kernel-fxtec-pro1x/drivers/net/netxen/netxen_nic_hw.c

1971 lines
50 KiB
C
Raw Normal View History

/*
* Copyright (C) 2003 - 2009 NetXen, Inc.
* Copyright (C) 2009 - QLogic Corporation.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution
* in the file called "COPYING".
*
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include "netxen_nic.h"
#include "netxen_nic_hw.h"
#include <net/ip.h>
#define MASK(n) ((1ULL<<(n))-1)
#define MN_WIN(addr) (((addr & 0x1fc0000) >> 1) | ((addr >> 25) & 0x3ff))
#define OCM_WIN(addr) (((addr & 0x1ff0000) >> 1) | ((addr >> 25) & 0x3ff))
#define MS_WIN(addr) (addr & 0x0ffc0000)
#define GET_MEM_OFFS_2M(addr) (addr & MASK(18))
#define CRB_BLK(off) ((off >> 20) & 0x3f)
#define CRB_SUBBLK(off) ((off >> 16) & 0xf)
#define CRB_WINDOW_2M (0x130060)
#define CRB_HI(off) ((crb_hub_agt[CRB_BLK(off)] << 20) | ((off) & 0xf0000))
#define CRB_INDIRECT_2M (0x1e0000UL)
static void netxen_nic_io_write_128M(struct netxen_adapter *adapter,
void __iomem *addr, u32 data);
static u32 netxen_nic_io_read_128M(struct netxen_adapter *adapter,
void __iomem *addr);
#ifndef readq
static inline u64 readq(void __iomem *addr)
{
return readl(addr) | (((u64) readl(addr + 4)) << 32LL);
}
#endif
#ifndef writeq
static inline void writeq(u64 val, void __iomem *addr)
{
writel(((u32) (val)), (addr));
writel(((u32) (val >> 32)), (addr + 4));
}
#endif
#define PCI_OFFSET_FIRST_RANGE(adapter, off) \
((adapter)->ahw.pci_base0 + (off))
#define PCI_OFFSET_SECOND_RANGE(adapter, off) \
((adapter)->ahw.pci_base1 + (off) - SECOND_PAGE_GROUP_START)
#define PCI_OFFSET_THIRD_RANGE(adapter, off) \
((adapter)->ahw.pci_base2 + (off) - THIRD_PAGE_GROUP_START)
static void __iomem *pci_base_offset(struct netxen_adapter *adapter,
unsigned long off)
{
if (ADDR_IN_RANGE(off, FIRST_PAGE_GROUP_START, FIRST_PAGE_GROUP_END))
return PCI_OFFSET_FIRST_RANGE(adapter, off);
if (ADDR_IN_RANGE(off, SECOND_PAGE_GROUP_START, SECOND_PAGE_GROUP_END))
return PCI_OFFSET_SECOND_RANGE(adapter, off);
if (ADDR_IN_RANGE(off, THIRD_PAGE_GROUP_START, THIRD_PAGE_GROUP_END))
return PCI_OFFSET_THIRD_RANGE(adapter, off);
return NULL;
}
static crb_128M_2M_block_map_t
crb_128M_2M_map[64] __cacheline_aligned_in_smp = {
{{{0, 0, 0, 0} } }, /* 0: PCI */
{{{1, 0x0100000, 0x0102000, 0x120000}, /* 1: PCIE */
{1, 0x0110000, 0x0120000, 0x130000},
{1, 0x0120000, 0x0122000, 0x124000},
{1, 0x0130000, 0x0132000, 0x126000},
{1, 0x0140000, 0x0142000, 0x128000},
{1, 0x0150000, 0x0152000, 0x12a000},
{1, 0x0160000, 0x0170000, 0x110000},
{1, 0x0170000, 0x0172000, 0x12e000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x01e0000, 0x01e0800, 0x122000},
{0, 0x0000000, 0x0000000, 0x000000} } },
{{{1, 0x0200000, 0x0210000, 0x180000} } },/* 2: MN */
{{{0, 0, 0, 0} } }, /* 3: */
{{{1, 0x0400000, 0x0401000, 0x169000} } },/* 4: P2NR1 */
{{{1, 0x0500000, 0x0510000, 0x140000} } },/* 5: SRE */
{{{1, 0x0600000, 0x0610000, 0x1c0000} } },/* 6: NIU */
{{{1, 0x0700000, 0x0704000, 0x1b8000} } },/* 7: QM */
{{{1, 0x0800000, 0x0802000, 0x170000}, /* 8: SQM0 */
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x08f0000, 0x08f2000, 0x172000} } },
{{{1, 0x0900000, 0x0902000, 0x174000}, /* 9: SQM1*/
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x09f0000, 0x09f2000, 0x176000} } },
{{{0, 0x0a00000, 0x0a02000, 0x178000}, /* 10: SQM2*/
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x0af0000, 0x0af2000, 0x17a000} } },
{{{0, 0x0b00000, 0x0b02000, 0x17c000}, /* 11: SQM3*/
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{1, 0x0bf0000, 0x0bf2000, 0x17e000} } },
{{{1, 0x0c00000, 0x0c04000, 0x1d4000} } },/* 12: I2Q */
{{{1, 0x0d00000, 0x0d04000, 0x1a4000} } },/* 13: TMR */
{{{1, 0x0e00000, 0x0e04000, 0x1a0000} } },/* 14: ROMUSB */
{{{1, 0x0f00000, 0x0f01000, 0x164000} } },/* 15: PEG4 */
{{{0, 0x1000000, 0x1004000, 0x1a8000} } },/* 16: XDMA */
{{{1, 0x1100000, 0x1101000, 0x160000} } },/* 17: PEG0 */
{{{1, 0x1200000, 0x1201000, 0x161000} } },/* 18: PEG1 */
{{{1, 0x1300000, 0x1301000, 0x162000} } },/* 19: PEG2 */
{{{1, 0x1400000, 0x1401000, 0x163000} } },/* 20: PEG3 */
{{{1, 0x1500000, 0x1501000, 0x165000} } },/* 21: P2ND */
{{{1, 0x1600000, 0x1601000, 0x166000} } },/* 22: P2NI */
{{{0, 0, 0, 0} } }, /* 23: */
{{{0, 0, 0, 0} } }, /* 24: */
{{{0, 0, 0, 0} } }, /* 25: */
{{{0, 0, 0, 0} } }, /* 26: */
{{{0, 0, 0, 0} } }, /* 27: */
{{{0, 0, 0, 0} } }, /* 28: */
{{{1, 0x1d00000, 0x1d10000, 0x190000} } },/* 29: MS */
{{{1, 0x1e00000, 0x1e01000, 0x16a000} } },/* 30: P2NR2 */
{{{1, 0x1f00000, 0x1f10000, 0x150000} } },/* 31: EPG */
{{{0} } }, /* 32: PCI */
{{{1, 0x2100000, 0x2102000, 0x120000}, /* 33: PCIE */
{1, 0x2110000, 0x2120000, 0x130000},
{1, 0x2120000, 0x2122000, 0x124000},
{1, 0x2130000, 0x2132000, 0x126000},
{1, 0x2140000, 0x2142000, 0x128000},
{1, 0x2150000, 0x2152000, 0x12a000},
{1, 0x2160000, 0x2170000, 0x110000},
{1, 0x2170000, 0x2172000, 0x12e000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000},
{0, 0x0000000, 0x0000000, 0x000000} } },
{{{1, 0x2200000, 0x2204000, 0x1b0000} } },/* 34: CAM */
{{{0} } }, /* 35: */
{{{0} } }, /* 36: */
{{{0} } }, /* 37: */
{{{0} } }, /* 38: */
{{{0} } }, /* 39: */
{{{1, 0x2800000, 0x2804000, 0x1a4000} } },/* 40: TMR */
{{{1, 0x2900000, 0x2901000, 0x16b000} } },/* 41: P2NR3 */
{{{1, 0x2a00000, 0x2a00400, 0x1ac400} } },/* 42: RPMX1 */
{{{1, 0x2b00000, 0x2b00400, 0x1ac800} } },/* 43: RPMX2 */
{{{1, 0x2c00000, 0x2c00400, 0x1acc00} } },/* 44: RPMX3 */
{{{1, 0x2d00000, 0x2d00400, 0x1ad000} } },/* 45: RPMX4 */
{{{1, 0x2e00000, 0x2e00400, 0x1ad400} } },/* 46: RPMX5 */
{{{1, 0x2f00000, 0x2f00400, 0x1ad800} } },/* 47: RPMX6 */
{{{1, 0x3000000, 0x3000400, 0x1adc00} } },/* 48: RPMX7 */
{{{0, 0x3100000, 0x3104000, 0x1a8000} } },/* 49: XDMA */
