool. */
if (bmcr & BMCR_FULLDPLX) {
bmcr &= ~BMCR_FULLDPLX;
printk(KERN_DEBUG "%s: try next permutation (BMCR %x)\n", dev->name, bmcr);
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
return 0;
}
/* Downgrade from 100 to 10. */
if (bmcr & BMCR_SPEED100) {
bmcr &= ~BMCR_SPEED100;
printk(KERN_DEBUG "%s: try next permutation (BMCR %x)\n", dev->name, bmcr);
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
return 0;
}
/* We've tried everything. */
return -1;
}
static void
tc35815_display_link_mode(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short lpa, bmcr;
char *speed = "", *duplex = "";
lpa = tc_mdio_read(dev, pid, MII_LPA);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (options.speed ? (bmcr & BMCR_SPEED100) : (lpa & (LPA_100HALF | LPA_100FULL)))
speed = "100Mb/s";
else
speed = "10Mb/s";
if (options.duplex ? (bmcr & BMCR_FULLDPLX) : (lpa & (LPA_100FULL | LPA_10FULL)))
duplex = "Full Duplex";
else
duplex = "Half Duplex";
if (netif_msg_link(lp))
printk(KERN_INFO "%s: Link is up at %s, %s.\n",
dev->name, speed, duplex);
printk(KERN_DEBUG "%s: MII BMCR %04x BMSR %04x LPA %04x\n",
dev->name,
bmcr, tc_mdio_read(dev, pid, MII_BMSR), lpa);
}
static void tc35815_display_forced_link_mode(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmcr;
char *speed = "", *duplex = "";
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (bmcr & BMCR_SPEED100)
speed = "100Mb/s";
else
speed = "10Mb/s";
if (bmcr & BMCR_FULLDPLX)
duplex = "Full Duplex.\n";
else
duplex = "Half Duplex.\n";
if (netif_msg_link(lp))
printk(KERN_INFO "%s: Link has been forced up at %s, %s",
dev->name, speed, duplex);
}
static void tc35815_set_link_modes(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int pid = lp->phy_addr;
unsigned short bmcr, lpa;
int speed;
if (lp->timer_state == arbwait) {
lpa = tc_mdio_read(dev, pid, MII_LPA);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
printk(KERN_DEBUG "%s: MII BMCR %04x BMSR %04x LPA %04x\n",
dev->name,
bmcr, tc_mdio_read(dev, pid, MII_BMSR), lpa);
if (!(lpa & (LPA_10HALF | LPA_10FULL |
LPA_100HALF | LPA_100FULL))) {
/* fall back to 10HALF */
printk(KERN_INFO "%s: bad ability %04x - falling back to 10HD.\n",
dev->name, lpa);
lpa = LPA_10HALF;
}
if (options.duplex ? (bmcr & BMCR_FULLDPLX) : (lpa & (LPA_100FULL | LPA_10FULL)))
lp->fullduplex = 1;
else
lp->fullduplex = 0;
if (options.speed ? (bmcr & BMCR_SPEED100) : (lpa & (LPA_100HALF | LPA_100FULL)))
speed = 100;
else
speed = 10;
} else {
/* Forcing a link mode. */
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (bmcr & BMCR_FULLDPLX)
lp->fullduplex = 1;
else
lp->fullduplex = 0;
if (bmcr & BMCR_SPEED100)
speed = 100;
else
speed = 10;
}
tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_HaltReq, &tr->MAC_Ctl);
if (lp->fullduplex) {
tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_FullDup, &tr->MAC_Ctl);
} else {
tc_writel(tc_readl(&tr->MAC_Ctl) & ~MAC_FullDup, &tr->MAC_Ctl);
}
tc_writel(tc_readl(&tr->MAC_Ctl) & ~MAC_HaltReq, &tr->MAC_Ctl);
/* TX4939 PCFG.SPEEDn bit will be changed on NETDEV_CHANGE event. */
#ifndef NO_CHECK_CARRIER
/* TX4939 does not have EnLCarr */
if (lp->boardtype != TC35815_TX4939) {
#ifdef WORKAROUND_LOSTCAR
/* WORKAROUND: enable LostCrS only if half duplex operation */
if (!lp->fullduplex && lp->boardtype != TC35815_TX4939)
tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, &tr->Tx_Ctl);
#endif
}
#endif
lp->mii.full_duplex = lp->fullduplex;
}
static void tc35815_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmsr, bmcr, lpa;
int restart_timer = 0;
spin_lock_irq(&lp->lock);
lp->timer_ticks++;
switch (lp->timer_state) {
case arbwait:
/*
* Only allow for 5 ticks, thats 10 seconds and much too
* long to wait for arbitration to complete.
