kernel-fxtec-pro1x/drivers/infiniband/core/iwpm_util.c

753 lines
20 KiB
C
Raw Normal View History

RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
/*
* Copyright (c) 2014 Chelsio, Inc. All rights reserved.
* Copyright (c) 2014 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "iwpm_util.h"
#define IWPM_MAPINFO_HASH_SIZE 512
#define IWPM_MAPINFO_HASH_MASK (IWPM_MAPINFO_HASH_SIZE - 1)
#define IWPM_REMINFO_HASH_SIZE 64
#define IWPM_REMINFO_HASH_MASK (IWPM_REMINFO_HASH_SIZE - 1)
#define IWPM_MSG_SIZE 512
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
static LIST_HEAD(iwpm_nlmsg_req_list);
static DEFINE_SPINLOCK(iwpm_nlmsg_req_lock);
static struct hlist_head *iwpm_hash_bucket;
static DEFINE_SPINLOCK(iwpm_mapinfo_lock);
static struct hlist_head *iwpm_reminfo_bucket;
static DEFINE_SPINLOCK(iwpm_reminfo_lock);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
static DEFINE_MUTEX(iwpm_admin_lock);
static struct iwpm_admin_data iwpm_admin;
int iwpm_init(u8 nl_client)
{
int ret = 0;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
mutex_lock(&iwpm_admin_lock);
if (atomic_read(&iwpm_admin.refcount) == 0) {
iwpm_hash_bucket = kzalloc(IWPM_MAPINFO_HASH_SIZE *
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
sizeof(struct hlist_head), GFP_KERNEL);
if (!iwpm_hash_bucket) {
ret = -ENOMEM;
goto init_exit;
}
iwpm_reminfo_bucket = kzalloc(IWPM_REMINFO_HASH_SIZE *
sizeof(struct hlist_head), GFP_KERNEL);
if (!iwpm_reminfo_bucket) {
kfree(iwpm_hash_bucket);
ret = -ENOMEM;
goto init_exit;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
}
}
atomic_inc(&iwpm_admin.refcount);
init_exit:
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
mutex_unlock(&iwpm_admin_lock);
if (!ret) {
iwpm_set_valid(nl_client, 1);
iwpm_set_registration(nl_client, IWPM_REG_UNDEF);
pr_debug("%s: Mapinfo and reminfo tables are created\n",
__func__);
}
return ret;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
}
static void free_hash_bucket(void);
static void free_reminfo_bucket(void);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
int iwpm_exit(u8 nl_client)
{
if (!iwpm_valid_client(nl_client))
return -EINVAL;
mutex_lock(&iwpm_admin_lock);
if (atomic_read(&iwpm_admin.refcount) == 0) {
mutex_unlock(&iwpm_admin_lock);
pr_err("%s Incorrect usage - negative refcount\n", __func__);
return -EINVAL;
}
if (atomic_dec_and_test(&iwpm_admin.refcount)) {
free_hash_bucket();
free_reminfo_bucket();
pr_debug("%s: Resources are destroyed\n", __func__);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
}
mutex_unlock(&iwpm_admin_lock);
iwpm_set_valid(nl_client, 0);
iwpm_set_registration(nl_client, IWPM_REG_UNDEF);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
return 0;
}
static struct hlist_head *get_mapinfo_hash_bucket(struct sockaddr_storage *,
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
struct sockaddr_storage *);
int iwpm_create_mapinfo(struct sockaddr_storage *local_sockaddr,
struct sockaddr_storage *mapped_sockaddr,
u8 nl_client)
{
struct hlist_head *hash_bucket_head;
struct iwpm_mapping_info *map_info;
unsigned long flags;
int ret = -EINVAL;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (!iwpm_valid_client(nl_client))
return ret;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
map_info = kzalloc(sizeof(struct iwpm_mapping_info), GFP_KERNEL);
if (!map_info)
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