{{{1, 0x3200000, 0x3204000, 0x1d4000} } },/* 50: I2Q */
{{{1, 0x3300000, 0x3304000, 0x1a0000} } },/* 51: ROMUSB */
{{{0} } }, /* 52: */
{{{1, 0x3500000, 0x3500400, 0x1ac000} } },/* 53: RPMX0 */
{{{1, 0x3600000, 0x3600400, 0x1ae000} } },/* 54: RPMX8 */
{{{1, 0x3700000, 0x3700400, 0x1ae400} } },/* 55: RPMX9 */
{{{1, 0x3800000, 0x3804000, 0x1d0000} } },/* 56: OCM0 */
{{{1, 0x3900000, 0x3904000, 0x1b4000} } },/* 57: CRYPTO */
{{{1, 0x3a00000, 0x3a04000, 0x1d8000} } },/* 58: SMB */
{{{0} } }, /* 59: I2C0 */
{{{0} } }, /* 60: I2C1 */
{{{1, 0x3d00000, 0x3d04000, 0x1d8000} } },/* 61: LPC */
{{{1, 0x3e00000, 0x3e01000, 0x167000} } },/* 62: P2NC */
{{{1, 0x3f00000, 0x3f01000, 0x168000} } } /* 63: P2NR0 */
};
/*
* top 12 bits of crb internal address (hub, agent)
*/
static unsigned crb_hub_agt[64] =
{
0,
NETXEN_HW_CRB_HUB_AGT_ADR_PS,
NETXEN_HW_CRB_HUB_AGT_ADR_MN,
NETXEN_HW_CRB_HUB_AGT_ADR_MS,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_SRE,
NETXEN_HW_CRB_HUB_AGT_ADR_NIU,
NETXEN_HW_CRB_HUB_AGT_ADR_QMN,
NETXEN_HW_CRB_HUB_AGT_ADR_SQN0,
NETXEN_HW_CRB_HUB_AGT_ADR_SQN1,
NETXEN_HW_CRB_HUB_AGT_ADR_SQN2,
NETXEN_HW_CRB_HUB_AGT_ADR_SQN3,
NETXEN_HW_CRB_HUB_AGT_ADR_I2Q,
NETXEN_HW_CRB_HUB_AGT_ADR_TIMR,
NETXEN_HW_CRB_HUB_AGT_ADR_ROMUSB,
NETXEN_HW_CRB_HUB_AGT_ADR_PGN4,
NETXEN_HW_CRB_HUB_AGT_ADR_XDMA,
NETXEN_HW_CRB_HUB_AGT_ADR_PGN0,
NETXEN_HW_CRB_HUB_AGT_ADR_PGN1,
NETXEN_HW_CRB_HUB_AGT_ADR_PGN2,
NETXEN_HW_CRB_HUB_AGT_ADR_PGN3,
NETXEN_HW_CRB_HUB_AGT_ADR_PGND,
NETXEN_HW_CRB_HUB_AGT_ADR_PGNI,
NETXEN_HW_CRB_HUB_AGT_ADR_PGS0,
NETXEN_HW_CRB_HUB_AGT_ADR_PGS1,
NETXEN_HW_CRB_HUB_AGT_ADR_PGS2,
NETXEN_HW_CRB_HUB_AGT_ADR_PGS3,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_PGSI,
NETXEN_HW_CRB_HUB_AGT_ADR_SN,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_EG,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_PS,
NETXEN_HW_CRB_HUB_AGT_ADR_CAM,
0,
0,
0,
0,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_TIMR,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX1,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX2,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX3,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX4,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX5,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX6,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX7,
NETXEN_HW_CRB_HUB_AGT_ADR_XDMA,
NETXEN_HW_CRB_HUB_AGT_ADR_I2Q,
NETXEN_HW_CRB_HUB_AGT_ADR_ROMUSB,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX0,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX8,
NETXEN_HW_CRB_HUB_AGT_ADR_RPMX9,
NETXEN_HW_CRB_HUB_AGT_ADR_OCM0,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_SMB,
NETXEN_HW_CRB_HUB_AGT_ADR_I2C0,
NETXEN_HW_CRB_HUB_AGT_ADR_I2C1,
0,
NETXEN_HW_CRB_HUB_AGT_ADR_PGNC,
0,
};
/* PCI Windowing for DDR regions. */
#define NETXEN_WINDOW_ONE 0x2000000 /*CRB Window: bit 25 of CRB address */
#define NETXEN_PCIE_SEM_TIMEOUT 10000
static int netxen_nic_set_mtu_xgb(struct netxen_adapter *adapter, int new_mtu);
int
netxen_pcie_sem_lock(struct netxen_adapter *adapter, int sem, u32 id_reg)
{
int done = 0, timeout = 0;
while (!done) {
done = NXRD32(adapter, NETXEN_PCIE_REG(PCIE_SEM_LOCK(sem)));
if (done == 1)
break;
if (++timeout >= NETXEN_PCIE_SEM_TIMEOUT)
return -EIO;
msleep(1);
}
if (id_reg)
NXWR32(adapter, id_reg, adapter->portnum);
return 0;
}
void
netxen_pcie_sem_unlock(struct netxen_adapter *adapter, int sem)
{
NXRD32(adapter, NETXEN_PCIE_REG(PCIE_SEM_UNLOCK(sem)));
}
static int netxen_niu_xg_init_port(struct netxen_adapter *adapter, int port)
{
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
NXWR32(adapter, NETXEN_NIU_XGE_CONFIG_1+(0x10000*port), 0x1447);
NXWR32(adapter, NETXEN_NIU_XGE_CONFIG_0+(0x10000*port), 0x5);
}
return 0;
}
/* Disable an XG interface */
static int netxen_niu_disable_xg_port(struct netxen_adapter *adapter)
{
__u32 mac_cfg;
u32 port = adapter->physical_port;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
return 0;
if (port > NETXEN_NIU_MAX_XG_PORTS)
return -EINVAL;
mac_cfg = 0;
if (NXWR32(adapter,
NETXEN_NIU_XGE_CONFIG_0 + (0x10000 * port), mac_cfg))
return -EIO;
return 0;
}
#define NETXEN_UNICAST_ADDR(port, index) \
(NETXEN_UNICAST_ADDR_BASE+(port*32)+(index*8))
#define NETXEN_MCAST_ADDR(port, index) \
(NETXEN_MULTICAST_ADDR_BASE+(port*0x80)+(index*8))
#define MAC_HI(addr) \
((addr[2] << 16) | (addr[1] << 8) | (addr[0]))
#define MAC_LO(addr) \
((addr[5] << 16) | (addr[4] << 8) | (addr[3]))
static int netxen_p2_nic_set_promisc(struct netxen_adapter *adapter, u32 mode)
{
u32 mac_cfg;
u32 cnt = 0;
__u32 reg = 0x0200;
u32 port = adapter->physical_port;
u16 board_type = adapter->ahw.board_type;
if (port > NETXEN_NIU_MAX_XG_PORTS)
return -EINVAL;
mac_cfg = NXRD32(adapter, NETXEN_NIU_XGE_CONFIG_0 + (0x10000 * port));
mac_cfg &= ~0x4;
NXWR32(adapter, NETXEN_NIU_XGE_CONFIG_0 + (0x10000 * port), mac_cfg);
if ((board_type == NETXEN_BRDTYPE_P2_SB31_10G_IMEZ) ||
(board_type == NETXEN_BRDTYPE_P2_SB31_10G_HMEZ))
reg = (0x20 << port);
NXWR32(adapter, NETXEN_NIU_FRAME_COUNT_SELECT, reg);
mdelay(10);
while (NXRD32(adapter, NETXEN_NIU_FRAME_COUNT) && ++cnt < 20)
mdelay(10);
if (cnt < 20) {
reg = NXRD32(adapter,
NETXEN_NIU_XGE_CONFIG_1 + (0x10000 * port));
if (mode == NETXEN_NIU_PROMISC_MODE)
reg = (reg | 0x2000UL);
else
reg = (reg & ~0x2000UL);
if (mode == NETXEN_NIU_ALLMULTI_MODE)
reg = (reg | 0x1000UL);
else
reg = (reg & ~0x1000UL);
NXWR32(adapter,
NETXEN_NIU_XGE_CONFIG_1 + (0x10000 * port), reg);
}
mac_cfg |= 0x4;
NXWR32(adapter, NETXEN_NIU_XGE_CONFIG_0 + (0x10000 * port), mac_cfg);
return 0;
}
static int netxen_p2_nic_set_mac_addr(struct netxen_adapter *adapter, u8 *addr)
{
u32 mac_hi, mac_lo;
u32 reg_hi, reg_lo;
u8 phy = adapter->physical_port;
if (phy >= NETXEN_NIU_MAX_XG_PORTS)
