kernel-fxtec-pro1x/drivers/pci/intel-iommu.c

3583 lines
86 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* Copyright (C) 2006-2008 Intel Corporation
* Author: Ashok Raj <ashok.raj@intel.com>
* Author: Shaohua Li <shaohua.li@intel.com>
* Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
* Author: Fenghua Yu <fenghua.yu@intel.com>
*/
#include <linux/init.h>
#include <linux/bitmap.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
#include <linux/timer.h>
#include <linux/iova.h>
#include <linux/iommu.h>
#include <linux/intel-iommu.h>
#include <linux/sysdev.h>
#include <asm/cacheflush.h>
#include <asm/iommu.h>
#include "pci.h"
#define ROOT_SIZE VTD_PAGE_SIZE
#define CONTEXT_SIZE VTD_PAGE_SIZE
#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
#define IOAPIC_RANGE_START (0xfee00000)
#define IOAPIC_RANGE_END (0xfeefffff)
#define IOVA_START_ADDR (0x1000)
#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
#define MAX_AGAW_WIDTH 64
#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
#define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
are never going to work. */
static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
{
return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
{
return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
return mm_to_dma_pfn(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
return page_to_dma_pfn(virt_to_page(p));
}
/* global iommu list, set NULL for ignored DMAR units */
static struct intel_iommu **g_iommus;
static int rwbf_quirk;
/*
* 0: Present
* 1-11: Reserved
* 12-63: Context Ptr (12 - (haw-1))
* 64-127: Reserved
*/
struct root_entry {
u64 val;
u64 rsvd1;
};
#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
static inline bool root_present(struct root_entry *root)
{
return (root->val & 1);
}
static inline void set_root_present(struct root_entry *root)
{
root->val |= 1;
}
static inline void set_root_value(struct root_entry *root, unsigned long value)
{
root->val |= value & VTD_PAGE_MASK;
}
static inline struct context_entry *
get_context_addr_from_root(struct root_entry *root)
{
return (struct context_entry *)
(root_present(root)?phys_to_virt(
root->val & VTD_PAGE_MASK) :
NULL);
}
/*
* low 64 bits:
* 0: present
* 1: fault processing disable
* 2-3: translation type
* 12-63: address space root
* high 64 bits:
* 0-2: address width
* 3-6: aval
* 8-23: domain id
*/
struct context_entry {
u64 lo;
u64 hi;
};
static inline bool context_present(struct context_entry *context)
{
return (context->lo & 1);
}
static inline void context_set_present(struct context_entry *context)
{
context->lo |= 1;
}
static inline void context_set_fault_enable(struct context_entry *context)
{
context->lo &= (((u64)-1) << 2) | 1;
}
static inline void context_set_translation_type(struct context_entry *context,
unsigned long value)
{
context->lo &= (((u64)-1) << 4) | 3;
context->lo |= (value & 3) << 2;
}
static inline void context_set_address_root(struct context_entry *context,
unsigned long value)
{
context->lo |= value & VTD_PAGE_MASK;
}
static inline void context_set_address_width(struct context_entry *context,
unsigned long value)
{
context->hi |= value & 7;
}
static inline void context_set_domain_id(struct context_entry *context,
unsigned long value)
{
context->hi |= (value & ((1 << 16) - 1)) << 8;
}
static inline void context_clear_entry(struct context_entry *context)
{
context->lo = 0;
context->hi = 0;
}
/*
* 0: readable
* 1: writable
* 2-6: reserved
* 7: super page
* 8-10: available
* 11: snoop behavior
* 12-63: Host physcial address
*/
struct dma_pte {
u64 val;
};
static inline void dma_clear_pte(struct dma_pte *pte)
{
pte->val = 0;
}
static inline void dma_set_pte_readable(struct dma_pte *pte)
{
pte->val |= DMA_PTE_READ;
}
static inline void dma_set_pte_writable(struct dma_pte *pte)
{
pte->val |= DMA_PTE_WRITE;
}
static inline void dma_set_pte_snp(struct dma_pte *pte)
{
pte->val |= DMA_PTE_SNP;
}
static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
{
pte->val = (pte->val & ~3) | (prot & 3);
}
static inline u64 dma_pte_addr(struct dma_pte *pte)
{
return (pte->val & VTD_PAGE_MASK);
}
static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
{
pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
}
static inline bool dma_pte_present(struct dma_pte *pte)
{
return (pte->val & 3) != 0;
}
/*
* This domain is a statically identity mapping domain.
* 1. This domain creats a static 1:1 mapping to all usable memory.
* 2. It maps to each iommu if successful.
* 3. Each iommu mapps to this domain if successful.
*/
struct dmar_domain *si_domain;
/* devices under the same p2p bridge are owned in one domain */
#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
/* domain represents a virtual machine, more than one devices
* across iommus may be owned in one domain, e.g. kvm guest.
*/
#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
/* si_domain contains mulitple devices */
#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
struct dmar_domain {
int id; /* domain id */
unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
struct list_head devices; /* all devices' list */
struct iova_domain iovad; /* iova's that belong to this domain */
struct dma_pte *pgd; /* virtual address */
spinlock_t mapping_lock; /* page table lock */
int gaw; /* max guest address width */
/* adjusted guest address width, 0 is level 2 30-bit */
int agaw;
int flags; /* flags to find out type of domain */
int iommu_coherency;/* indicate coherency of iommu access */
int iommu_snooping; /* indicate snooping control feature*/
int iommu_count; /* reference count of iommu */
spinlock_t iommu_lock; /* protect iommu set in domain */
u64 max_addr; /* maximum mapped address */
};
/* PCI domain-device relationship */
struct device_domain_info {
struct list_head link; /* link to domain siblings */
struct list_head global; /* link to global list */
int segment; /* PCI domain */
u8 bus; /* PCI bus number */
u8 devfn; /* PCI devfn number */
struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
struct intel_iommu *iommu; /* IOMMU used by this device */
struct dmar_domain *domain; /* pointer to domain */
};
static void flush_unmaps_timeout(unsigned long data);
DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
#define HIGH_WATER_MARK 250
struct deferred_flush_tables {
int next;
struct iova *iova[HIGH_WATER_MARK];
struct dmar_domain *domain[HIGH_WATER_MARK];
};
static struct deferred_flush_tables *deferred_flush;
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;
static DEFINE_SPINLOCK(async_umap_flush_lock);
static LIST_HEAD(unmaps_to_do);
static int timer_on;
static long list_size;
static void domain_remove_dev_info(struct dmar_domain *domain);
#ifdef CONFIG_DMAR_DEFAULT_ON
int dmar_disabled = 0;
#else
int dmar_disabled = 1;
#endif /*CONFIG_DMAR_DEFAULT_ON*/
static int __initdata dmar_map_gfx = 1;
static int dmar_forcedac;
static int intel_iommu_strict;
#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);
static struct iommu_ops intel_iommu_ops;
static int __init intel_iommu_setup(char *str)
{
if (!str)
return -EINVAL;
while (*str) {
if (!strncmp(str, "on", 2)) {
dmar_disabled = 0;
printk(KERN_INFO "Intel-IOMMU: enabled\n");
} else if (!strncmp(str, "off", 3)) {
dmar_disabled = 1;
printk(KERN_INFO "Intel-IOMMU: disabled\n");
} else if (!strncmp(str, "igfx_off", 8)) {
dmar_map_gfx = 0;
printk(KERN_INFO
"Intel-IOMMU: disable GFX device mapping\n");
} else if (!strncmp(str, "forcedac", 8)) {
printk(KERN_INFO
"Intel-IOMMU: Forcing DAC for PCI devices\n");
dmar_forcedac = 1;
} else if (!strncmp(str, "strict", 6)) {
printk(KERN_INFO
"Intel-IOMMU: disable batched IOTLB flush\n");
intel_iommu_strict = 1;
}
str += strcspn(str, ",");
while (*str == ',')
str++;
}
return 0;
}
__setup("intel_iommu=", intel_iommu_setup);
static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;
static struct kmem_cache *iommu_iova_cache;
Intel IOMMU: Avoid memory allocation failures in dma map api calls Intel IOMMU driver needs memory during DMA map calls to setup its internal page tables and for other data structures. As we all know that these DMA map calls are mostly called in the interrupt context or with the spinlock held by the upper level drivers(network/storage drivers), so in order to avoid any memory allocation failure due to low memory issues, this patch makes memory allocation by temporarily setting PF_MEMALLOC flags for the current task before making memory allocation calls. We evaluated mempools as a backup when kmem_cache_alloc() fails and found that mempools are really not useful here because 1) We don't know for sure how much to reserve in advance 2) And mempools are not useful for GFP_ATOMIC case (as we call memory alloc functions with GFP_ATOMIC) (akpm: point 2 is wrong...) With PF_MEMALLOC flag set in the current->flags, the VM subsystem avoids any watermark checks before allocating memory thus guarantee'ing the memory till the last free page. Further, looking at the code in mm/page_alloc.c in __alloc_pages() function, looks like this flag is useful only in the non-interrupt context. If we are in the interrupt context and memory allocation in IOMMU driver fails for some reason, then the DMA map api's will return failure and it is up to the higher level drivers to retry. Suppose, if upper level driver programs the controller with the buggy DMA virtual address, the IOMMU will block that DMA transaction when that happens thus preventing any corruption to main memory. So far in our test scenario, we were unable to create any memory allocation failure inside dma map api calls. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ashok Raj <ashok.raj@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Christoph Lameter <clameter@sgi.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:52 -06:00