return -ENOMEM;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
memcpy(&map_info->local_sockaddr, local_sockaddr,
sizeof(struct sockaddr_storage));
memcpy(&map_info->mapped_sockaddr, mapped_sockaddr,
sizeof(struct sockaddr_storage));
map_info->nl_client = nl_client;
spin_lock_irqsave(&iwpm_mapinfo_lock, flags);
if (iwpm_hash_bucket) {
hash_bucket_head = get_mapinfo_hash_bucket(
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
&map_info->local_sockaddr,
&map_info->mapped_sockaddr);
if (hash_bucket_head) {
hlist_add_head(&map_info->hlist_node, hash_bucket_head);
ret = 0;
}
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
}
spin_unlock_irqrestore(&iwpm_mapinfo_lock, flags);
return ret;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
}
int iwpm_remove_mapinfo(struct sockaddr_storage *local_sockaddr,
struct sockaddr_storage *mapped_local_addr)
{
struct hlist_node *tmp_hlist_node;
struct hlist_head *hash_bucket_head;
struct iwpm_mapping_info *map_info = NULL;
unsigned long flags;
int ret = -EINVAL;
spin_lock_irqsave(&iwpm_mapinfo_lock, flags);
if (iwpm_hash_bucket) {
hash_bucket_head = get_mapinfo_hash_bucket(
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
local_sockaddr,
mapped_local_addr);
if (!hash_bucket_head)
goto remove_mapinfo_exit;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
hlist_for_each_entry_safe(map_info, tmp_hlist_node,
hash_bucket_head, hlist_node) {
if (!iwpm_compare_sockaddr(&map_info->mapped_sockaddr,
mapped_local_addr)) {
hlist_del_init(&map_info->hlist_node);
kfree(map_info);
ret = 0;
break;
}
}
}
remove_mapinfo_exit:
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
spin_unlock_irqrestore(&iwpm_mapinfo_lock, flags);
return ret;
}
static void free_hash_bucket(void)
{
struct hlist_node *tmp_hlist_node;
struct iwpm_mapping_info *map_info;
unsigned long flags;
int i;
/* remove all the mapinfo data from the list */
spin_lock_irqsave(&iwpm_mapinfo_lock, flags);
for (i = 0; i < IWPM_MAPINFO_HASH_SIZE; i++) {
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
hlist_for_each_entry_safe(map_info, tmp_hlist_node,
&iwpm_hash_bucket[i], hlist_node) {
hlist_del_init(&map_info->hlist_node);
kfree(map_info);
}
}
/* free the hash list */
kfree(iwpm_hash_bucket);
iwpm_hash_bucket = NULL;
spin_unlock_irqrestore(&iwpm_mapinfo_lock, flags);
}
static void free_reminfo_bucket(void)
{
struct hlist_node *tmp_hlist_node;
struct iwpm_remote_info *rem_info;
unsigned long flags;
int i;
/* remove all the remote info from the list */
spin_lock_irqsave(&iwpm_reminfo_lock, flags);
for (i = 0; i < IWPM_REMINFO_HASH_SIZE; i++) {
hlist_for_each_entry_safe(rem_info, tmp_hlist_node,
&iwpm_reminfo_bucket[i], hlist_node) {
hlist_del_init(&rem_info->hlist_node);
kfree(rem_info);
}
}
/* free the hash list */
kfree(iwpm_reminfo_bucket);
iwpm_reminfo_bucket = NULL;
spin_unlock_irqrestore(&iwpm_reminfo_lock, flags);
}
static struct hlist_head *get_reminfo_hash_bucket(struct sockaddr_storage *,
struct sockaddr_storage *);
void iwpm_add_remote_info(struct iwpm_remote_info *rem_info)
{
struct hlist_head *hash_bucket_head;
unsigned long flags;
spin_lock_irqsave(&iwpm_reminfo_lock, flags);
if (iwpm_reminfo_bucket) {
hash_bucket_head = get_reminfo_hash_bucket(
&rem_info->mapped_loc_sockaddr,
&rem_info->mapped_rem_sockaddr);
if (hash_bucket_head)
hlist_add_head(&rem_info->hlist_node, hash_bucket_head);