return -EINVAL;
mac_lo = ((u32)addr[0] << 16) | ((u32)addr[1] << 24);
mac_hi = addr[2] | ((u32)addr[3] << 8) |
((u32)addr[4] << 16) | ((u32)addr[5] << 24);
reg_lo = NETXEN_NIU_XGE_STATION_ADDR_0_1 + (0x10000 * phy);
reg_hi = NETXEN_NIU_XGE_STATION_ADDR_0_HI + (0x10000 * phy);
/* write twice to flush */
if (NXWR32(adapter, reg_lo, mac_lo) || NXWR32(adapter, reg_hi, mac_hi))
return -EIO;
if (NXWR32(adapter, reg_lo, mac_lo) || NXWR32(adapter, reg_hi, mac_hi))
return -EIO;
return 0;
}
static int
netxen_nic_enable_mcast_filter(struct netxen_adapter *adapter)
{
u32 val = 0;
u16 port = adapter->physical_port;
u8 *addr = adapter->mac_addr;
if (adapter->mc_enabled)
return 0;
val = NXRD32(adapter, NETXEN_MAC_ADDR_CNTL_REG);
val |= (1UL << (28+port));
NXWR32(adapter, NETXEN_MAC_ADDR_CNTL_REG, val);
/* add broadcast addr to filter */
val = 0xffffff;
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 0), val);
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 0)+4, val);
/* add station addr to filter */
val = MAC_HI(addr);
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 1), val);
val = MAC_LO(addr);
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 1)+4, val);
adapter->mc_enabled = 1;
return 0;
}
static int
netxen_nic_disable_mcast_filter(struct netxen_adapter *adapter)
{
u32 val = 0;
u16 port = adapter->physical_port;
u8 *addr = adapter->mac_addr;
if (!adapter->mc_enabled)
return 0;
val = NXRD32(adapter, NETXEN_MAC_ADDR_CNTL_REG);
val &= ~(1UL << (28+port));
NXWR32(adapter, NETXEN_MAC_ADDR_CNTL_REG, val);
val = MAC_HI(addr);
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 0), val);
val = MAC_LO(addr);
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 0)+4, val);
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 1), 0);
NXWR32(adapter, NETXEN_UNICAST_ADDR(port, 1)+4, 0);
adapter->mc_enabled = 0;
return 0;
}
static int
netxen_nic_set_mcast_addr(struct netxen_adapter *adapter,
int index, u8 *addr)
{
u32 hi = 0, lo = 0;
u16 port = adapter->physical_port;
lo = MAC_LO(addr);
hi = MAC_HI(addr);
NXWR32(adapter, NETXEN_MCAST_ADDR(port, index), hi);
NXWR32(adapter, NETXEN_MCAST_ADDR(port, index)+4, lo);
return 0;
}
static void netxen_p2_nic_set_multi(struct net_device *netdev)
{
struct netxen_adapter *adapter = netdev_priv(netdev);
struct netdev_hw_addr *ha;
u8 null_addr[6];
int i;
memset(null_addr, 0, 6);
if (netdev->flags & IFF_PROMISC) {
adapter->set_promisc(adapter,
NETXEN_NIU_PROMISC_MODE);
/* Full promiscuous mode */
netxen_nic_disable_mcast_filter(adapter);
return;
}
if (netdev_mc_empty(netdev)) {
adapter->set_promisc(adapter,
NETXEN_NIU_NON_PROMISC_MODE);
netxen_nic_disable_mcast_filter(adapter);
return;
}
adapter->set_promisc(adapter, NETXEN_NIU_ALLMULTI_MODE);
if (netdev->flags & IFF_ALLMULTI ||
netdev_mc_count(netdev) > adapter->max_mc_count) {
netxen_nic_disable_mcast_filter(adapter);
return;
}
netxen_nic_enable_mcast_filter(adapter);
i = 0;
netdev_for_each_mc_addr(ha, netdev)
netxen_nic_set_mcast_addr(adapter, i++, ha->addr);
/* Clear out remaining addresses */
while (i < adapter->max_mc_count)
netxen_nic_set_mcast_addr(adapter, i++, null_addr);
}
static int
netxen_send_cmd_descs(struct netxen_adapter *adapter,
struct cmd_desc_type0 *cmd_desc_arr, int nr_desc)
{
u32 i, producer, consumer;
struct netxen_cmd_buffer *pbuf;
struct cmd_desc_type0 *cmd_desc;
struct nx_host_tx_ring *tx_ring;
i = 0;
if (adapter->is_up != NETXEN_ADAPTER_UP_MAGIC)
return -EIO;
tx_ring = adapter->tx_ring;
__netif_tx_lock_bh(tx_ring->txq);
producer = tx_ring->producer;
consumer = tx_ring->sw_consumer;
if (nr_desc >= netxen_tx_avail(tx_ring)) {
netif_tx_stop_queue(tx_ring->txq);
smp_mb();
if (netxen_tx_avail(tx_ring) > nr_desc) {
if (netxen_tx_avail(tx_ring) > TX_STOP_THRESH)
netif_tx_wake_queue(tx_ring->txq);
} else {
__netif_tx_unlock_bh(tx_ring->txq);
return -EBUSY;
}
}
do {
cmd_desc = &cmd_desc_arr[i];
pbuf = &tx_ring->cmd_buf_arr[producer];
pbuf->skb = NULL;
pbuf->frag_count = 0;
memcpy(&tx_ring->desc_head[producer],
&cmd_desc_arr[i], sizeof(struct cmd_desc_type0));
producer = get_next_index(producer, tx_ring->num_desc);
i++;
} while (i != nr_desc);
tx_ring->producer = producer;
netxen_nic_update_cmd_producer(adapter, tx_ring);
__netif_tx_unlock_bh(tx_ring->txq);
return 0;
}
static int
nx_p3_sre_macaddr_change(struct netxen_adapter *adapter, u8 *addr, unsigned op)
{
nx_nic_req_t req;
nx_mac_req_t *mac_req;
u64 word;
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_NIC_REQUEST << 23);
word = NX_MAC_EVENT | ((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word);
mac_req = (nx_mac_req_t *)&req.words[0];
mac_req->op = op;
memcpy(mac_req->mac_addr, addr, 6);
return netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
}
static int nx_p3_nic_add_mac(struct netxen_adapter *adapter,
const u8 *addr, struct list_head *del_list)
{
struct list_head *head;
nx_mac_list_t *cur;
/* look up if already exists */
list_for_each(head, del_list) {
cur = list_entry(head, nx_mac_list_t, list);
if (memcmp(addr, cur->mac_addr, ETH_ALEN) == 0) {
list_move_tail(head, &adapter->mac_list);
return 0;
}
}
cur = kzalloc(sizeof(nx_mac_list_t), GFP_ATOMIC);
if (cur == NULL) {
printk(KERN_ERR "%s: failed to add mac address filter\n",
adapter->netdev->name);
return -ENOMEM;
}
memcpy(cur->mac_addr, addr, ETH_ALEN);
list_add_tail(&cur->list, &adapter->mac_list);
return nx_p3_sre_macaddr_change(adapter,
cur->mac_addr, NETXEN_MAC_ADD);
}
static void netxen_p3_nic_set_multi(struct net_device *netdev)
{
struct netxen_adapter *adapter = netdev_priv(netdev);
struct netdev_hw_addr *ha;
static const u8 bcast_addr[ETH_ALEN] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
u32 mode = VPORT_MISS_MODE_DROP;
LIST_HEAD(del_list);