*/
/* TC35815 need more times... */
if (lp->timer_ticks >= 10) {
/* Enter force mode. */
if (!options.doforce) {
printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful,"
" cable probblem?\n", dev->name);
/* Try to restart the adaptor. */
tc35815_restart(dev);
goto out;
}
printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful,"
" trying force link mode\n", dev->name);
printk(KERN_DEBUG "%s: BMCR %x BMSR %x\n", dev->name,
tc_mdio_read(dev, pid, MII_BMCR),
tc_mdio_read(dev, pid, MII_BMSR));
bmcr = BMCR_SPEED100;
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
/*
* OK, seems we need do disable the transceiver
* for the first tick to make sure we get an
* accurate link state at the second tick.
*/
lp->timer_state = ltrywait;
lp->timer_ticks = 0;
restart_timer = 1;
} else {
/* Anything interesting happen? */
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
if (bmsr & BMSR_ANEGCOMPLETE) {
/* Just what we've been waiting for... */
tc35815_set_link_modes(dev);
/*
* Success, at least so far, advance our state
* engine.
*/
lp->timer_state = lupwait;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case lupwait:
/*
* Auto negotiation was successful and we are awaiting a
* link up status. I have decided to let this timer run
* forever until some sort of error is signalled, reporting
* a message to the user at 10 second intervals.
*/
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
if (bmsr & BMSR_LSTATUS) {
/*
* Wheee, it's up, display the link mode in use and put
* the timer to sleep.
*/
tc35815_display_link_mode(dev);
netif_carrier_on(dev);
#ifdef WORKAROUND_100HALF_PROMISC
/* delayed promiscuous enabling */
if (dev->flags & IFF_PROMISC)
tc35815_set_multicast_list(dev);
#endif
#if 1
lp->saved_lpa = tc_mdio_read(dev, pid, MII_LPA);
lp->timer_state = lcheck;
restart_timer = 1;
#else
lp->timer_state = asleep;
restart_timer = 0;
#endif
} else {
if (lp->timer_ticks >= 10) {
printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
"not completely up.\n", dev->name);
lp->timer_ticks = 0;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case ltrywait:
/*
* Making the timeout here too long can make it take
* annoyingly long to attempt all of the link mode
* permutations, but then again this is essentially
* error recovery code for the most part.
*/
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (lp->timer_ticks == 1) {
/*
* Re-enable transceiver, we'll re-enable the
* transceiver next tick, then check link state
* on the following tick.
*/
restart_timer = 1;
break;
}
if (lp->timer_ticks == 2) {
restart_timer = 1;
break;
}
if (bmsr & BMSR_LSTATUS) {
/* Force mode selection success. */
tc35815_display_forced_link_mode(dev);
netif_carrier_on(dev);
tc35815_set_link_modes(dev);
#ifdef WORKAROUND_100HALF_PROMISC
/* delayed promiscuous enabling */
if (dev->flags & IFF_PROMISC)
tc35815_set_multicast_list(dev);
#endif
#if 1
lp->saved_lpa = tc_mdio_read(dev, pid, MII_LPA);
lp->timer_state = lcheck;
restart_timer = 1;
#else
lp->timer_state = asleep;
restart_timer = 0;
#endif
} else {
if (lp->timer_ticks >= 4) { /* 6 seconds or so... */
int ret;
ret = tc35815_try_next_permutation(dev);
if (ret == -1) {
/*
* Aieee, tried them all, reset the
* chip and try all over again.