}
spin_unlock_irqrestore(&iwpm_reminfo_lock, flags);
}
int iwpm_get_remote_info(struct sockaddr_storage *mapped_loc_addr,
struct sockaddr_storage *mapped_rem_addr,
struct sockaddr_storage *remote_addr,
u8 nl_client)
{
struct hlist_node *tmp_hlist_node;
struct hlist_head *hash_bucket_head;
struct iwpm_remote_info *rem_info = NULL;
unsigned long flags;
int ret = -EINVAL;
if (!iwpm_valid_client(nl_client)) {
pr_info("%s: Invalid client = %d\n", __func__, nl_client);
return ret;
}
spin_lock_irqsave(&iwpm_reminfo_lock, flags);
if (iwpm_reminfo_bucket) {
hash_bucket_head = get_reminfo_hash_bucket(
mapped_loc_addr,
mapped_rem_addr);
if (!hash_bucket_head)
goto get_remote_info_exit;
hlist_for_each_entry_safe(rem_info, tmp_hlist_node,
hash_bucket_head, hlist_node) {
if (!iwpm_compare_sockaddr(&rem_info->mapped_loc_sockaddr,
mapped_loc_addr) &&
!iwpm_compare_sockaddr(&rem_info->mapped_rem_sockaddr,
mapped_rem_addr)) {
memcpy(remote_addr, &rem_info->remote_sockaddr,
sizeof(struct sockaddr_storage));
iwpm_print_sockaddr(remote_addr,
"get_remote_info: Remote sockaddr:");
hlist_del_init(&rem_info->hlist_node);
kfree(rem_info);
ret = 0;
break;
}
}
}
get_remote_info_exit:
spin_unlock_irqrestore(&iwpm_reminfo_lock, flags);
return ret;
}
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
struct iwpm_nlmsg_request *iwpm_get_nlmsg_request(__u32 nlmsg_seq,
u8 nl_client, gfp_t gfp)
{
struct iwpm_nlmsg_request *nlmsg_request = NULL;
unsigned long flags;
nlmsg_request = kzalloc(sizeof(struct iwpm_nlmsg_request), gfp);
if (!nlmsg_request)
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
return NULL;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
spin_lock_irqsave(&iwpm_nlmsg_req_lock, flags);
list_add_tail(&nlmsg_request->inprocess_list, &iwpm_nlmsg_req_list);
spin_unlock_irqrestore(&iwpm_nlmsg_req_lock, flags);
kref_init(&nlmsg_request->kref);
kref_get(&nlmsg_request->kref);
nlmsg_request->nlmsg_seq = nlmsg_seq;
nlmsg_request->nl_client = nl_client;
nlmsg_request->request_done = 0;
nlmsg_request->err_code = 0;
sema_init(&nlmsg_request->sem, 1);
down(&nlmsg_request->sem);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
return nlmsg_request;
}
void iwpm_free_nlmsg_request(struct kref *kref)
{
struct iwpm_nlmsg_request *nlmsg_request;
unsigned long flags;
nlmsg_request = container_of(kref, struct iwpm_nlmsg_request, kref);
spin_lock_irqsave(&iwpm_nlmsg_req_lock, flags);
list_del_init(&nlmsg_request->inprocess_list);
spin_unlock_irqrestore(&iwpm_nlmsg_req_lock, flags);
if (!nlmsg_request->request_done)
pr_debug("%s Freeing incomplete nlmsg request (seq = %u).\n",
__func__, nlmsg_request->nlmsg_seq);
kfree(nlmsg_request);
}
struct iwpm_nlmsg_request *iwpm_find_nlmsg_request(__u32 echo_seq)
{
struct iwpm_nlmsg_request *nlmsg_request;
struct iwpm_nlmsg_request *found_request = NULL;
unsigned long flags;
spin_lock_irqsave(&iwpm_nlmsg_req_lock, flags);
list_for_each_entry(nlmsg_request, &iwpm_nlmsg_req_list,
inprocess_list) {
if (nlmsg_request->nlmsg_seq == echo_seq) {
found_request = nlmsg_request;
kref_get(&nlmsg_request->kref);
break;
}
}
spin_unlock_irqrestore(&iwpm_nlmsg_req_lock, flags);
return found_request;
}
int iwpm_wait_complete_req(struct iwpm_nlmsg_request *nlmsg_request)
{
int ret;
ret = down_timeout(&nlmsg_request->sem, IWPM_NL_TIMEOUT);
if (ret) {
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
ret = -EINVAL;