static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
{
unsigned int flags;
void *vaddr;
/* trying to avoid low memory issues */
flags = current->flags & PF_MEMALLOC;
current->flags |= PF_MEMALLOC;
vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
current->flags &= (~PF_MEMALLOC | flags);
return vaddr;
}
static inline void *alloc_pgtable_page(void)
{
Intel IOMMU: Avoid memory allocation failures in dma map api calls Intel IOMMU driver needs memory during DMA map calls to setup its internal page tables and for other data structures. As we all know that these DMA map calls are mostly called in the interrupt context or with the spinlock held by the upper level drivers(network/storage drivers), so in order to avoid any memory allocation failure due to low memory issues, this patch makes memory allocation by temporarily setting PF_MEMALLOC flags for the current task before making memory allocation calls. We evaluated mempools as a backup when kmem_cache_alloc() fails and found that mempools are really not useful here because 1) We don't know for sure how much to reserve in advance 2) And mempools are not useful for GFP_ATOMIC case (as we call memory alloc functions with GFP_ATOMIC) (akpm: point 2 is wrong...) With PF_MEMALLOC flag set in the current->flags, the VM subsystem avoids any watermark checks before allocating memory thus guarantee'ing the memory till the last free page. Further, looking at the code in mm/page_alloc.c in __alloc_pages() function, looks like this flag is useful only in the non-interrupt context. If we are in the interrupt context and memory allocation in IOMMU driver fails for some reason, then the DMA map api's will return failure and it is up to the higher level drivers to retry. Suppose, if upper level driver programs the controller with the buggy DMA virtual address, the IOMMU will block that DMA transaction when that happens thus preventing any corruption to main memory. So far in our test scenario, we were unable to create any memory allocation failure inside dma map api calls. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ashok Raj <ashok.raj@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Christoph Lameter <clameter@sgi.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:52 -06:00
unsigned int flags;
void *vaddr;
/* trying to avoid low memory issues */
flags = current->flags & PF_MEMALLOC;
current->flags |= PF_MEMALLOC;
vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
current->flags &= (~PF_MEMALLOC | flags);
return vaddr;
}
static inline void free_pgtable_page(void *vaddr)
{
free_page((unsigned long)vaddr);
}
static inline void *alloc_domain_mem(void)
{
Intel IOMMU: Avoid memory allocation failures in dma map api calls Intel IOMMU driver needs memory during DMA map calls to setup its internal page tables and for other data structures. As we all know that these DMA map calls are mostly called in the interrupt context or with the spinlock held by the upper level drivers(network/storage drivers), so in order to avoid any memory allocation failure due to low memory issues, this patch makes memory allocation by temporarily setting PF_MEMALLOC flags for the current task before making memory allocation calls. We evaluated mempools as a backup when kmem_cache_alloc() fails and found that mempools are really not useful here because 1) We don't know for sure how much to reserve in advance 2) And mempools are not useful for GFP_ATOMIC case (as we call memory alloc functions with GFP_ATOMIC) (akpm: point 2 is wrong...) With PF_MEMALLOC flag set in the current->flags, the VM subsystem avoids any watermark checks before allocating memory thus guarantee'ing the memory till the last free page. Further, looking at the code in mm/page_alloc.c in __alloc_pages() function, looks like this flag is useful only in the non-interrupt context. If we are in the interrupt context and memory allocation in IOMMU driver fails for some reason, then the DMA map api's will return failure and it is up to the higher level drivers to retry. Suppose, if upper level driver programs the controller with the buggy DMA virtual address, the IOMMU will block that DMA transaction when that happens thus preventing any corruption to main memory. So far in our test scenario, we were unable to create any memory allocation failure inside dma map api calls. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ashok Raj <ashok.raj@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Christoph Lameter <clameter@sgi.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:52 -06:00
return iommu_kmem_cache_alloc(iommu_domain_cache);
}
static void free_domain_mem(void *vaddr)
{
kmem_cache_free(iommu_domain_cache, vaddr);
}
static inline void * alloc_devinfo_mem(void)
{
Intel IOMMU: Avoid memory allocation failures in dma map api calls Intel IOMMU driver needs memory during DMA map calls to setup its internal page tables and for other data structures. As we all know that these DMA map calls are mostly called in the interrupt context or with the spinlock held by the upper level drivers(network/storage drivers), so in order to avoid any memory allocation failure due to low memory issues, this patch makes memory allocation by temporarily setting PF_MEMALLOC flags for the current task before making memory allocation calls. We evaluated mempools as a backup when kmem_cache_alloc() fails and found that mempools are really not useful here because 1) We don't know for sure how much to reserve in advance 2) And mempools are not useful for GFP_ATOMIC case (as we call memory alloc functions with GFP_ATOMIC) (akpm: point 2 is wrong...) With PF_MEMALLOC flag set in the current->flags, the VM subsystem avoids any watermark checks before allocating memory thus guarantee'ing the memory till the last free page. Further, looking at the code in mm/page_alloc.c in __alloc_pages() function, looks like this flag is useful only in the non-interrupt context. If we are in the interrupt context and memory allocation in IOMMU driver fails for some reason, then the DMA map api's will return failure and it is up to the higher level drivers to retry. Suppose, if upper level driver programs the controller with the buggy DMA virtual address, the IOMMU will block that DMA transaction when that happens thus preventing any corruption to main memory. So far in our test scenario, we were unable to create any memory allocation failure inside dma map api calls. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ashok Raj <ashok.raj@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Christoph Lameter <clameter@sgi.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:52 -06:00
return iommu_kmem_cache_alloc(iommu_devinfo_cache);
}
static inline void free_devinfo_mem(void *vaddr)
{
kmem_cache_free(iommu_devinfo_cache, vaddr);
}
struct iova *alloc_iova_mem(void)
{
Intel IOMMU: Avoid memory allocation failures in dma map api calls Intel IOMMU driver needs memory during DMA map calls to setup its internal page tables and for other data structures. As we all know that these DMA map calls are mostly called in the interrupt context or with the spinlock held by the upper level drivers(network/storage drivers), so in order to avoid any memory allocation failure due to low memory issues, this patch makes memory allocation by temporarily setting PF_MEMALLOC flags for the current task before making memory allocation calls. We evaluated mempools as a backup when kmem_cache_alloc() fails and found that mempools are really not useful here because 1) We don't know for sure how much to reserve in advance 2) And mempools are not useful for GFP_ATOMIC case (as we call memory alloc functions with GFP_ATOMIC) (akpm: point 2 is wrong...) With PF_MEMALLOC flag set in the current->flags, the VM subsystem avoids any watermark checks before allocating memory thus guarantee'ing the memory till the last free page. Further, looking at the code in mm/page_alloc.c in __alloc_pages() function, looks like this flag is useful only in the non-interrupt context. If we are in the interrupt context and memory allocation in IOMMU driver fails for some reason, then the DMA map api's will return failure and it is up to the higher level drivers to retry. Suppose, if upper level driver programs the controller with the buggy DMA virtual address, the IOMMU will block that DMA transaction when that happens thus preventing any corruption to main memory. So far in our test scenario, we were unable to create any memory allocation failure inside dma map api calls. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Muli Ben-Yehuda <muli@il.ibm.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ashok Raj <ashok.raj@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Christoph Lameter <clameter@sgi.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:52 -06:00
return iommu_kmem_cache_alloc(iommu_iova_cache);
}
void free_iova_mem(struct iova *iova)
{
kmem_cache_free(iommu_iova_cache, iova);
}
static inline int width_to_agaw(int width);
static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
{
unsigned long sagaw;
int agaw = -1;
sagaw = cap_sagaw(iommu->cap);
for (agaw = width_to_agaw(max_gaw);
agaw >= 0; agaw--) {
if (test_bit(agaw, &sagaw))
break;
}
return agaw;
}
/*
* Calculate max SAGAW for each iommu.