struct list_head *head;
nx_mac_list_t *cur;
if (adapter->is_up != NETXEN_ADAPTER_UP_MAGIC)
return;
list_splice_tail_init(&adapter->mac_list, &del_list);
nx_p3_nic_add_mac(adapter, adapter->mac_addr, &del_list);
nx_p3_nic_add_mac(adapter, bcast_addr, &del_list);
if (netdev->flags & IFF_PROMISC) {
mode = VPORT_MISS_MODE_ACCEPT_ALL;
goto send_fw_cmd;
}
if ((netdev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(netdev) > adapter->max_mc_count)) {
mode = VPORT_MISS_MODE_ACCEPT_MULTI;
goto send_fw_cmd;
}
if (!netdev_mc_empty(netdev)) {
netdev_for_each_mc_addr(ha, netdev)
nx_p3_nic_add_mac(adapter, ha->addr, &del_list);
}
send_fw_cmd:
adapter->set_promisc(adapter, mode);
head = &del_list;
while (!list_empty(head)) {
cur = list_entry(head->next, nx_mac_list_t, list);
nx_p3_sre_macaddr_change(adapter,
cur->mac_addr, NETXEN_MAC_DEL);
list_del(&cur->list);
kfree(cur);
}
}
static int netxen_p3_nic_set_promisc(struct netxen_adapter *adapter, u32 mode)
{
nx_nic_req_t req;
u64 word;
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word = NX_NIC_H2C_OPCODE_PROXY_SET_VPORT_MISS_MODE |
((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word);
req.words[0] = cpu_to_le64(mode);
return netxen_send_cmd_descs(adapter,
(struct cmd_desc_type0 *)&req, 1);
}
void netxen_p3_free_mac_list(struct netxen_adapter *adapter)
{
nx_mac_list_t *cur;
struct list_head *head = &adapter->mac_list;
while (!list_empty(head)) {
cur = list_entry(head->next, nx_mac_list_t, list);
nx_p3_sre_macaddr_change(adapter,
cur->mac_addr, NETXEN_MAC_DEL);
list_del(&cur->list);
kfree(cur);
}
}
static int netxen_p3_nic_set_mac_addr(struct netxen_adapter *adapter, u8 *addr)
{
/* assuming caller has already copied new addr to netdev */
netxen_p3_nic_set_multi(adapter->netdev);
return 0;
}
#define NETXEN_CONFIG_INTR_COALESCE 3
/*
* Send the interrupt coalescing parameter set by ethtool to the card.
*/
int netxen_config_intr_coalesce(struct netxen_adapter *adapter)
{
nx_nic_req_t req;
u64 word[6];
int rv, i;
memset(&req, 0, sizeof(nx_nic_req_t));
memset(word, 0, sizeof(word));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word[0] = NETXEN_CONFIG_INTR_COALESCE | ((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word[0]);
memcpy(&word[0], &adapter->coal, sizeof(adapter->coal));
for (i = 0; i < 6; i++)
req.words[i] = cpu_to_le64(word[i]);
rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
if (rv != 0) {
printk(KERN_ERR "ERROR. Could not send "
"interrupt coalescing parameters\n");
}
return rv;
}
int netxen_config_hw_lro(struct netxen_adapter *adapter, int enable)
{
nx_nic_req_t req;
u64 word;
int rv = 0;
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word = NX_NIC_H2C_OPCODE_CONFIG_HW_LRO | ((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word);
req.words[0] = cpu_to_le64(enable);
rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
if (rv != 0) {
printk(KERN_ERR "ERROR. Could not send "
"configure hw lro request\n");
}
return rv;
}
int netxen_config_bridged_mode(struct netxen_adapter *adapter, int enable)
{
nx_nic_req_t req;
u64 word;
int rv = 0;
if (!!(adapter->flags & NETXEN_NIC_BRIDGE_ENABLED) == enable)
return rv;
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word = NX_NIC_H2C_OPCODE_CONFIG_BRIDGING |
((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word);
req.words[0] = cpu_to_le64(enable);
rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
if (rv != 0) {
printk(KERN_ERR "ERROR. Could not send "
"configure bridge mode request\n");
}
adapter->flags ^= NETXEN_NIC_BRIDGE_ENABLED;
return rv;
}
#define RSS_HASHTYPE_IP_TCP 0x3
int netxen_config_rss(struct netxen_adapter *adapter, int enable)
{
nx_nic_req_t req;
u64 word;
int i, rv;
static const u64 key[] = {
0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
0x255b0ec26d5a56daULL
};
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word = NX_NIC_H2C_OPCODE_CONFIG_RSS | ((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word);
/*
* RSS request:
* bits 3-0: hash_method
* 5-4: hash_type_ipv4
* 7-6: hash_type_ipv6
* 8: enable
* 9: use indirection table
* 47-10: reserved
* 63-48: indirection table mask
*/
word = ((u64)(RSS_HASHTYPE_IP_TCP & 0x3) << 4) |
((u64)(RSS_HASHTYPE_IP_TCP & 0x3) << 6) |
((u64)(enable & 0x1) << 8) |
((0x7ULL) << 48);
req.words[0] = cpu_to_le64(word);
for (i = 0; i < ARRAY_SIZE(key); i++)
req.words[i+1] = cpu_to_le64(key[i]);
rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
if (rv != 0) {
printk(KERN_ERR "%s: could not configure RSS\n",
adapter->netdev->name);
}
return rv;
}
int netxen_config_ipaddr(struct netxen_adapter *adapter, u32 ip, int cmd)
{
nx_nic_req_t req;
u64 word;
int rv;
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word = NX_NIC_H2C_OPCODE_CONFIG_IPADDR | ((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word);
req.words[0] = cpu_to_le64(cmd);
req.words[1] = cpu_to_le64(ip);
rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
if (rv != 0) {
printk(KERN_ERR "%s: could not notify %s IP 0x%x reuqest\n",
adapter->netdev->name,
(cmd == NX_IP_UP) ? "Add" : "Remove", ip);
}
return rv;
}
int netxen_linkevent_request(struct netxen_adapter *adapter, int enable)
{
nx_nic_req_t req;
u64 word;
int rv;
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word = NX_NIC_H2C_OPCODE_GET_LINKEVENT | ((u64)adapter->portnum << 16);
req.req_hdr = cpu_to_le64(word);
req.words[0] = cpu_to_le64(enable | (enable << 8));
rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
if (rv != 0) {
printk(KERN_ERR "%s: could not configure link notification\n",
adapter->netdev->name);
}
return rv;
}
int netxen_send_lro_cleanup(struct netxen_adapter *adapter)
{
nx_nic_req_t req;
u64 word;
int rv;
memset(&req, 0, sizeof(nx_nic_req_t));