pr_info("%s: Timeout %d sec for netlink request (seq = %u)\n",
__func__, (IWPM_NL_TIMEOUT/HZ), nlmsg_request->nlmsg_seq);
} else {
ret = nlmsg_request->err_code;
}
kref_put(&nlmsg_request->kref, iwpm_free_nlmsg_request);
return ret;
}
int iwpm_get_nlmsg_seq(void)
{
return atomic_inc_return(&iwpm_admin.nlmsg_seq);
}
int iwpm_valid_client(u8 nl_client)
{
return iwpm_admin.client_list[nl_client];
}
void iwpm_set_valid(u8 nl_client, int valid)
{
iwpm_admin.client_list[nl_client] = valid;
}
/* valid client */
u32 iwpm_get_registration(u8 nl_client)
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
{
return iwpm_admin.reg_list[nl_client];
}
/* valid client */
void iwpm_set_registration(u8 nl_client, u32 reg)
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
{
iwpm_admin.reg_list[nl_client] = reg;
}
/* valid client */
u32 iwpm_check_registration(u8 nl_client, u32 reg)
{
return (iwpm_get_registration(nl_client) & reg);
}
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
int iwpm_compare_sockaddr(struct sockaddr_storage *a_sockaddr,
struct sockaddr_storage *b_sockaddr)
{
if (a_sockaddr->ss_family != b_sockaddr->ss_family)
return 1;
if (a_sockaddr->ss_family == AF_INET) {
struct sockaddr_in *a4_sockaddr =
(struct sockaddr_in *)a_sockaddr;
struct sockaddr_in *b4_sockaddr =
(struct sockaddr_in *)b_sockaddr;
if (!memcmp(&a4_sockaddr->sin_addr,
&b4_sockaddr->sin_addr, sizeof(struct in_addr))
&& a4_sockaddr->sin_port == b4_sockaddr->sin_port)
return 0;
} else if (a_sockaddr->ss_family == AF_INET6) {
struct sockaddr_in6 *a6_sockaddr =
(struct sockaddr_in6 *)a_sockaddr;
struct sockaddr_in6 *b6_sockaddr =
(struct sockaddr_in6 *)b_sockaddr;
if (!memcmp(&a6_sockaddr->sin6_addr,
&b6_sockaddr->sin6_addr, sizeof(struct in6_addr))
&& a6_sockaddr->sin6_port == b6_sockaddr->sin6_port)
return 0;
} else {
pr_err("%s: Invalid sockaddr family\n", __func__);
}
return 1;
}
struct sk_buff *iwpm_create_nlmsg(u32 nl_op, struct nlmsghdr **nlh,
int nl_client)
{
struct sk_buff *skb = NULL;
skb = dev_alloc_skb(IWPM_MSG_SIZE);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (!skb) {
pr_err("%s Unable to allocate skb\n", __func__);
goto create_nlmsg_exit;
}
if (!(ibnl_put_msg(skb, nlh, 0, 0, nl_client, nl_op,
NLM_F_REQUEST))) {
pr_warn("%s: Unable to put the nlmsg header\n", __func__);
dev_kfree_skb(skb);
skb = NULL;
}
create_nlmsg_exit:
return skb;
}
int iwpm_parse_nlmsg(struct netlink_callback *cb, int policy_max,
const struct nla_policy *nlmsg_policy,
struct nlattr *nltb[], const char *msg_type)
{
int nlh_len = 0;
int ret;
const char *err_str = "";
ret = nlmsg_validate(cb->nlh, nlh_len, policy_max - 1, nlmsg_policy,
NULL);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (ret) {
err_str = "Invalid attribute";
goto parse_nlmsg_error;
}
ret = nlmsg_parse(cb->nlh, nlh_len, nltb, policy_max - 1,
nlmsg_policy, NULL);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (ret) {
err_str = "Unable to parse the nlmsg";
goto parse_nlmsg_error;
}
ret = iwpm_validate_nlmsg_attr(nltb, policy_max);
if (ret) {
err_str = "Invalid NULL attribute";
goto parse_nlmsg_error;
}
return 0;
parse_nlmsg_error:
pr_warn("%s: %s (msg type %s ret = %d)\n",
__func__, err_str, msg_type, ret);
return ret;
}
void iwpm_print_sockaddr(struct sockaddr_storage *sockaddr, char *msg)
{
struct sockaddr_in6 *sockaddr_v6;
struct sockaddr_in *sockaddr_v4;
switch (sockaddr->ss_family) {