*/
int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
}
/*
* calculate agaw for each iommu.
* "SAGAW" may be different across iommus, use a default agaw, and
* get a supported less agaw for iommus that don't support the default agaw.
*/
int iommu_calculate_agaw(struct intel_iommu *iommu)
{
return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
}
/* This functionin only returns single iommu in a domain */
static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
{
int iommu_id;
/* si_domain and vm domain should not get here. */
BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
return NULL;
return g_iommus[iommu_id];
}
static void domain_update_iommu_coherency(struct dmar_domain *domain)
{
int i;
domain->iommu_coherency = 1;
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
for (; i < g_num_of_iommus; ) {
if (!ecap_coherent(g_iommus[i]->ecap)) {
domain->iommu_coherency = 0;
break;
}
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
}
}
static void domain_update_iommu_snooping(struct dmar_domain *domain)
{
int i;
domain->iommu_snooping = 1;
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
for (; i < g_num_of_iommus; ) {
if (!ecap_sc_support(g_iommus[i]->ecap)) {
domain->iommu_snooping = 0;
break;
}
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
}
}
/* Some capabilities may be different across iommus */
static void domain_update_iommu_cap(struct dmar_domain *domain)
{
domain_update_iommu_coherency(domain);
domain_update_iommu_snooping(domain);
}
static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
{
struct dmar_drhd_unit *drhd = NULL;
int i;
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
if (segment != drhd->segment)
continue;
for (i = 0; i < drhd->devices_cnt; i++) {
if (drhd->devices[i] &&
drhd->devices[i]->bus->number == bus &&
drhd->devices[i]->devfn == devfn)
return drhd->iommu;
if (drhd->devices[i] &&
drhd->devices[i]->subordinate &&
drhd->devices[i]->subordinate->number <= bus &&
drhd->devices[i]->subordinate->subordinate >= bus)
return drhd->iommu;
}
if (drhd->include_all)
return drhd->iommu;
}
return NULL;
}
static void domain_flush_cache(struct dmar_domain *domain,
void *addr, int size)
{
if (!domain->iommu_coherency)
clflush_cache_range(addr, size);
}
/* Gets context entry for a given bus and devfn */
static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
u8 bus, u8 devfn)
{
struct root_entry *root;
struct context_entry *context;
unsigned long phy_addr;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
root = &iommu->root_entry[bus];
context = get_context_addr_from_root(root);
if (!context) {
context = (struct context_entry *)alloc_pgtable_page();
if (!context) {
spin_unlock_irqrestore(&iommu->lock, flags);
return NULL;
}
__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
phy_addr = virt_to_phys((void *)context);
set_root_value(root, phy_addr);
set_root_present(root);
__iommu_flush_cache(iommu, root, sizeof(*root));
}
spin_unlock_irqrestore(&iommu->lock, flags);
return &context[devfn];
}
static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
struct root_entry *root;
struct context_entry *context;
int ret;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
root = &iommu->root_entry[bus];
context = get_context_addr_from_root(root);
if (!context) {
ret = 0;
goto out;
}
ret = context_present(&context[devfn]);
out:
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
struct root_entry *root;
struct context_entry *context;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
root = &iommu->root_entry[bus];
context = get_context_addr_from_root(root);
if (context) {
context_clear_entry(&context[devfn]);
__iommu_flush_cache(iommu, &context[devfn], \
sizeof(*context));
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void free_context_table(struct intel_iommu *iommu)
{
struct root_entry *root;
int i;
unsigned long flags;
struct context_entry *context;
spin_lock_irqsave(&iommu->lock, flags);
if (!iommu->root_entry) {
goto out;
}
for (i = 0; i < ROOT_ENTRY_NR; i++) {
root = &iommu->root_entry[i];
context = get_context_addr_from_root(root);
if (context)
free_pgtable_page(context);
}
free_pgtable_page(iommu->root_entry);
iommu->root_entry = NULL;
out:
spin_unlock_irqrestore(&iommu->lock, flags);
}
/* page table handling */
#define LEVEL_STRIDE (9)
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
static inline int agaw_to_level(int agaw)
{
return agaw + 2;
}
static inline int agaw_to_width(int agaw)
{
return 30 + agaw * LEVEL_STRIDE;
}
static inline int width_to_agaw(int width)
{
return (width - 30) / LEVEL_STRIDE;
}
static inline unsigned int level_to_offset_bits(int level)
{
return (level - 1) * LEVEL_STRIDE;
}
static inline int pfn_level_offset(unsigned long pfn, int level)
{
return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}
static inline unsigned long level_mask(int level)
{
return -1UL << level_to_offset_bits(level);
}
static inline unsigned long level_size(int level)
{
return 1UL << level_to_offset_bits(level);
}
static inline unsigned long align_to_level(unsigned long pfn, int level)
{
return (pfn + level_size(level) - 1) & level_mask(level);
}
static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
unsigned long pfn)
{
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
struct dma_pte *parent, *pte = NULL;
int level = agaw_to_level(domain->agaw);
int offset;
unsigned long flags;
BUG_ON(!domain->pgd);
BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
parent = domain->pgd;
spin_lock_irqsave(&domain->mapping_lock, flags);
while (level > 0) {
void *tmp_page;
offset = pfn_level_offset(pfn, level);
pte = &parent[offset];
if (level == 1)
break;
if (!dma_pte_present(pte)) {
tmp_page = alloc_pgtable_page();
if (!tmp_page) {
spin_unlock_irqrestore(&domain->mapping_lock,
flags);
return NULL;
}
domain_flush_cache(domain, tmp_page, PAGE_SIZE);
dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
/*
* high level table always sets r/w, last level page
* table control read/write
*/
dma_set_pte_readable(pte);
dma_set_pte_writable(pte);
domain_flush_cache(domain, pte, sizeof(*pte));
}
parent = phys_to_virt(dma_pte_addr(pte));
level--;
}
spin_unlock_irqrestore(&domain->mapping_lock, flags);
return pte;
}
/* return address's pte at specific level */
static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
unsigned long pfn,
int level)
{
struct dma_pte *parent, *pte = NULL;
int total = agaw_to_level(domain->agaw);
int offset;
parent = domain->pgd;
while (level <= total) {
offset = pfn_level_offset(pfn, total);
pte = &parent[offset];
if (level == total)
return pte;
if (!dma_pte_present(pte))
break;
parent = phys_to_virt(dma_pte_addr(pte));
total--;
}
return NULL;
}
/* clear last level pte, a tlb flush should be followed */
static void dma_pte_clear_range(struct dmar_domain *domain,
unsigned long start_pfn,
unsigned long last_pfn)
{
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
struct dma_pte *first_pte, *pte;
BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
/* we don't need lock here; nobody else touches the iova range */
while (start_pfn <= last_pfn) {
first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
if (!pte) {
start_pfn = align_to_level(start_pfn + 1, 2);
continue;
}
while (start_pfn <= last_pfn &&
(unsigned long)pte >> VTD_PAGE_SHIFT ==
(unsigned long)first_pte >> VTD_PAGE_SHIFT) {
dma_clear_pte(pte);
start_pfn++;
pte++;
}
domain_flush_cache(domain, first_pte,
(void *)pte - (void *)first_pte);
}
}
/* free page table pages. last level pte should already be cleared */
static void dma_pte_free_pagetable(struct dmar_domain *domain,
unsigned long start_pfn,
unsigned long last_pfn)
{
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
struct dma_pte *pte;
int total = agaw_to_level(domain->agaw);
int level;
unsigned long tmp;
BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
/* we don't need lock here, nobody else touches the iova range */
level = 2;