req.qhdr = cpu_to_le64(NX_HOST_REQUEST << 23);
word = NX_NIC_H2C_OPCODE_LRO_REQUEST |
((u64)adapter->portnum << 16) |
((u64)NX_NIC_LRO_REQUEST_CLEANUP << 56) ;
req.req_hdr = cpu_to_le64(word);
rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)&req, 1);
if (rv != 0) {
printk(KERN_ERR "%s: could not cleanup lro flows\n",
adapter->netdev->name);
}
return rv;
}
/*
* netxen_nic_change_mtu - Change the Maximum Transfer Unit
* @returns 0 on success, negative on failure
*/
#define MTU_FUDGE_FACTOR 100
int netxen_nic_change_mtu(struct net_device *netdev, int mtu)
{
struct netxen_adapter *adapter = netdev_priv(netdev);
int max_mtu;
int rc = 0;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
max_mtu = P3_MAX_MTU;
else
max_mtu = P2_MAX_MTU;
if (mtu > max_mtu) {
printk(KERN_ERR "%s: mtu > %d bytes unsupported\n",
netdev->name, max_mtu);
return -EINVAL;
}
if (adapter->set_mtu)
rc = adapter->set_mtu(adapter, mtu);
if (!rc)
netdev->mtu = mtu;
return rc;
}
static int netxen_get_flash_block(struct netxen_adapter *adapter, int base,
int size, __le32 * buf)
{
int i, v, addr;
__le32 *ptr32;
addr = base;
ptr32 = buf;
for (i = 0; i < size / sizeof(u32); i++) {
if (netxen_rom_fast_read(adapter, addr, &v) == -1)
return -1;
*ptr32 = cpu_to_le32(v);
ptr32++;
addr += sizeof(u32);
}
if ((char *)buf + size > (char *)ptr32) {
__le32 local;
if (netxen_rom_fast_read(adapter, addr, &v) == -1)
return -1;
local = cpu_to_le32(v);
memcpy(ptr32, &local, (char *)buf + size - (char *)ptr32);
}
return 0;
}
int netxen_get_flash_mac_addr(struct netxen_adapter *adapter, u64 *mac)
{
__le32 *pmac = (__le32 *) mac;
u32 offset;
offset = NX_FW_MAC_ADDR_OFFSET + (adapter->portnum * sizeof(u64));
if (netxen_get_flash_block(adapter, offset, sizeof(u64), pmac) == -1)
return -1;
if (*mac == cpu_to_le64(~0ULL)) {
offset = NX_OLD_MAC_ADDR_OFFSET +
(adapter->portnum * sizeof(u64));
if (netxen_get_flash_block(adapter,
offset, sizeof(u64), pmac) == -1)
return -1;
if (*mac == cpu_to_le64(~0ULL))
return -1;
}
return 0;
}
int netxen_p3_get_mac_addr(struct netxen_adapter *adapter, u64 *mac)
{
uint32_t crbaddr, mac_hi, mac_lo;
int pci_func = adapter->ahw.pci_func;
crbaddr = CRB_MAC_BLOCK_START +
(4 * ((pci_func/2) * 3)) + (4 * (pci_func & 1));
mac_lo = NXRD32(adapter, crbaddr);
mac_hi = NXRD32(adapter, crbaddr+4);
if (pci_func & 1)
*mac = le64_to_cpu((mac_lo >> 16) | ((u64)mac_hi << 16));
else
*mac = le64_to_cpu((u64)mac_lo | ((u64)mac_hi << 32));
return 0;
}
/*
* Changes the CRB window to the specified window.
*/
static void
netxen_nic_pci_set_crbwindow_128M(struct netxen_adapter *adapter,
u32 window)
{
void __iomem *offset;
int count = 10;
u8 func = adapter->ahw.pci_func;
if (adapter->ahw.crb_win == window)
return;
offset = PCI_OFFSET_SECOND_RANGE(adapter,
NETXEN_PCIX_PH_REG(PCIE_CRB_WINDOW_REG(func)));
writel(window, offset);
do {
if (window == readl(offset))
break;
if (printk_ratelimit())
dev_warn(&adapter->pdev->dev,
"failed to set CRB window to %d\n",
(window == NETXEN_WINDOW_ONE));
udelay(1);
} while (--count > 0);
if (count > 0)
adapter->ahw.crb_win = window;
}
/*
* Returns < 0 if off is not valid,
* 1 if window access is needed. 'off' is set to offset from
* CRB space in 128M pci map
* 0 if no window access is needed. 'off' is set to 2M addr
* In: 'off' is offset from base in 128M pci map
*/
static int
netxen_nic_pci_get_crb_addr_2M(struct netxen_adapter *adapter,
ulong off, void __iomem **addr)
{
crb_128M_2M_sub_block_map_t *m;
if ((off >= NETXEN_CRB_MAX) || (off < NETXEN_PCI_CRBSPACE))
return -EINVAL;
off -= NETXEN_PCI_CRBSPACE;
/*
* Try direct map
*/
m = &crb_128M_2M_map[CRB_BLK(off)].sub_block[CRB_SUBBLK(off)];
if (m->valid && (m->start_128M <= off) && (m->end_128M > off)) {
*addr = adapter->ahw.pci_base0 + m->start_2M +
(off - m->start_128M);
return 0;
}
/*
* Not in direct map, use crb window
*/
*addr = adapter->ahw.pci_base0 + CRB_INDIRECT_2M +
(off & MASK(16));
return 1;
}
/*
* In: 'off' is offset from CRB space in 128M pci map
* Out: 'off' is 2M pci map addr
* side effect: lock crb window
*/
static void
netxen_nic_pci_set_crbwindow_2M(struct netxen_adapter *adapter, ulong off)
{
u32 window;
void __iomem *addr = adapter->ahw.pci_base0 + CRB_WINDOW_2M;
off -= NETXEN_PCI_CRBSPACE;
window = CRB_HI(off);
writel(window, addr);
if (readl(addr) != window) {
if (printk_ratelimit())
dev_warn(&adapter->pdev->dev,
"failed to set CRB window to %d off 0x%lx\n",
window, off);
}
}
static void __iomem *
netxen_nic_map_indirect_address_128M(struct netxen_adapter *adapter,
ulong win_off, void __iomem **mem_ptr)
{
ulong off = win_off;
void __iomem *addr;
resource_size_t mem_base;
if (ADDR_IN_WINDOW1(win_off))
off = NETXEN_CRB_NORMAL(win_off);
addr = pci_base_offset(adapter, off);
if (addr)
return addr;
if (adapter->ahw.pci_len0 == 0)
off -= NETXEN_PCI_CRBSPACE;
mem_base = pci_resource_start(adapter->pdev, 0);
*mem_ptr = ioremap(mem_base + (off & PAGE_MASK), PAGE_SIZE);
if (*mem_ptr)
addr = *mem_ptr + (off & (PAGE_SIZE - 1));
return addr;
}
static int
netxen_nic_hw_write_wx_128M(struct netxen_adapter *adapter, ulong off, u32 data)
{
unsigned long flags;
void __iomem *addr, *mem_ptr = NULL;
addr = netxen_nic_map_indirect_address_128M(adapter, off, &mem_ptr);
if (!addr)
return -EIO;
if (ADDR_IN_WINDOW1(off)) { /* Window 1 */
netxen_nic_io_write_128M(adapter, addr, data);
} else { /* Window 0 */
write_lock_irqsave(&adapter->ahw.crb_lock, flags);
netxen_nic_pci_set_crbwindow_128M(adapter, 0);
writel(data, addr);
netxen_nic_pci_set_crbwindow_128M(adapter,
NETXEN_WINDOW_ONE);
write_unlock_irqrestore(&adapter->ahw.crb_lock, flags);
}
if (mem_ptr)
iounmap(mem_ptr);
return 0;
}
static u32
netxen_nic_hw_read_wx_128M(struct netxen_adapter *adapter, ulong off)