case AF_INET:
sockaddr_v4 = (struct sockaddr_in *)sockaddr;
pr_debug("%s IPV4 %pI4: %u(0x%04X)\n",
msg, &sockaddr_v4->sin_addr,
ntohs(sockaddr_v4->sin_port),
ntohs(sockaddr_v4->sin_port));
break;
case AF_INET6:
sockaddr_v6 = (struct sockaddr_in6 *)sockaddr;
pr_debug("%s IPV6 %pI6: %u(0x%04X)\n",
msg, &sockaddr_v6->sin6_addr,
ntohs(sockaddr_v6->sin6_port),
ntohs(sockaddr_v6->sin6_port));
break;
default:
break;
}
}
static u32 iwpm_ipv6_jhash(struct sockaddr_in6 *ipv6_sockaddr)
{
u32 ipv6_hash = jhash(&ipv6_sockaddr->sin6_addr, sizeof(struct in6_addr), 0);
u32 hash = jhash_2words(ipv6_hash, (__force u32) ipv6_sockaddr->sin6_port, 0);
return hash;
}
static u32 iwpm_ipv4_jhash(struct sockaddr_in *ipv4_sockaddr)
{
u32 ipv4_hash = jhash(&ipv4_sockaddr->sin_addr, sizeof(struct in_addr), 0);
u32 hash = jhash_2words(ipv4_hash, (__force u32) ipv4_sockaddr->sin_port, 0);
return hash;
}
static int get_hash_bucket(struct sockaddr_storage *a_sockaddr,
struct sockaddr_storage *b_sockaddr, u32 *hash)
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
{
u32 a_hash, b_hash;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (a_sockaddr->ss_family == AF_INET) {
a_hash = iwpm_ipv4_jhash((struct sockaddr_in *) a_sockaddr);
b_hash = iwpm_ipv4_jhash((struct sockaddr_in *) b_sockaddr);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
} else if (a_sockaddr->ss_family == AF_INET6) {
a_hash = iwpm_ipv6_jhash((struct sockaddr_in6 *) a_sockaddr);
b_hash = iwpm_ipv6_jhash((struct sockaddr_in6 *) b_sockaddr);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
} else {
pr_err("%s: Invalid sockaddr family\n", __func__);
return -EINVAL;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
}
if (a_hash == b_hash) /* if port mapper isn't available */
*hash = a_hash;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
else
*hash = jhash_2words(a_hash, b_hash, 0);
return 0;
}
static struct hlist_head *get_mapinfo_hash_bucket(struct sockaddr_storage
*local_sockaddr, struct sockaddr_storage
*mapped_sockaddr)
{
u32 hash;
int ret;
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
ret = get_hash_bucket(local_sockaddr, mapped_sockaddr, &hash);
if (ret)
return NULL;
return &iwpm_hash_bucket[hash & IWPM_MAPINFO_HASH_MASK];
}
static struct hlist_head *get_reminfo_hash_bucket(struct sockaddr_storage
*mapped_loc_sockaddr, struct sockaddr_storage
*mapped_rem_sockaddr)
{
u32 hash;
int ret;
ret = get_hash_bucket(mapped_loc_sockaddr, mapped_rem_sockaddr, &hash);
if (ret)
return NULL;
return &iwpm_reminfo_bucket[hash & IWPM_REMINFO_HASH_MASK];
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
}
static int send_mapinfo_num(u32 mapping_num, u8 nl_client, int iwpm_pid)
{
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
u32 msg_seq;
const char *err_str = "";
int ret = -EINVAL;
skb = iwpm_create_nlmsg(RDMA_NL_IWPM_MAPINFO_NUM, &nlh, nl_client);
if (!skb) {
err_str = "Unable to create a nlmsg";
goto mapinfo_num_error;
}
nlh->nlmsg_seq = iwpm_get_nlmsg_seq();
msg_seq = 0;
err_str = "Unable to put attribute of mapinfo number nlmsg";
ret = ibnl_put_attr(skb, nlh, sizeof(u32), &msg_seq, IWPM_NLA_MAPINFO_SEQ);
if (ret)
goto mapinfo_num_error;
ret = ibnl_put_attr(skb, nlh, sizeof(u32),
&mapping_num, IWPM_NLA_MAPINFO_SEND_NUM);
if (ret)
goto mapinfo_num_error;
nlmsg_end(skb, nlh);
ret = rdma_nl_unicast(skb, iwpm_pid);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (ret) {