while (level <= total) {
tmp = align_to_level(start_pfn, level);
/* Only clear this pte/pmd if we're asked to clear its
_whole_ range */
if (tmp + level_size(level) - 1 > last_pfn)
return;
while (tmp <= last_pfn) {
pte = dma_pfn_level_pte(domain, tmp, level);
if (pte) {
free_pgtable_page(
phys_to_virt(dma_pte_addr(pte)));
dma_clear_pte(pte);
domain_flush_cache(domain, pte, sizeof(*pte));
}
tmp += level_size(level);
}
level++;
}
/* free pgd */
if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
free_pgtable_page(domain->pgd);
domain->pgd = NULL;
}
}
/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
struct root_entry *root;
unsigned long flags;
root = (struct root_entry *)alloc_pgtable_page();
if (!root)
return -ENOMEM;
__iommu_flush_cache(iommu, root, ROOT_SIZE);
spin_lock_irqsave(&iommu->lock, flags);
iommu->root_entry = root;
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static void iommu_set_root_entry(struct intel_iommu *iommu)
{
void *addr;
u32 sts;
unsigned long flag;
addr = iommu->root_entry;
spin_lock_irqsave(&iommu->register_lock, flag);
dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (sts & DMA_GSTS_RTPS), sts);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
static void iommu_flush_write_buffer(struct intel_iommu *iommu)
{
u32 val;
unsigned long flag;
if (!rwbf_quirk && !cap_rwbf(iommu->cap))
return;
spin_lock_irqsave(&iommu->register_lock, flag);
writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (!(val & DMA_GSTS_WBFS)), val);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
/* return value determine if we need a write buffer flush */
static void __iommu_flush_context(struct intel_iommu *iommu,
u16 did, u16 source_id, u8 function_mask,
u64 type)
{
u64 val = 0;
unsigned long flag;
switch (type) {
case DMA_CCMD_GLOBAL_INVL:
val = DMA_CCMD_GLOBAL_INVL;
break;
case DMA_CCMD_DOMAIN_INVL:
val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
break;
case DMA_CCMD_DEVICE_INVL:
val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
break;
default:
BUG();
}
val |= DMA_CCMD_ICC;
spin_lock_irqsave(&iommu->register_lock, flag);
dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
dmar_readq, (!(val & DMA_CCMD_ICC)), val);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
/* return value determine if we need a write buffer flush */
static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
u64 addr, unsigned int size_order, u64 type)
{
int tlb_offset = ecap_iotlb_offset(iommu->ecap);
u64 val = 0, val_iva = 0;
unsigned long flag;
switch (type) {
case DMA_TLB_GLOBAL_FLUSH:
/* global flush doesn't need set IVA_REG */
val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
break;
case DMA_TLB_DSI_FLUSH:
val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
break;
case DMA_TLB_PSI_FLUSH:
val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
/* Note: always flush non-leaf currently */
val_iva = size_order | addr;
break;
default:
BUG();
}
/* Note: set drain read/write */
#if 0
/*
* This is probably to be super secure.. Looks like we can
* ignore it without any impact.
*/
if (cap_read_drain(iommu->cap))
val |= DMA_TLB_READ_DRAIN;
#endif
if (cap_write_drain(iommu->cap))
val |= DMA_TLB_WRITE_DRAIN;
spin_lock_irqsave(&iommu->register_lock, flag);
/* Note: Only uses first TLB reg currently */
if (val_iva)
dmar_writeq(iommu->reg + tlb_offset, val_iva);
dmar_writeq(iommu->reg + tlb_offset + 8, val);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, tlb_offset + 8,
dmar_readq, (!(val & DMA_TLB_IVT)), val);
spin_unlock_irqrestore(&iommu->register_lock, flag);
/* check IOTLB invalidation granularity */
if (DMA_TLB_IAIG(val) == 0)
printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
(unsigned long long)DMA_TLB_IIRG(type),
(unsigned long long)DMA_TLB_IAIG(val));
}
static struct device_domain_info *iommu_support_dev_iotlb(
struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
{
int found = 0;
unsigned long flags;
struct device_domain_info *info;
struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
if (!ecap_dev_iotlb_support(iommu->ecap))
return NULL;
if (!iommu->qi)
return NULL;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(info, &domain->devices, link)
if (info->bus == bus && info->devfn == devfn) {
found = 1;
break;
}
spin_unlock_irqrestore(&device_domain_lock, flags);
if (!found || !info->dev)
return NULL;
if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
return NULL;
if (!dmar_find_matched_atsr_unit(info->dev))
return NULL;
info->iommu = iommu;
return info;
}
static void iommu_enable_dev_iotlb(struct device_domain_info *info)
{
if (!info)
return;
pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
}
static void iommu_disable_dev_iotlb(struct device_domain_info *info)
{
if (!info->dev || !pci_ats_enabled(info->dev))
return;
pci_disable_ats(info->dev);
}
static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
u64 addr, unsigned mask)
{
u16 sid, qdep;
unsigned long flags;
struct device_domain_info *info;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(info, &domain->devices, link) {
if (!info->dev || !pci_ats_enabled(info->dev))
continue;
sid = info->bus << 8 | info->devfn;
qdep = pci_ats_queue_depth(info->dev);
qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
unsigned long pfn, unsigned int pages)
{
unsigned int mask = ilog2(__roundup_pow_of_two(pages));
uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
BUG_ON(pages == 0);
/*
* Fallback to domain selective flush if no PSI support or the size is
* too big.
* PSI requires page size to be 2 ^ x, and the base address is naturally
* aligned to the size
*/
if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
iommu->flush.flush_iotlb(iommu, did, 0, 0,
DMA_TLB_DSI_FLUSH);
else
iommu->flush.flush_iotlb(iommu, did, addr, mask,
DMA_TLB_PSI_FLUSH);
/*
* In caching mode, domain ID 0 is reserved for non-present to present
* mapping flush. Device IOTLB doesn't need to be flushed in this case.
*/
if (!cap_caching_mode(iommu->cap) || did)
iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
}
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
u32 pmen;
unsigned long flags;
spin_lock_irqsave(&iommu->register_lock, flags);
pmen = readl(iommu->reg + DMAR_PMEN_REG);
pmen &= ~DMA_PMEN_EPM;
writel(pmen, iommu->reg + DMAR_PMEN_REG);
/* wait for the protected region status bit to clear */
IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
readl, !(pmen & DMA_PMEN_PRS), pmen);
spin_unlock_irqrestore(&iommu->register_lock, flags);
}
static int iommu_enable_translation(struct intel_iommu *iommu)
{
u32 sts;
unsigned long flags;
spin_lock_irqsave(&iommu->register_lock, flags);
iommu->gcmd |= DMA_GCMD_TE;
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (sts & DMA_GSTS_TES), sts);
spin_unlock_irqrestore(&iommu->register_lock, flags);
return 0;
}
static int iommu_disable_translation(struct intel_iommu *iommu)
{
u32 sts;
unsigned long flag;
spin_lock_irqsave(&iommu->register_lock, flag);
iommu->gcmd &= ~DMA_GCMD_TE;
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
readl, (!(sts & DMA_GSTS_TES)), sts);
spin_unlock_irqrestore(&iommu->register_lock, flag);
return 0;
}
static int iommu_init_domains(struct intel_iommu *iommu)
{
unsigned long ndomains;
unsigned long nlongs;
ndomains = cap_ndoms(iommu->cap);
pr_debug("Number of Domains supportd <%ld>\n", ndomains);
nlongs = BITS_TO_LONGS(ndomains);
/* TBD: there might be 64K domains,
* consider other allocation for future chip
*/
iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
if (!iommu->domain_ids) {
printk(KERN_ERR "Allocating domain id array failed\n");
return -ENOMEM;
}
iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
GFP_KERNEL);
if (!iommu->domains) {
printk(KERN_ERR "Allocating domain array failed\n");
kfree(iommu->domain_ids);
return -ENOMEM;
}
spin_lock_init(&iommu->lock);
/*
* if Caching mode is set, then invalid translations are tagged
* with domainid 0. Hence we need to pre-allocate it.