{
unsigned long flags;
void __iomem *addr, *mem_ptr = NULL;
u32 data;
addr = netxen_nic_map_indirect_address_128M(adapter, off, &mem_ptr);
if (!addr)
return -EIO;
if (ADDR_IN_WINDOW1(off)) { /* Window 1 */
data = netxen_nic_io_read_128M(adapter, addr);
} else { /* Window 0 */
write_lock_irqsave(&adapter->ahw.crb_lock, flags);
netxen_nic_pci_set_crbwindow_128M(adapter, 0);
data = readl(addr);
netxen_nic_pci_set_crbwindow_128M(adapter,
NETXEN_WINDOW_ONE);
write_unlock_irqrestore(&adapter->ahw.crb_lock, flags);
}
if (mem_ptr)
iounmap(mem_ptr);
return data;
}
static int
netxen_nic_hw_write_wx_2M(struct netxen_adapter *adapter, ulong off, u32 data)
{
unsigned long flags;
int rv;
void __iomem *addr = NULL;
rv = netxen_nic_pci_get_crb_addr_2M(adapter, off, &addr);
if (rv == 0) {
writel(data, addr);
return 0;
}
if (rv > 0) {
/* indirect access */
write_lock_irqsave(&adapter->ahw.crb_lock, flags);
crb_win_lock(adapter);
netxen_nic_pci_set_crbwindow_2M(adapter, off);
writel(data, addr);
crb_win_unlock(adapter);
write_unlock_irqrestore(&adapter->ahw.crb_lock, flags);
return 0;
}
dev_err(&adapter->pdev->dev,
"%s: invalid offset: 0x%016lx\n", __func__, off);
dump_stack();
return -EIO;
}
static u32
netxen_nic_hw_read_wx_2M(struct netxen_adapter *adapter, ulong off)
{
unsigned long flags;
int rv;
u32 data;
void __iomem *addr = NULL;
rv = netxen_nic_pci_get_crb_addr_2M(adapter, off, &addr);
if (rv == 0)
return readl(addr);
if (rv > 0) {
/* indirect access */
write_lock_irqsave(&adapter->ahw.crb_lock, flags);
crb_win_lock(adapter);
netxen_nic_pci_set_crbwindow_2M(adapter, off);
data = readl(addr);
crb_win_unlock(adapter);
write_unlock_irqrestore(&adapter->ahw.crb_lock, flags);
return data;
}
dev_err(&adapter->pdev->dev,
"%s: invalid offset: 0x%016lx\n", __func__, off);
dump_stack();
return -1;
}
/* window 1 registers only */
static void netxen_nic_io_write_128M(struct netxen_adapter *adapter,
void __iomem *addr, u32 data)
{
read_lock(&adapter->ahw.crb_lock);
writel(data, addr);
read_unlock(&adapter->ahw.crb_lock);
}
static u32 netxen_nic_io_read_128M(struct netxen_adapter *adapter,
void __iomem *addr)
{
u32 val;
read_lock(&adapter->ahw.crb_lock);
val = readl(addr);
read_unlock(&adapter->ahw.crb_lock);
return val;
}
static void netxen_nic_io_write_2M(struct netxen_adapter *adapter,
void __iomem *addr, u32 data)
{
writel(data, addr);
}
static u32 netxen_nic_io_read_2M(struct netxen_adapter *adapter,
void __iomem *addr)
{
return readl(addr);
}
void __iomem *
netxen_get_ioaddr(struct netxen_adapter *adapter, u32 offset)
{
void __iomem *addr = NULL;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
if ((offset < NETXEN_CRB_PCIX_HOST2) &&
(offset > NETXEN_CRB_PCIX_HOST))
addr = PCI_OFFSET_SECOND_RANGE(adapter, offset);
else
addr = NETXEN_CRB_NORMALIZE(adapter, offset);
} else {
WARN_ON(netxen_nic_pci_get_crb_addr_2M(adapter,
offset, &addr));
}
return addr;
}
static int
netxen_nic_pci_set_window_128M(struct netxen_adapter *adapter,
u64 addr, u32 *start)
{
if (ADDR_IN_RANGE(addr, NETXEN_ADDR_OCM0, NETXEN_ADDR_OCM0_MAX)) {
*start = (addr - NETXEN_ADDR_OCM0 + NETXEN_PCI_OCM0);
return 0;
} else if (ADDR_IN_RANGE(addr,
NETXEN_ADDR_OCM1, NETXEN_ADDR_OCM1_MAX)) {
*start = (addr - NETXEN_ADDR_OCM1 + NETXEN_PCI_OCM1);
return 0;
}
return -EIO;
}
static int
netxen_nic_pci_set_window_2M(struct netxen_adapter *adapter,
u64 addr, u32 *start)
{
u32 window;
window = OCM_WIN(addr);
writel(window, adapter->ahw.ocm_win_crb);
/* read back to flush */
readl(adapter->ahw.ocm_win_crb);
adapter->ahw.ocm_win = window;
*start = NETXEN_PCI_OCM0_2M + GET_MEM_OFFS_2M(addr);
return 0;
}
static int
netxen_nic_pci_mem_access_direct(struct netxen_adapter *adapter, u64 off,
u64 *data, int op)
{
void __iomem *addr, *mem_ptr = NULL;
resource_size_t mem_base;
int ret;
u32 start;
spin_lock(&adapter->ahw.mem_lock);
ret = adapter->pci_set_window(adapter, off, &start);
if (ret != 0)
goto unlock;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
addr = adapter->ahw.pci_base0 + start;
} else {
addr = pci_base_offset(adapter, start);
if (addr)
goto noremap;
mem_base = pci_resource_start(adapter->pdev, 0) +
(start & PAGE_MASK);
mem_ptr = ioremap(mem_base, PAGE_SIZE);
if (mem_ptr == NULL) {
ret = -EIO;
goto unlock;
}
addr = mem_ptr + (start & (PAGE_SIZE-1));
}
noremap:
if (op == 0) /* read */
*data = readq(addr);
else /* write */
writeq(*data, addr);
unlock:
spin_unlock(&adapter->ahw.mem_lock);
if (mem_ptr)
iounmap(mem_ptr);
return ret;
}
void
netxen_pci_camqm_read_2M(struct netxen_adapter *adapter, u64 off, u64 *data)
{
void __iomem *addr = adapter->ahw.pci_base0 +
NETXEN_PCI_CAMQM_2M_BASE + (off - NETXEN_PCI_CAMQM);
spin_lock(&adapter->ahw.mem_lock);
*data = readq(addr);
spin_unlock(&adapter->ahw.mem_lock);
}
void
netxen_pci_camqm_write_2M(struct netxen_adapter *adapter, u64 off, u64 data)
{
void __iomem *addr = adapter->ahw.pci_base0 +
NETXEN_PCI_CAMQM_2M_BASE + (off - NETXEN_PCI_CAMQM);
spin_lock(&adapter->ahw.mem_lock);
writeq(data, addr);
spin_unlock(&adapter->ahw.mem_lock);
}
#define MAX_CTL_CHECK 1000
static int
netxen_nic_pci_mem_write_128M(struct netxen_adapter *adapter,
u64 off, u64 data)
{
int j, ret;
u32 temp, off_lo, off_hi, addr_hi, data_hi, data_lo;
void __iomem *mem_crb;
/* Only 64-bit aligned access */
if (off & 7)
return -EIO;
/* P2 has different SIU and MIU test agent base addr */
if (ADDR_IN_RANGE(off, NETXEN_ADDR_QDR_NET,
NETXEN_ADDR_QDR_NET_MAX_P2)) {
mem_crb = pci_base_offset(adapter,
NETXEN_CRB_QDR_NET+SIU_TEST_AGT_BASE);
addr_hi = SIU_TEST_AGT_ADDR_HI;
data_lo = SIU_TEST_AGT_WRDATA_LO;
data_hi = SIU_TEST_AGT_WRDATA_HI;
off_lo = off & SIU_TEST_AGT_ADDR_MASK;
off_hi = SIU_TEST_AGT_UPPER_ADDR(off);