skb = NULL;
err_str = "Unable to send a nlmsg";
goto mapinfo_num_error;
}
pr_debug("%s: Sent mapping number = %d\n", __func__, mapping_num);
return 0;
mapinfo_num_error:
pr_info("%s: %s\n", __func__, err_str);
if (skb)
dev_kfree_skb(skb);
return ret;
}
static int send_nlmsg_done(struct sk_buff *skb, u8 nl_client, int iwpm_pid)
{
struct nlmsghdr *nlh = NULL;
int ret = 0;
if (!skb)
return ret;
if (!(ibnl_put_msg(skb, &nlh, 0, 0, nl_client,
RDMA_NL_IWPM_MAPINFO, NLM_F_MULTI))) {
pr_warn("%s Unable to put NLMSG_DONE\n", __func__);
dev_kfree_skb(skb);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
return -ENOMEM;
}
nlh->nlmsg_type = NLMSG_DONE;
ret = rdma_nl_unicast(skb, iwpm_pid);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (ret)
pr_warn("%s Unable to send a nlmsg\n", __func__);
return ret;
}
int iwpm_send_mapinfo(u8 nl_client, int iwpm_pid)
{
struct iwpm_mapping_info *map_info;
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
int skb_num = 0, mapping_num = 0;
int i = 0, nlmsg_bytes = 0;
unsigned long flags;
const char *err_str = "";
int ret;
skb = dev_alloc_skb(NLMSG_GOODSIZE);
if (!skb) {
ret = -ENOMEM;
err_str = "Unable to allocate skb";
goto send_mapping_info_exit;
}
skb_num++;
spin_lock_irqsave(&iwpm_mapinfo_lock, flags);
ret = -EINVAL;
for (i = 0; i < IWPM_MAPINFO_HASH_SIZE; i++) {
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
hlist_for_each_entry(map_info, &iwpm_hash_bucket[i],
hlist_node) {
if (map_info->nl_client != nl_client)
continue;
nlh = NULL;
if (!(ibnl_put_msg(skb, &nlh, 0, 0, nl_client,
RDMA_NL_IWPM_MAPINFO, NLM_F_MULTI))) {
ret = -ENOMEM;
err_str = "Unable to put the nlmsg header";
goto send_mapping_info_unlock;
}
err_str = "Unable to put attribute of the nlmsg";
ret = ibnl_put_attr(skb, nlh,
sizeof(struct sockaddr_storage),
&map_info->local_sockaddr,
IWPM_NLA_MAPINFO_LOCAL_ADDR);
if (ret)
goto send_mapping_info_unlock;
ret = ibnl_put_attr(skb, nlh,
sizeof(struct sockaddr_storage),
&map_info->mapped_sockaddr,
IWPM_NLA_MAPINFO_MAPPED_ADDR);
if (ret)
goto send_mapping_info_unlock;
nlmsg_end(skb, nlh);
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
iwpm_print_sockaddr(&map_info->local_sockaddr,
"send_mapping_info: Local sockaddr:");
iwpm_print_sockaddr(&map_info->mapped_sockaddr,
"send_mapping_info: Mapped local sockaddr:");
mapping_num++;
nlmsg_bytes += nlh->nlmsg_len;
/* check if all mappings can fit in one skb */
if (NLMSG_GOODSIZE - nlmsg_bytes < nlh->nlmsg_len * 2) {
/* and leave room for NLMSG_DONE */
nlmsg_bytes = 0;
skb_num++;
spin_unlock_irqrestore(&iwpm_mapinfo_lock,
flags);
/* send the skb */
ret = send_nlmsg_done(skb, nl_client, iwpm_pid);
skb = NULL;
if (ret) {
err_str = "Unable to send map info";
goto send_mapping_info_exit;
}
if (skb_num == IWPM_MAPINFO_SKB_COUNT) {
ret = -ENOMEM;
err_str = "Insufficient skbs for map info";
goto send_mapping_info_exit;
}
skb = dev_alloc_skb(NLMSG_GOODSIZE);
if (!skb) {
ret = -ENOMEM;
err_str = "Unable to allocate skb";
goto send_mapping_info_exit;
}
spin_lock_irqsave(&iwpm_mapinfo_lock, flags);
}
}
}
send_mapping_info_unlock:
spin_unlock_irqrestore(&iwpm_mapinfo_lock, flags);
send_mapping_info_exit:
if (ret) {
pr_warn("%s: %s (ret = %d)\n", __func__, err_str, ret);
if (skb)
dev_kfree_skb(skb);
return ret;
}
send_nlmsg_done(skb, nl_client, iwpm_pid);
return send_mapinfo_num(mapping_num, nl_client, iwpm_pid);