*/
if (cap_caching_mode(iommu->cap))
set_bit(0, iommu->domain_ids);
return 0;
}
static void domain_exit(struct dmar_domain *domain);
static void vm_domain_exit(struct dmar_domain *domain);
void free_dmar_iommu(struct intel_iommu *iommu)
{
struct dmar_domain *domain;
int i;
unsigned long flags;
i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
for (; i < cap_ndoms(iommu->cap); ) {
domain = iommu->domains[i];
clear_bit(i, iommu->domain_ids);
spin_lock_irqsave(&domain->iommu_lock, flags);
if (--domain->iommu_count == 0) {
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
vm_domain_exit(domain);
else
domain_exit(domain);
}
spin_unlock_irqrestore(&domain->iommu_lock, flags);
i = find_next_bit(iommu->domain_ids,
cap_ndoms(iommu->cap), i+1);
}
if (iommu->gcmd & DMA_GCMD_TE)
iommu_disable_translation(iommu);
if (iommu->irq) {
set_irq_data(iommu->irq, NULL);
/* This will mask the irq */
free_irq(iommu->irq, iommu);
destroy_irq(iommu->irq);
}
kfree(iommu->domains);
kfree(iommu->domain_ids);
g_iommus[iommu->seq_id] = NULL;
/* if all iommus are freed, free g_iommus */
for (i = 0; i < g_num_of_iommus; i++) {
if (g_iommus[i])
break;
}
if (i == g_num_of_iommus)
kfree(g_iommus);
/* free context mapping */
free_context_table(iommu);
}
static struct dmar_domain *alloc_domain(void)
{
struct dmar_domain *domain;
domain = alloc_domain_mem();
if (!domain)
return NULL;
memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
domain->flags = 0;
return domain;
}
static int iommu_attach_domain(struct dmar_domain *domain,
struct intel_iommu *iommu)
{
int num;
unsigned long ndomains;
unsigned long flags;
ndomains = cap_ndoms(iommu->cap);
spin_lock_irqsave(&iommu->lock, flags);
num = find_first_zero_bit(iommu->domain_ids, ndomains);
if (num >= ndomains) {
spin_unlock_irqrestore(&iommu->lock, flags);
printk(KERN_ERR "IOMMU: no free domain ids\n");
return -ENOMEM;
}
domain->id = num;
set_bit(num, iommu->domain_ids);
set_bit(iommu->seq_id, &domain->iommu_bmp);
iommu->domains[num] = domain;
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static void iommu_detach_domain(struct dmar_domain *domain,
struct intel_iommu *iommu)
{
unsigned long flags;
int num, ndomains;
int found = 0;
spin_lock_irqsave(&iommu->lock, flags);
ndomains = cap_ndoms(iommu->cap);
num = find_first_bit(iommu->domain_ids, ndomains);
for (; num < ndomains; ) {
if (iommu->domains[num] == domain) {
found = 1;
break;
}
num = find_next_bit(iommu->domain_ids,
cap_ndoms(iommu->cap), num+1);
}
if (found) {
clear_bit(num, iommu->domain_ids);
clear_bit(iommu->seq_id, &domain->iommu_bmp);
iommu->domains[num] = NULL;
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
static struct iova_domain reserved_iova_list;
static struct lock_class_key reserved_alloc_key;
static struct lock_class_key reserved_rbtree_key;
static void dmar_init_reserved_ranges(void)
{
struct pci_dev *pdev = NULL;
struct iova *iova;
int i;
init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
&reserved_alloc_key);
lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
&reserved_rbtree_key);
/* IOAPIC ranges shouldn't be accessed by DMA */
iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
IOVA_PFN(IOAPIC_RANGE_END));
if (!iova)
printk(KERN_ERR "Reserve IOAPIC range failed\n");
/* Reserve all PCI MMIO to avoid peer-to-peer access */
for_each_pci_dev(pdev) {
struct resource *r;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
r = &pdev->resource[i];
if (!r->flags || !(r->flags & IORESOURCE_MEM))
continue;
iova = reserve_iova(&reserved_iova_list,
IOVA_PFN(r->start),
IOVA_PFN(r->end));
if (!iova)
printk(KERN_ERR "Reserve iova failed\n");
}
}
}
static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}
static inline int guestwidth_to_adjustwidth(int gaw)
{
int agaw;
int r = (gaw - 12) % 9;
if (r == 0)
agaw = gaw;
else
agaw = gaw + 9 - r;
if (agaw > 64)
agaw = 64;
return agaw;
}
static int domain_init(struct dmar_domain *domain, int guest_width)
{
struct intel_iommu *iommu;
int adjust_width, agaw;
unsigned long sagaw;
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
spin_lock_init(&domain->mapping_lock);
spin_lock_init(&domain->iommu_lock);
domain_reserve_special_ranges(domain);
/* calculate AGAW */
iommu = domain_get_iommu(domain);
if (guest_width > cap_mgaw(iommu->cap))
guest_width = cap_mgaw(iommu->cap);
domain->gaw = guest_width;
adjust_width = guestwidth_to_adjustwidth(guest_width);
agaw = width_to_agaw(adjust_width);
sagaw = cap_sagaw(iommu->cap);
if (!test_bit(agaw, &sagaw)) {
/* hardware doesn't support it, choose a bigger one */
pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
agaw = find_next_bit(&sagaw, 5, agaw);
if (agaw >= 5)
return -ENODEV;
}
domain->agaw = agaw;
INIT_LIST_HEAD(&domain->devices);
if (ecap_coherent(iommu->ecap))
domain->iommu_coherency = 1;
else
domain->iommu_coherency = 0;
if (ecap_sc_support(iommu->ecap))
domain->iommu_snooping = 1;
else
domain->iommu_snooping = 0;
domain->iommu_count = 1;
/* always allocate the top pgd */
domain->pgd = (struct dma_pte *)alloc_pgtable_page();
if (!domain->pgd)
return -ENOMEM;
__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
return 0;
}
static void domain_exit(struct dmar_domain *domain)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
/* Domain 0 is reserved, so dont process it */
if (!domain)
return;
domain_remove_dev_info(domain);
/* destroy iovas */
put_iova_domain(&domain->iovad);
/* clear ptes */
dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
/* free page tables */
dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
for_each_active_iommu(iommu, drhd)
if (test_bit(iommu->seq_id, &domain->iommu_bmp))
iommu_detach_domain(domain, iommu);
free_domain_mem(domain);
}
static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
u8 bus, u8 devfn, int translation)
{
struct context_entry *context;
unsigned long flags;
struct intel_iommu *iommu;
struct dma_pte *pgd;
unsigned long num;
unsigned long ndomains;
int id;
int agaw;
struct device_domain_info *info = NULL;
pr_debug("Set context mapping for %02x:%02x.%d\n",
bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
BUG_ON(!domain->pgd);
BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
translation != CONTEXT_TT_MULTI_LEVEL);
iommu = device_to_iommu(segment, bus, devfn);
if (!iommu)
return -ENODEV;
context = device_to_context_entry(iommu, bus, devfn);
if (!context)
return -ENOMEM;
spin_lock_irqsave(&iommu->lock, flags);
if (context_present(context)) {
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
id = domain->id;
pgd = domain->pgd;
if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
int found = 0;
/* find an available domain id for this device in iommu */
ndomains = cap_ndoms(iommu->cap);
num = find_first_bit(iommu->domain_ids, ndomains);
for (; num < ndomains; ) {
if (iommu->domains[num] == domain) {
id = num;
found = 1;
break;
}
num = find_next_bit(iommu->domain_ids,
cap_ndoms(iommu->cap), num+1);
}
if (found == 0) {
num = find_first_zero_bit(iommu->domain_ids, ndomains);
if (num >= ndomains) {
spin_unlock_irqrestore(&iommu->lock, flags);
printk(KERN_ERR "IOMMU: no free domain ids\n");
return -EFAULT;
}
set_bit(num, iommu->domain_ids);
set_bit(iommu->seq_id, &domain->iommu_bmp);
iommu->domains[num] = domain;
id = num;
}
/* Skip top levels of page tables for
* iommu which has less agaw than default.