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_DDR_NET, NETXEN_ADDR_DDR_NET_MAX)) {
mem_crb = pci_base_offset(adapter,
NETXEN_CRB_DDR_NET+MIU_TEST_AGT_BASE);
addr_hi = MIU_TEST_AGT_ADDR_HI;
data_lo = MIU_TEST_AGT_WRDATA_LO;
data_hi = MIU_TEST_AGT_WRDATA_HI;
off_lo = off & MIU_TEST_AGT_ADDR_MASK;
off_hi = 0;
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_OCM0, NETXEN_ADDR_OCM0_MAX) ||
ADDR_IN_RANGE(off, NETXEN_ADDR_OCM1, NETXEN_ADDR_OCM1_MAX)) {
if (adapter->ahw.pci_len0 != 0) {
return netxen_nic_pci_mem_access_direct(adapter,
off, &data, 1);
}
}
return -EIO;
correct:
spin_lock(&adapter->ahw.mem_lock);
netxen_nic_pci_set_crbwindow_128M(adapter, 0);
writel(off_lo, (mem_crb + MIU_TEST_AGT_ADDR_LO));
writel(off_hi, (mem_crb + addr_hi));
writel(data & 0xffffffff, (mem_crb + data_lo));
writel((data >> 32) & 0xffffffff, (mem_crb + data_hi));
writel((TA_CTL_ENABLE | TA_CTL_WRITE), (mem_crb + TEST_AGT_CTRL));
writel((TA_CTL_START | TA_CTL_ENABLE | TA_CTL_WRITE),
(mem_crb + TEST_AGT_CTRL));
for (j = 0; j < MAX_CTL_CHECK; j++) {
temp = readl((mem_crb + TEST_AGT_CTRL));
if ((temp & TA_CTL_BUSY) == 0)
break;
}
if (j >= MAX_CTL_CHECK) {
if (printk_ratelimit())
dev_err(&adapter->pdev->dev,
"failed to write through agent\n");
ret = -EIO;
} else
ret = 0;
netxen_nic_pci_set_crbwindow_128M(adapter, NETXEN_WINDOW_ONE);
spin_unlock(&adapter->ahw.mem_lock);
return ret;
}
static int
netxen_nic_pci_mem_read_128M(struct netxen_adapter *adapter,
u64 off, u64 *data)
{
int j, ret;
u32 temp, off_lo, off_hi, addr_hi, data_hi, data_lo;
u64 val;
void __iomem *mem_crb;
/* Only 64-bit aligned access */
if (off & 7)
return -EIO;
/* P2 has different SIU and MIU test agent base addr */
if (ADDR_IN_RANGE(off, NETXEN_ADDR_QDR_NET,
NETXEN_ADDR_QDR_NET_MAX_P2)) {
mem_crb = pci_base_offset(adapter,
NETXEN_CRB_QDR_NET+SIU_TEST_AGT_BASE);
addr_hi = SIU_TEST_AGT_ADDR_HI;
data_lo = SIU_TEST_AGT_RDDATA_LO;
data_hi = SIU_TEST_AGT_RDDATA_HI;
off_lo = off & SIU_TEST_AGT_ADDR_MASK;
off_hi = SIU_TEST_AGT_UPPER_ADDR(off);
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_DDR_NET, NETXEN_ADDR_DDR_NET_MAX)) {
mem_crb = pci_base_offset(adapter,
NETXEN_CRB_DDR_NET+MIU_TEST_AGT_BASE);
addr_hi = MIU_TEST_AGT_ADDR_HI;
data_lo = MIU_TEST_AGT_RDDATA_LO;
data_hi = MIU_TEST_AGT_RDDATA_HI;
off_lo = off & MIU_TEST_AGT_ADDR_MASK;
off_hi = 0;
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_OCM0, NETXEN_ADDR_OCM0_MAX) ||
ADDR_IN_RANGE(off, NETXEN_ADDR_OCM1, NETXEN_ADDR_OCM1_MAX)) {
if (adapter->ahw.pci_len0 != 0) {
return netxen_nic_pci_mem_access_direct(adapter,
off, data, 0);
}
}
return -EIO;
correct:
spin_lock(&adapter->ahw.mem_lock);
netxen_nic_pci_set_crbwindow_128M(adapter, 0);
writel(off_lo, (mem_crb + MIU_TEST_AGT_ADDR_LO));
writel(off_hi, (mem_crb + addr_hi));
writel(TA_CTL_ENABLE, (mem_crb + TEST_AGT_CTRL));
writel((TA_CTL_START|TA_CTL_ENABLE), (mem_crb + TEST_AGT_CTRL));
for (j = 0; j < MAX_CTL_CHECK; j++) {
temp = readl(mem_crb + TEST_AGT_CTRL);
if ((temp & TA_CTL_BUSY) == 0)
break;
}
if (j >= MAX_CTL_CHECK) {
if (printk_ratelimit())
dev_err(&adapter->pdev->dev,
"failed to read through agent\n");
ret = -EIO;
} else {
temp = readl(mem_crb + data_hi);
val = ((u64)temp << 32);
val |= readl(mem_crb + data_lo);
*data = val;
ret = 0;
}
netxen_nic_pci_set_crbwindow_128M(adapter, NETXEN_WINDOW_ONE);
spin_unlock(&adapter->ahw.mem_lock);
return ret;
}
static int
netxen_nic_pci_mem_write_2M(struct netxen_adapter *adapter,
u64 off, u64 data)
{
int j, ret;
u32 temp, off8;
void __iomem *mem_crb;
/* Only 64-bit aligned access */
if (off & 7)
return -EIO;
/* P3 onward, test agent base for MIU and SIU is same */
if (ADDR_IN_RANGE(off, NETXEN_ADDR_QDR_NET,
NETXEN_ADDR_QDR_NET_MAX_P3)) {
mem_crb = netxen_get_ioaddr(adapter,
NETXEN_CRB_QDR_NET+MIU_TEST_AGT_BASE);
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_DDR_NET, NETXEN_ADDR_DDR_NET_MAX)) {
mem_crb = netxen_get_ioaddr(adapter,
NETXEN_CRB_DDR_NET+MIU_TEST_AGT_BASE);
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_OCM0, NETXEN_ADDR_OCM0_MAX))
return netxen_nic_pci_mem_access_direct(adapter, off, &data, 1);
return -EIO;
correct:
off8 = off & 0xfffffff8;
spin_lock(&adapter->ahw.mem_lock);
writel(off8, (mem_crb + MIU_TEST_AGT_ADDR_LO));
writel(0, (mem_crb + MIU_TEST_AGT_ADDR_HI));
writel(data & 0xffffffff,
mem_crb + MIU_TEST_AGT_WRDATA_LO);
writel((data >> 32) & 0xffffffff,
mem_crb + MIU_TEST_AGT_WRDATA_HI);
writel((TA_CTL_ENABLE | TA_CTL_WRITE), (mem_crb + TEST_AGT_CTRL));
writel((TA_CTL_START | TA_CTL_ENABLE | TA_CTL_WRITE),
(mem_crb + TEST_AGT_CTRL));
for (j = 0; j < MAX_CTL_CHECK; j++) {
temp = readl(mem_crb + TEST_AGT_CTRL);
if ((temp & TA_CTL_BUSY) == 0)
break;
}
if (j >= MAX_CTL_CHECK) {
if (printk_ratelimit())
dev_err(&adapter->pdev->dev,
"failed to write through agent\n");
ret = -EIO;
} else
ret = 0;
spin_unlock(&adapter->ahw.mem_lock);
return ret;
}
static int
netxen_nic_pci_mem_read_2M(struct netxen_adapter *adapter,
u64 off, u64 *data)
{
int j, ret;
u32 temp, off8;
u64 val;
void __iomem *mem_crb;
/* Only 64-bit aligned access */
if (off & 7)
return -EIO;
/* P3 onward, test agent base for MIU and SIU is same */
if (ADDR_IN_RANGE(off, NETXEN_ADDR_QDR_NET,
NETXEN_ADDR_QDR_NET_MAX_P3)) {
mem_crb = netxen_get_ioaddr(adapter,
NETXEN_CRB_QDR_NET+MIU_TEST_AGT_BASE);
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_DDR_NET, NETXEN_ADDR_DDR_NET_MAX)) {
mem_crb = netxen_get_ioaddr(adapter,
NETXEN_CRB_DDR_NET+MIU_TEST_AGT_BASE);
goto correct;
}
if (ADDR_IN_RANGE(off, NETXEN_ADDR_OCM0, NETXEN_ADDR_OCM0_MAX)) {
return netxen_nic_pci_mem_access_direct(adapter,
off, data, 0);
}
return -EIO;
correct:
off8 = off & 0xfffffff8;
spin_lock(&adapter->ahw.mem_lock);
writel(off8, (mem_crb + MIU_TEST_AGT_ADDR_LO));