}
int iwpm_mapinfo_available(void)
{
unsigned long flags;
int full_bucket = 0, i = 0;
spin_lock_irqsave(&iwpm_mapinfo_lock, flags);
if (iwpm_hash_bucket) {
for (i = 0; i < IWPM_MAPINFO_HASH_SIZE; i++) {
RDMA/core: Add support for iWARP Port Mapper user space service This patch adds iWARP Port Mapper (IWPM) Version 2 support. The iWARP Port Mapper implementation is based on the port mapper specification section in the Sockets Direct Protocol paper - http://www.rdmaconsortium.org/home/draft-pinkerton-iwarp-sdp-v1.0.pdf Existing iWARP RDMA providers use the same IP address as the native TCP/IP stack when creating RDMA connections. They need a mechanism to claim the TCP ports used for RDMA connections to prevent TCP port collisions when other host applications use TCP ports. The iWARP Port Mapper provides a standard mechanism to accomplish this. Without this service it is possible for RDMA application to bind/listen on the same port which is already being used by native TCP host application. If that happens the incoming TCP connection data can be passed to the RDMA stack with error. The iWARP Port Mapper solution doesn't contain any changes to the existing network stack in the kernel space. All the changes are contained with the infiniband tree and also in user space. The iWARP Port Mapper service is implemented as a user space daemon process. Source for the IWPM service is located at http://git.openfabrics.org/git?p=~tnikolova/libiwpm-1.0.0/.git;a=summary The iWARP driver (port mapper client) sends to the IWPM service the local IP address and TCP port it has received from the RDMA application, when starting a connection. The IWPM service performs a socket bind from user space to get an available TCP port, called a mapped port, and communicates it back to the client. In that sense, the IWPM service is used to map the TCP port, which the RDMA application uses to any port available from the host TCP port space. The mapped ports are used in iWARP RDMA connections to avoid collisions with native TCP stack which is aware that these ports are taken. When an RDMA connection using a mapped port is terminated, the client notifies the IWPM service, which then releases the TCP port. The message exchange between the IWPM service and the iWARP drivers (between user space and kernel space) is implemented using netlink sockets. 1) Netlink interface functions are added: ibnl_unicast() and ibnl_mulitcast() for sending netlink messages to user space 2) The signature of the existing ibnl_put_msg() is changed to be more generic 3) Two netlink clients are added: RDMA_NL_NES, RDMA_NL_C4IW corresponding to the two iWarp drivers - nes and cxgb4 which use the IWPM service 4) Enums are added to enumerate the attributes in the netlink messages, which are exchanged between the user space IWPM service and the iWARP drivers Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com> Signed-off-by: Steve Wise <swise@opengridcomputing.com> Reviewed-by: PJ Waskiewicz <pj.waskiewicz@solidfire.com> [ Fold in range checking fixes and nlh_next removal as suggested by Dan Carpenter and Steve Wise. Fix sparse endianness in hash. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
2014-03-26 16:07:35 -06:00
if (!hlist_empty(&iwpm_hash_bucket[i])) {
full_bucket = 1;
break;
}
}
}
spin_unlock_irqrestore(&iwpm_mapinfo_lock, flags);
return full_bucket;
}