*/
for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
pgd = phys_to_virt(dma_pte_addr(pgd));
if (!dma_pte_present(pgd)) {
spin_unlock_irqrestore(&iommu->lock, flags);
return -ENOMEM;
}
}
}
context_set_domain_id(context, id);
if (translation != CONTEXT_TT_PASS_THROUGH) {
info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
translation = info ? CONTEXT_TT_DEV_IOTLB :
CONTEXT_TT_MULTI_LEVEL;
}
/*
* In pass through mode, AW must be programmed to indicate the largest
* AGAW value supported by hardware. And ASR is ignored by hardware.
*/
if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
context_set_address_width(context, iommu->msagaw);
else {
context_set_address_root(context, virt_to_phys(pgd));
context_set_address_width(context, iommu->agaw);
}
context_set_translation_type(context, translation);
context_set_fault_enable(context);
context_set_present(context);
domain_flush_cache(domain, context, sizeof(*context));
/*
* It's a non-present to present mapping. If hardware doesn't cache
* non-present entry we only need to flush the write-buffer. If the
* _does_ cache non-present entries, then it does so in the special
* domain #0, which we have to flush:
*/
if (cap_caching_mode(iommu->cap)) {
iommu->flush.flush_context(iommu, 0,
(((u16)bus) << 8) | devfn,
DMA_CCMD_MASK_NOBIT,
DMA_CCMD_DEVICE_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
} else {
iommu_flush_write_buffer(iommu);
}
iommu_enable_dev_iotlb(info);
spin_unlock_irqrestore(&iommu->lock, flags);
spin_lock_irqsave(&domain->iommu_lock, flags);
if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
domain->iommu_count++;
domain_update_iommu_cap(domain);
}
spin_unlock_irqrestore(&domain->iommu_lock, flags);
return 0;
}
static int
domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
int translation)
{
int ret;
struct pci_dev *tmp, *parent;
ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
pdev->bus->number, pdev->devfn,
translation);
if (ret)
return ret;
/* dependent device mapping */
tmp = pci_find_upstream_pcie_bridge(pdev);
if (!tmp)
return 0;
/* Secondary interface's bus number and devfn 0 */
parent = pdev->bus->self;
while (parent != tmp) {
ret = domain_context_mapping_one(domain,
pci_domain_nr(parent->bus),
parent->bus->number,
parent->devfn, translation);
if (ret)
return ret;
parent = parent->bus->self;
}
if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
return domain_context_mapping_one(domain,
pci_domain_nr(tmp->subordinate),
tmp->subordinate->number, 0,
translation);
else /* this is a legacy PCI bridge */
return domain_context_mapping_one(domain,
pci_domain_nr(tmp->bus),
tmp->bus->number,
tmp->devfn,
translation);
}
static int domain_context_mapped(struct pci_dev *pdev)
{
int ret;
struct pci_dev *tmp, *parent;
struct intel_iommu *iommu;
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
pdev->devfn);
if (!iommu)
return -ENODEV;
ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
if (!ret)
return ret;
/* dependent device mapping */
tmp = pci_find_upstream_pcie_bridge(pdev);
if (!tmp)
return ret;
/* Secondary interface's bus number and devfn 0 */
parent = pdev->bus->self;
while (parent != tmp) {
ret = device_context_mapped(iommu, parent->bus->number,
parent->devfn);
if (!ret)
return ret;
parent = parent->bus->self;
}
if (tmp->is_pcie)
return device_context_mapped(iommu, tmp->subordinate->number,
0);
else
return device_context_mapped(iommu, tmp->bus->number,
tmp->devfn);
}
static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
struct scatterlist *sg, unsigned long phys_pfn,
unsigned long nr_pages, int prot)
{
struct dma_pte *first_pte = NULL, *pte = NULL;
phys_addr_t uninitialized_var(pteval);
int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
unsigned long sg_res;
BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
return -EINVAL;
prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
if (sg)
sg_res = 0;
else {
sg_res = nr_pages + 1;
pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
}
while (nr_pages--) {
if (!sg_res) {
sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
sg->dma_length = sg->length;
pteval = page_to_phys(sg_page(sg)) | prot;
}
if (!pte) {
first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
if (!pte)
return -ENOMEM;
}
/* We don't need lock here, nobody else
* touches the iova range
*/
if (unlikely(dma_pte_addr(pte))) {
static int dumps = 5;
printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx)\n",
iov_pfn, pte->val);
if (dumps) {
dumps--;
debug_dma_dump_mappings(NULL);
}
WARN_ON(1);
}
pte->val = pteval;
pte++;
if (!nr_pages ||
(unsigned long)pte >> VTD_PAGE_SHIFT !=
(unsigned long)first_pte >> VTD_PAGE_SHIFT) {
domain_flush_cache(domain, first_pte,
(void *)pte - (void *)first_pte);
pte = NULL;
}
iov_pfn++;
pteval += VTD_PAGE_SIZE;
sg_res--;
if (!sg_res)
sg = sg_next(sg);
}
return 0;
}
static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
struct scatterlist *sg, unsigned long nr_pages,
int prot)
{
return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
}
static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
unsigned long phys_pfn, unsigned long nr_pages,
int prot)
{
return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
}
static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
if (!iommu)
return;
clear_context_table(iommu, bus, devfn);
iommu->flush.flush_context(iommu, 0, 0, 0,
DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
}
static void domain_remove_dev_info(struct dmar_domain *domain)
{
struct device_domain_info *info;
unsigned long flags;
struct intel_iommu *iommu;
spin_lock_irqsave(&device_domain_lock, flags);
while (!list_empty(&domain->devices)) {
info = list_entry(domain->devices.next,
struct device_domain_info, link);
list_del(&info->link);
list_del(&info->global);
if (info->dev)
info->dev->dev.archdata.iommu = NULL;
spin_unlock_irqrestore(&device_domain_lock, flags);
iommu_disable_dev_iotlb(info);
iommu = device_to_iommu(info->segment, info->bus, info->devfn);
iommu_detach_dev(iommu, info->bus, info->devfn);
free_devinfo_mem(info);
spin_lock_irqsave(&device_domain_lock, flags);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
/*
* find_domain
* Note: we use struct pci_dev->dev.archdata.iommu stores the info
*/
static struct dmar_domain *
find_domain(struct pci_dev *pdev)
{
struct device_domain_info *info;
/* No lock here, assumes no domain exit in normal case */
info = pdev->dev.archdata.iommu;
if (info)
return info->domain;
return NULL;
}
/* domain is initialized */
static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
{
struct dmar_domain *domain, *found = NULL;
struct intel_iommu *iommu;
struct dmar_drhd_unit *drhd;
struct device_domain_info *info, *tmp;
struct pci_dev *dev_tmp;
unsigned long flags;
int bus = 0, devfn = 0;
int segment;
int ret;
domain = find_domain(pdev);
if (domain)
return domain;
segment = pci_domain_nr(pdev->bus);
dev_tmp = pci_find_upstream_pcie_bridge(pdev);
if (dev_tmp) {
if (dev_tmp->is_pcie) {
bus = dev_tmp->subordinate->number;
devfn = 0;
} else {
bus = dev_tmp->bus->number;
devfn = dev_tmp->devfn;
}
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(info, &device_domain_list, global) {
if (info->segment == segment &&
info->bus == bus && info->devfn == devfn) {
found = info->domain;
break;
}
}
spin_unlock_irqrestore(&device_domain_lock, flags);
/* pcie-pci bridge already has a domain, uses it */
if (found) {
domain = found;
goto found_domain;
}
}
domain = alloc_domain();
if (!domain)
goto error;
/* Allocate new domain for the device */