writel(0, (mem_crb + MIU_TEST_AGT_ADDR_HI));
writel(TA_CTL_ENABLE, (mem_crb + TEST_AGT_CTRL));
writel((TA_CTL_START | TA_CTL_ENABLE), (mem_crb + TEST_AGT_CTRL));
for (j = 0; j < MAX_CTL_CHECK; j++) {
temp = readl(mem_crb + TEST_AGT_CTRL);
if ((temp & TA_CTL_BUSY) == 0)
break;
}
if (j >= MAX_CTL_CHECK) {
if (printk_ratelimit())
dev_err(&adapter->pdev->dev,
"failed to read through agent\n");
ret = -EIO;
} else {
val = (u64)(readl(mem_crb + MIU_TEST_AGT_RDDATA_HI)) << 32;
val |= readl(mem_crb + MIU_TEST_AGT_RDDATA_LO);
*data = val;
ret = 0;
}
spin_unlock(&adapter->ahw.mem_lock);
return ret;
}
void
netxen_setup_hwops(struct netxen_adapter *adapter)
{
adapter->init_port = netxen_niu_xg_init_port;
adapter->stop_port = netxen_niu_disable_xg_port;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
adapter->crb_read = netxen_nic_hw_read_wx_128M,
adapter->crb_write = netxen_nic_hw_write_wx_128M,
adapter->pci_set_window = netxen_nic_pci_set_window_128M,
adapter->pci_mem_read = netxen_nic_pci_mem_read_128M,
adapter->pci_mem_write = netxen_nic_pci_mem_write_128M,
adapter->io_read = netxen_nic_io_read_128M,
adapter->io_write = netxen_nic_io_write_128M,
adapter->macaddr_set = netxen_p2_nic_set_mac_addr;
adapter->set_multi = netxen_p2_nic_set_multi;
adapter->set_mtu = netxen_nic_set_mtu_xgb;
adapter->set_promisc = netxen_p2_nic_set_promisc;
} else {
adapter->crb_read = netxen_nic_hw_read_wx_2M,
adapter->crb_write = netxen_nic_hw_write_wx_2M,
adapter->pci_set_window = netxen_nic_pci_set_window_2M,
adapter->pci_mem_read = netxen_nic_pci_mem_read_2M,
adapter->pci_mem_write = netxen_nic_pci_mem_write_2M,
adapter->io_read = netxen_nic_io_read_2M,
adapter->io_write = netxen_nic_io_write_2M,
adapter->set_mtu = nx_fw_cmd_set_mtu;
adapter->set_promisc = netxen_p3_nic_set_promisc;
adapter->macaddr_set = netxen_p3_nic_set_mac_addr;
adapter->set_multi = netxen_p3_nic_set_multi;
adapter->phy_read = nx_fw_cmd_query_phy;
adapter->phy_write = nx_fw_cmd_set_phy;
}
}
int netxen_nic_get_board_info(struct netxen_adapter *adapter)
{
int offset, board_type, magic;
struct pci_dev *pdev = adapter->pdev;
offset = NX_FW_MAGIC_OFFSET;
if (netxen_rom_fast_read(adapter, offset, &magic))
return -EIO;
if (magic != NETXEN_BDINFO_MAGIC) {
dev_err(&pdev->dev, "invalid board config, magic=%08x\n",
magic);
return -EIO;
}
offset = NX_BRDTYPE_OFFSET;
if (netxen_rom_fast_read(adapter, offset, &board_type))
return -EIO;
if (board_type == NETXEN_BRDTYPE_P3_4_GB_MM) {
u32 gpio = NXRD32(adapter, NETXEN_ROMUSB_GLB_PAD_GPIO_I);
if ((gpio & 0x8000) == 0)
board_type = NETXEN_BRDTYPE_P3_10G_TP;
}
adapter->ahw.board_type = board_type;
switch (board_type) {
case NETXEN_BRDTYPE_P2_SB35_4G:
adapter->ahw.port_type = NETXEN_NIC_GBE;
break;
case NETXEN_BRDTYPE_P2_SB31_10G:
case NETXEN_BRDTYPE_P2_SB31_10G_IMEZ:
case NETXEN_BRDTYPE_P2_SB31_10G_HMEZ:
case NETXEN_BRDTYPE_P2_SB31_10G_CX4:
case NETXEN_BRDTYPE_P3_HMEZ:
case NETXEN_BRDTYPE_P3_XG_LOM:
case NETXEN_BRDTYPE_P3_10G_CX4:
case NETXEN_BRDTYPE_P3_10G_CX4_LP:
case NETXEN_BRDTYPE_P3_IMEZ:
case NETXEN_BRDTYPE_P3_10G_SFP_PLUS:
case NETXEN_BRDTYPE_P3_10G_SFP_CT:
case NETXEN_BRDTYPE_P3_10G_SFP_QT:
case NETXEN_BRDTYPE_P3_10G_XFP:
case NETXEN_BRDTYPE_P3_10000_BASE_T:
adapter->ahw.port_type = NETXEN_NIC_XGBE;
break;
case NETXEN_BRDTYPE_P1_BD:
case NETXEN_BRDTYPE_P1_SB:
case NETXEN_BRDTYPE_P1_SMAX:
case NETXEN_BRDTYPE_P1_SOCK:
case NETXEN_BRDTYPE_P3_REF_QG:
case NETXEN_BRDTYPE_P3_4_GB:
case NETXEN_BRDTYPE_P3_4_GB_MM:
adapter->ahw.port_type = NETXEN_NIC_GBE;
break;
case NETXEN_BRDTYPE_P3_10G_TP:
adapter->ahw.port_type = (adapter->portnum < 2) ?
NETXEN_NIC_XGBE : NETXEN_NIC_GBE;
break;
default:
dev_err(&pdev->dev, "unknown board type %x\n", board_type);
adapter->ahw.port_type = NETXEN_NIC_XGBE;
break;
}
return 0;
}
/* NIU access sections */
static int netxen_nic_set_mtu_xgb(struct netxen_adapter *adapter, int new_mtu)
{
new_mtu += MTU_FUDGE_FACTOR;
if (adapter->physical_port == 0)
NXWR32(adapter, NETXEN_NIU_XGE_MAX_FRAME_SIZE, new_mtu);
else
NXWR32(adapter, NETXEN_NIU_XG1_MAX_FRAME_SIZE, new_mtu);
return 0;
}
void netxen_nic_set_link_parameters(struct netxen_adapter *adapter)
{
__u32 status;
__u32 autoneg;
__u32 port_mode;
if (!netif_carrier_ok(adapter->netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = -1;
adapter->link_autoneg = AUTONEG_ENABLE;
return;
}
if (adapter->ahw.port_type == NETXEN_NIC_GBE) {
port_mode = NXRD32(adapter, NETXEN_PORT_MODE_ADDR);
if (port_mode == NETXEN_PORT_MODE_802_3_AP) {
adapter->link_speed = SPEED_1000;
adapter->link_duplex = DUPLEX_FULL;
adapter->link_autoneg = AUTONEG_DISABLE;
return;
}
if (adapter->phy_read &&
adapter->phy_read(adapter,
NETXEN_NIU_GB_MII_MGMT_ADDR_PHY_STATUS,
&status) == 0) {
if (netxen_get_phy_link(status)) {
switch (netxen_get_phy_speed(status)) {
case 0:
adapter->link_speed = SPEED_10;
break;
case 1:
adapter->link_speed = SPEED_100;
break;
case 2:
adapter->link_speed = SPEED_1000;
break;
default:
adapter->link_speed = 0;
break;
}
switch (netxen_get_phy_duplex(status)) {
case 0:
adapter->link_duplex = DUPLEX_HALF;
break;
case 1:
adapter->link_duplex = DUPLEX_FULL;
break;
default:
adapter->link_duplex = -1;
break;
}
if (adapter->phy_read &&
adapter->phy_read(adapter,
NETXEN_NIU_GB_MII_MGMT_ADDR_AUTONEG,
&autoneg) != 0)
adapter->link_autoneg = autoneg;
} else
goto link_down;
} else {
link_down:
adapter->link_speed = 0;
adapter->link_duplex = -1;
}
}
}
int
netxen_nic_wol_supported(struct netxen_adapter *adapter)
{
u32 wol_cfg;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id))
return 0;
wol_cfg = NXRD32(adapter, NETXEN_WOL_CONFIG_NV);
if (wol_cfg & (1UL << adapter->portnum)) {
wol_cfg = NXRD32(adapter, NETXEN_WOL_CONFIG);
if (wol_cfg & (1 << adapter->portnum))
return 1;
}
return 0;
}