*/
printk(KERN_NOTICE "%s: Link down, "
"cable problem?\n",
dev->name);
/* Try to restart the adaptor. */
tc35815_restart(dev);
goto out;
}
lp->timer_ticks = 0;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case lcheck:
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
lpa = tc_mdio_read(dev, pid, MII_LPA);
if (bmcr & (BMCR_PDOWN | BMCR_ISOLATE | BMCR_RESET)) {
printk(KERN_ERR "%s: PHY down? (BMCR %x)\n", dev->name,
bmcr);
} else if ((lp->saved_lpa ^ lpa) &
(LPA_100FULL|LPA_100HALF|LPA_10FULL|LPA_10HALF)) {
printk(KERN_NOTICE "%s: link status changed"
" (BMCR %x LPA %x->%x)\n", dev->name,
bmcr, lp->saved_lpa, lpa);
} else {
/* go on */
restart_timer = 1;
break;
}
/* Try to restart the adaptor. */
tc35815_restart(dev);
goto out;
case asleep:
default:
/* Can't happens.... */
printk(KERN_ERR "%s: Aieee, link timer is asleep but we got "
"one anyways!\n", dev->name);
restart_timer = 0;
lp->timer_ticks = 0;
lp->timer_state = asleep; /* foo on you */
break;
}
if (restart_timer) {
lp->timer.expires = jiffies + msecs_to_jiffies(1200);
add_timer(&lp->timer);
}
out:
spin_unlock_irq(&lp->lock);
}
static void tc35815_start_auto_negotiation(struct net_device *dev,
struct ethtool_cmd *ep)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmsr, bmcr, advertize;
int timeout;
netif_carrier_off(dev);
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
advertize = tc_mdio_read(dev, pid, MII_ADVERTISE);
if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
if (options.speed || options.duplex) {
/* Advertise only specified configuration. */
advertize &= ~(ADVERTISE_10HALF |
ADVERTISE_10FULL |
ADVERTISE_100HALF |
ADVERTISE_100FULL);
if (options.speed != 10) {
if (options.duplex != 1)
advertize |= ADVERTISE_100FULL;
if (options.duplex != 2)
advertize |= ADVERTISE_100HALF;
}
if (options.speed != 100) {
if (options.duplex != 1)
advertize |= ADVERTISE_10FULL;
if (options.duplex != 2)
advertize |= ADVERTISE_10HALF;
}
if (options.speed == 100)
bmcr |= BMCR_SPEED100;
else if (options.speed == 10)
bmcr &= ~BMCR_SPEED100;
if (options.duplex == 2)
bmcr |= BMCR_FULLDPLX;
else if (options.duplex == 1)
bmcr &= ~BMCR_FULLDPLX;
} else {
/* Advertise everything we can support. */
if (bmsr & BMSR_10HALF)
advertize |= ADVERTISE_10HALF;
else
advertize &= ~ADVERTISE_10HALF;
if (bmsr & BMSR_10FULL)
advertize |= ADVERTISE_10FULL;
else
advertize &= ~ADVERTISE_10FULL;
if (bmsr & BMSR_100HALF)
advertize |= ADVERTISE_100HALF;
else
advertize &= ~ADVERTISE_100HALF;
if (bmsr & BMSR_100FULL)
advertize |= ADVERTISE_100FULL;
else
advertize &= ~ADVERTISE_100FULL;
}
tc_mdio_write(dev, pid, MII_ADVERTISE, advertize);
/* Enable Auto-Negotiation, this is usually on already... */
bmcr |= BMCR_ANENABLE;
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
/* Restart it to make sure it is going. */
bmcr |= BMCR_ANRESTART;
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
printk(KERN_DEBUG "%s: ADVERTISE %x BMCR %x\n", dev->name, advertize, bmcr);
/* BMCR_ANRESTART self clears when the process has begun. */
timeout = 64; /* More than enough. */
while (--timeout) {
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (!(bmcr & BMCR_ANRESTART))
break; /* got it. */
udelay(10);
}
if (!timeout) {
printk(KERN_ERR "%s: TC35815 would not start auto "
"negotiation BMCR=0x%04x\n",
dev->name, bmcr);
printk(KERN_NOTICE "%s: Performing force link "
"detection.\n", dev->name);
goto force_link;
} else {
printk(KERN_DEBUG "%s: auto negotiation started.\n", dev->name);
lp->timer_state = arbwait;
}
} else {
force_link:
/* Force the link up, trying first a particular mode.