drhd = dmar_find_matched_drhd_unit(pdev);
if (!drhd) {
printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
pci_name(pdev));
return NULL;
}
iommu = drhd->iommu;
ret = iommu_attach_domain(domain, iommu);
if (ret) {
domain_exit(domain);
goto error;
}
if (domain_init(domain, gaw)) {
domain_exit(domain);
goto error;
}
/* register pcie-to-pci device */
if (dev_tmp) {
info = alloc_devinfo_mem();
if (!info) {
domain_exit(domain);
goto error;
}
info->segment = segment;
info->bus = bus;
info->devfn = devfn;
info->dev = NULL;
info->domain = domain;
/* This domain is shared by devices under p2p bridge */
domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
/* pcie-to-pci bridge already has a domain, uses it */
found = NULL;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_entry(tmp, &device_domain_list, global) {
if (tmp->segment == segment &&
tmp->bus == bus && tmp->devfn == devfn) {
found = tmp->domain;
break;
}
}
if (found) {
free_devinfo_mem(info);
domain_exit(domain);
domain = found;
} else {
list_add(&info->link, &domain->devices);
list_add(&info->global, &device_domain_list);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
found_domain:
info = alloc_devinfo_mem();
if (!info)
goto error;
info->segment = segment;
info->bus = pdev->bus->number;
info->devfn = pdev->devfn;
info->dev = pdev;
info->domain = domain;
spin_lock_irqsave(&device_domain_lock, flags);
/* somebody is fast */
found = find_domain(pdev);
if (found != NULL) {
spin_unlock_irqrestore(&device_domain_lock, flags);
if (found != domain) {
domain_exit(domain);
domain = found;
}
free_devinfo_mem(info);
return domain;
}
list_add(&info->link, &domain->devices);
list_add(&info->global, &device_domain_list);
pdev->dev.archdata.iommu = info;
spin_unlock_irqrestore(&device_domain_lock, flags);
return domain;
error:
/* recheck it here, maybe others set it */
return find_domain(pdev);
}
static int iommu_identity_mapping;
static int iommu_domain_identity_map(struct dmar_domain *domain,
unsigned long long start,
unsigned long long end)
{
unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
dma_to_mm_pfn(last_vpfn))) {
printk(KERN_ERR "IOMMU: reserve iova failed\n");
return -ENOMEM;
}
pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
start, end, domain->id);
/*
* RMRR range might have overlap with physical memory range,
* clear it first
*/
dma_pte_clear_range(domain, first_vpfn, last_vpfn);
return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
last_vpfn - first_vpfn + 1,
DMA_PTE_READ|DMA_PTE_WRITE);
}
static int iommu_prepare_identity_map(struct pci_dev *pdev,
unsigned long long start,
unsigned long long end)
{
struct dmar_domain *domain;
int ret;
printk(KERN_INFO
"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
pci_name(pdev), start, end);
domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
if (!domain)
return -ENOMEM;
ret = iommu_domain_identity_map(domain, start, end);
if (ret)
goto error;
/* context entry init */
ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
if (ret)
goto error;
return 0;
error:
domain_exit(domain);
return ret;
}
static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
struct pci_dev *pdev)
{
if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
return 0;
return iommu_prepare_identity_map(pdev, rmrr->base_address,
rmrr->end_address + 1);
}
#ifdef CONFIG_DMAR_FLOPPY_WA
static inline void iommu_prepare_isa(void)
{
struct pci_dev *pdev;
int ret;
pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
if (!pdev)
return;
printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
if (ret)
printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
"floppy might not work\n");
}
#else
static inline void iommu_prepare_isa(void)
{
return;
}
#endif /* !CONFIG_DMAR_FLPY_WA */
/* Initialize each context entry as pass through.*/
static int __init init_context_pass_through(void)
{
struct pci_dev *pdev = NULL;
struct dmar_domain *domain;
int ret;
for_each_pci_dev(pdev) {
domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
ret = domain_context_mapping(domain, pdev,
CONTEXT_TT_PASS_THROUGH);
if (ret)
return ret;
}
return 0;
}
static int md_domain_init(struct dmar_domain *domain, int guest_width);
static int __init si_domain_work_fn(unsigned long start_pfn,
unsigned long end_pfn, void *datax)
{
int *ret = datax;
*ret = iommu_domain_identity_map(si_domain,
(uint64_t)start_pfn << PAGE_SHIFT,
(uint64_t)end_pfn << PAGE_SHIFT);
return *ret;
}
static int si_domain_init(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
int nid, ret = 0;
si_domain = alloc_domain();
if (!si_domain)
return -EFAULT;
pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
for_each_active_iommu(iommu, drhd) {
ret = iommu_attach_domain(si_domain, iommu);
if (ret) {
domain_exit(si_domain);
return -EFAULT;
}
}
if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
domain_exit(si_domain);
return -EFAULT;
}
si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
for_each_online_node(nid) {
work_with_active_regions(nid, si_domain_work_fn, &ret);
if (ret)
return ret;
}
return 0;
}
static void domain_remove_one_dev_info(struct dmar_domain *domain,
struct pci_dev *pdev);
static int identity_mapping(struct pci_dev *pdev)
{
struct device_domain_info *info;
if (likely(!iommu_identity_mapping))
return 0;
list_for_each_entry(info, &si_domain->devices, link)
if (info->dev == pdev)
return 1;
return 0;
}
static int domain_add_dev_info(struct dmar_domain *domain,
struct pci_dev *pdev)
{
struct device_domain_info *info;
unsigned long flags;
info = alloc_devinfo_mem();
if (!info)
return -ENOMEM;
info->segment = pci_domain_nr(pdev->bus);
info->bus = pdev->bus->number;
info->devfn = pdev->devfn;
info->dev = pdev;
info->domain = domain;
spin_lock_irqsave(&device_domain_lock, flags);
list_add(&info->link, &domain->devices);
list_add(&info->global, &device_domain_list);
pdev->dev.archdata.iommu = info;
spin_unlock_irqrestore(&device_domain_lock, flags);
return 0;
}
static int iommu_prepare_static_identity_mapping(void)
{
struct pci_dev *pdev = NULL;
int ret;
ret = si_domain_init();
if (ret)
return -EFAULT;
for_each_pci_dev(pdev) {
printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
pci_name(pdev));
ret = domain_context_mapping(si_domain, pdev,
CONTEXT_TT_MULTI_LEVEL);
if (ret)
return ret;
ret = domain_add_dev_info(si_domain, pdev);
if (ret)
return ret;
}
return 0;
}
int __init init_dmars(void)
{
struct dmar_drhd_unit *drhd;
struct dmar_rmrr_unit *rmrr;
struct pci_dev *pdev;
struct intel_iommu *iommu;
int i, ret;
int pass_through = 1;
/*
* In case pass through can not be enabled, iommu tries to use identity
* mapping.
*/
if (iommu_pass_through)
iommu_identity_mapping = 1;
/*
* for each drhd
* allocate root
* initialize and program root entry to not present
* endfor
*/
for_each_drhd_unit(drhd) {
g_num_of_iommus++;
/*
* lock not needed as this is only incremented in the single
* threaded kernel __init code path all other access are read
* only
*/
}
g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
GFP_KERNEL);
if (!g_iommus) {
printk(KERN_ERR "Allocating global iommu array failed\n");
ret = -ENOMEM;
goto error;
}
deferred_flush = kzalloc(g_num_of_iommus *
sizeof(struct deferred_flush_tables), GFP_KERNEL);
if (!deferred_flush) {
kfree(g_iommus);
ret = -ENOMEM;
goto error;
}
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
g_iommus[iommu->seq_id] = iommu;
ret = iommu_init_domains(iommu);
if (ret)
goto error;
/*
* TBD:
* we could share the same root & context tables
* amoung all IOMMU's. Need to Split it later.