* Either we are here at the request of ethtool or
* because the Happy Meal would not start to autoneg.
*/
/* Disable auto-negotiation in BMCR, enable the duplex and
* speed setting, init the timer state machine, and fire it off.
*/
if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
bmcr = BMCR_SPEED100;
} else {
if (ep->speed == SPEED_100)
bmcr = BMCR_SPEED100;
else
bmcr = 0;
if (ep->duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
}
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
/* OK, seems we need do disable the transceiver for the first
* tick to make sure we get an accurate link state at the
* second tick.
*/
lp->timer_state = ltrywait;
}
del_timer(&lp->timer);
lp->timer_ticks = 0;
lp->timer.expires = jiffies + msecs_to_jiffies(1200);
add_timer(&lp->timer);
}
static void tc35815_find_phy(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short id0;
/* find MII phy */
for (pid = 31; pid >= 0; pid--) {
id0 = tc_mdio_read(dev, pid, MII_BMSR);
if (id0 != 0xffff && id0 != 0x0000 &&
(id0 & BMSR_RESV) != (0xffff & BMSR_RESV) /* paranoia? */
) {
lp->phy_addr = pid;
break;
}
}
if (pid < 0) {
printk(KERN_ERR "%s: No MII Phy found.\n",
dev->name);
lp->phy_addr = pid = 0;
}
lp->mii_id[0] = tc_mdio_read(dev, pid, MII_PHYSID1);
lp->mii_id[1] = tc_mdio_read(dev, pid, MII_PHYSID2);
if (netif_msg_hw(lp))
printk(KERN_INFO "%s: PHY(%02x) ID %04x %04x\n", dev->name,
pid, lp->mii_id[0], lp->mii_id[1]);
}
static void tc35815_phy_chip_init(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmcr;
struct ethtool_cmd ecmd, *ep;
/* dis-isolate if needed. */
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (bmcr & BMCR_ISOLATE) {
int count = 32;
printk(KERN_DEBUG "%s: unisolating...", dev->name);
tc_mdio_write(dev, pid, MII_BMCR, bmcr & ~BMCR_ISOLATE);
while (--count) {
if (!(tc_mdio_read(dev, pid, MII_BMCR) & BMCR_ISOLATE))
break;
udelay(20);
}
printk(" %s.\n", count ? "done" : "failed");
}
if (options.speed && options.duplex) {
ecmd.autoneg = AUTONEG_DISABLE;
ecmd.speed = options.speed == 10 ? SPEED_10 : SPEED_100;
ecmd.duplex = options.duplex == 1 ? DUPLEX_HALF : DUPLEX_FULL;
ep = &ecmd;
} else {
ep = NULL;
}
tc35815_start_auto_negotiation(dev, ep);
}
static void tc35815_chip_reset(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
/* reset the controller */
tc_writel(MAC_Reset, &tr->MAC_Ctl);
udelay(4); /* 3200ns */
i = 0;
while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
if (i++ > 100) {
printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
break;
}
mdelay(1);
}
tc_writel(0, &tr->MAC_Ctl);
/* initialize registers to default value */
tc_writel(0, &tr->DMA_Ctl);
tc_writel(0, &tr->TxThrsh);
tc_writel(0, &tr->TxPollCtr);
tc_writel(0, &tr->RxFragSize);
tc_writel(0, &tr->Int_En);
tc_writel(0, &tr->FDA_Bas);
tc_writel(0, &tr->FDA_Lim);
tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
tc_writel(0, &tr->CAM_Ctl);
tc_writel(0, &tr->Tx_Ctl);
tc_writel(0, &tr->Rx_Ctl);
tc_writel(0, &tr->CAM_Ena);
(void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
/* initialize internal SRAM */
tc_writel(DMA_TestMode, &tr->DMA_Ctl);
for (i = 0; i < 0x1000; i += 4) {
tc_writel(i, &tr->CAM_Adr);
tc_writel(0, &tr->CAM_Data);
}
tc_writel(0, &tr->DMA_Ctl);
}
static void tc35815_chip_init(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
unsigned long txctl = TX_CTL_CMD;
tc35815_phy_chip_init(dev);
/* load station address to CAM */
tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
/* Enable CAM (broadcast and unicast) */
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
if (HAVE_DMA_RXALIGN(lp))
tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
else
tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
#ifdef TC35815_USE_PACKEDBUFFER
tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */
#else
tc_writel(ETH_ZLEN, &tr->RxFragSize);
#endif
tc_writel(0, &tr->TxPollCtr); /* Batch mode */
tc_writel(TX_THRESHOLD, &tr->TxThrsh);
tc_writel(INT_EN_CMD, &tr->Int_En);
/* set queues */
tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
&tr->FDA_Lim);
/*
* Activation method:
* First, enable the MAC Transmitter and the DMA Receive circuits.
* Then enable the DMA Transmitter and the MAC Receive circuits.
*/
tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
/* start MAC transmitter */
#ifndef NO_CHECK_CARRIER
/* TX4939 does not have EnLCarr */
if (lp->boardtype == TC35815_TX4939)
txctl &= ~Tx_EnLCarr;
#ifdef WORKAROUND_LOSTCAR
/* WORKAROUND: ignore LostCrS in full duplex operation */
if ((lp->timer_state != asleep && lp->timer_state != lcheck) ||
lp->fullduplex)
txctl &= ~Tx_EnLCarr;
#endif
#endif /* !NO_CHECK_CARRIER */
#ifdef GATHER_TXINT
txctl &= ~Tx_EnComp; /* disable global tx completion int. */
#endif
tc_writel(txctl, &tr->Tx_Ctl);
}
#ifdef CONFIG_PM
static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = dev->priv;
unsigned long flags;
pci_save_state(pdev);
if (!netif_running(dev))
return 0;
netif_device_detach(dev);
spin_lock_irqsave(&lp->lock, flags);
del_timer(&lp->timer); /* Kill if running */
tc35815_chip_reset(dev);
spin_unlock_irqrestore(&lp->lock, flags);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int tc35815_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = dev->priv;
unsigned long flags;
pci_restore_state(pdev);
if (!netif_running(dev))
return 0;
pci_set_power_state(pdev, PCI_D0);
spin_lock_irqsave(&lp->lock, flags);
tc35815_restart(dev);
spin_unlock_irqrestore(&lp->lock, flags);
netif_device_attach(dev);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver tc35815_pci_driver = {
.name = MODNAME,
.id_table = tc35815_pci_tbl,
.probe = tc35815_init_one,
.remove = __devexit_p(tc35815_remove_one),
#ifdef CONFIG_PM
.suspend = tc35815_suspend,
.resume = tc35815_resume,
#endif
};
module_param_named(speed, options.speed, int, 0);
MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
module_param_named(duplex, options.duplex, int, 0);
MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
module_param_named(doforce, options.doforce, int, 0);
MODULE_PARM_DESC(doforce, "try force link mode if auto-negotiation failed");
static int __init tc35815_init_module(void)
{
return pci_register_driver(&tc35815_pci_driver);
}
static void __exit tc35815_cleanup_module(void)
{
pci_unregister_driver(&tc35815_pci_driver);
}
module_init(tc35815_init_module);
module_exit(tc35815_cleanup_module);
MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
MODULE_LICENSE("GPL");