*/
ret = iommu_alloc_root_entry(iommu);
if (ret) {
printk(KERN_ERR "IOMMU: allocate root entry failed\n");
goto error;
}
if (!ecap_pass_through(iommu->ecap))
pass_through = 0;
}
if (iommu_pass_through)
if (!pass_through) {
printk(KERN_INFO
"Pass Through is not supported by hardware.\n");
iommu_pass_through = 0;
}
/*
* Start from the sane iommu hardware state.
*/
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
/*
* If the queued invalidation is already initialized by us
* (for example, while enabling interrupt-remapping) then
* we got the things already rolling from a sane state.
*/
if (iommu->qi)
continue;
/*
* Clear any previous faults.
*/
dmar_fault(-1, iommu);
/*
* Disable queued invalidation if supported and already enabled
* before OS handover.
*/
dmar_disable_qi(iommu);
}
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
if (dmar_enable_qi(iommu)) {
/*
* Queued Invalidate not enabled, use Register Based
* Invalidate
*/
iommu->flush.flush_context = __iommu_flush_context;
iommu->flush.flush_iotlb = __iommu_flush_iotlb;
printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
"invalidation\n",
(unsigned long long)drhd->reg_base_addr);
} else {
iommu->flush.flush_context = qi_flush_context;
iommu->flush.flush_iotlb = qi_flush_iotlb;
printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
"invalidation\n",
(unsigned long long)drhd->reg_base_addr);
}
}
/*
* If pass through is set and enabled, context entries of all pci
* devices are intialized by pass through translation type.
*/
if (iommu_pass_through) {
ret = init_context_pass_through();
if (ret) {
printk(KERN_ERR "IOMMU: Pass through init failed.\n");
iommu_pass_through = 0;
}
}
/*
* If pass through is not set or not enabled, setup context entries for
* identity mappings for rmrr, gfx, and isa and may fall back to static
* identity mapping if iommu_identity_mapping is set.
*/
if (!iommu_pass_through) {
if (iommu_identity_mapping)
iommu_prepare_static_identity_mapping();
/*
* For each rmrr
* for each dev attached to rmrr
* do
* locate drhd for dev, alloc domain for dev
* allocate free domain
* allocate page table entries for rmrr
* if context not allocated for bus
* allocate and init context
* set present in root table for this bus
* init context with domain, translation etc
* endfor
* endfor
*/
printk(KERN_INFO "IOMMU: Setting RMRR:\n");
for_each_rmrr_units(rmrr) {
for (i = 0; i < rmrr->devices_cnt; i++) {
pdev = rmrr->devices[i];
/*
* some BIOS lists non-exist devices in DMAR
* table.
*/
if (!pdev)
continue;
ret = iommu_prepare_rmrr_dev(rmrr, pdev);
if (ret)
printk(KERN_ERR
"IOMMU: mapping reserved region failed\n");
}
}
iommu_prepare_isa();
}
/*
* for each drhd
* enable fault log
* global invalidate context cache
* global invalidate iotlb
* enable translation
*/
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
iommu_flush_write_buffer(iommu);
ret = dmar_set_interrupt(iommu);
if (ret)
goto error;
iommu_set_root_entry(iommu);
iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
iommu_disable_protect_mem_regions(iommu);
ret = iommu_enable_translation(iommu);
if (ret)
goto error;
}
return 0;
error:
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
free_iommu(iommu);
}
kfree(g_iommus);
return ret;
}
static inline unsigned long aligned_nrpages(unsigned long host_addr,
size_t size)
{
host_addr &= ~PAGE_MASK;
host_addr += size + PAGE_SIZE - 1;
return host_addr >> VTD_PAGE_SHIFT;
}
static struct iova *intel_alloc_iova(struct device *dev,
struct dmar_domain *domain,
unsigned long nrpages, uint64_t dma_mask)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct iova *iova = NULL;
/* Restrict dma_mask to the width that the iommu can handle */
dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
/*
* First try to allocate an io virtual address in
* DMA_BIT_MASK(32) and if that fails then try allocating
* from higher range
*/
iova = alloc_iova(&domain->iovad, nrpages,
IOVA_PFN(DMA_BIT_MASK(32)), 1);
if (iova)
return iova;
}
iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
if (unlikely(!iova)) {
printk(KERN_ERR "Allocating %ld-page iova for %s failed",
nrpages, pci_name(pdev));
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
return NULL;
}
return iova;
}
static struct dmar_domain *
get_valid_domain_for_dev(struct pci_dev *pdev)
{
struct dmar_domain *domain;
int ret;
domain = get_domain_for_dev(pdev,
DEFAULT_DOMAIN_ADDRESS_WIDTH);
if (!domain) {
printk(KERN_ERR
"Allocating domain for %s failed", pci_name(pdev));
return NULL;
}
/* make sure context mapping is ok */
if (unlikely(!domain_context_mapped(pdev))) {
ret = domain_context_mapping(domain, pdev,
CONTEXT_TT_MULTI_LEVEL);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
if (ret) {
printk(KERN_ERR
"Domain context map for %s failed",
pci_name(pdev));
return NULL;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
}
}
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
return domain;
}
static int iommu_dummy(struct pci_dev *pdev)
{
return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
}
/* Check if the pdev needs to go through non-identity map and unmap process.*/
static int iommu_no_mapping(struct pci_dev *pdev)
{
int found;
if (!iommu_identity_mapping)
return iommu_dummy(pdev);
found = identity_mapping(pdev);
if (found) {
if (pdev->dma_mask > DMA_BIT_MASK(32))
return 1;
else {
/*
* 32 bit DMA is removed from si_domain and fall back
* to non-identity mapping.
*/
domain_remove_one_dev_info(si_domain, pdev);
printk(KERN_INFO "32bit %s uses non-identity mapping\n",
pci_name(pdev));
return 0;
}
} else {
/*
* In case of a detached 64 bit DMA device from vm, the device
* is put into si_domain for identity mapping.
*/
if (pdev->dma_mask > DMA_BIT_MASK(32)) {
int ret;
ret = domain_add_dev_info(si_domain, pdev);
if (!ret) {
printk(KERN_INFO "64bit %s uses identity mapping\n",
pci_name(pdev));
return 1;
}
}
}
return iommu_dummy(pdev);
}
static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
size_t size, int dir, u64 dma_mask)
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
{
struct pci_dev *pdev = to_pci_dev(hwdev);
struct dmar_domain *domain;
phys_addr_t start_paddr;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
struct iova *iova;
int prot = 0;
int ret;
struct intel_iommu *iommu;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
BUG_ON(dir == DMA_NONE);
if (iommu_no_mapping(pdev))
return paddr;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
domain = get_valid_domain_for_dev(pdev);
if (!domain)
return 0;
iommu = domain_get_iommu(domain);
size = aligned_nrpages(paddr, size);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
if (!iova)
goto error;
/*
* Check if DMAR supports zero-length reads on write only
* mappings..
*/
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
!cap_zlr(iommu->cap))
prot |= DMA_PTE_READ;
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
prot |= DMA_PTE_WRITE;
/*
* paddr - (paddr + size) might be partial page, we should map the whole
* page. Note: if two part of one page are separately mapped, we
* might have two guest_addr mapping to the same host paddr, but this
* is not a big problem
*/
ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
paddr >> VTD_PAGE_SHIFT, size, prot);
if (ret)
goto error;
/* it's a non-present to present mapping. Only flush if caching mode */
if (cap_caching_mode(iommu->cap))
iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
else
iommu_flush_write_buffer(iommu);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
start_paddr += paddr & ~PAGE_MASK;
return start_paddr;
error:
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
if (iova)
__free_iova(&domain->iovad, iova);
printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
pci_name(pdev), size, (unsigned long long)paddr, dir);
return 0;
}
static dma_addr_t intel_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
return __intel_map_single(dev, page_to_phys(page) + offset, size,
dir, to_pci_dev(dev)->dma_mask);
}
static void flush_unmaps(void)
{
int i, j;
timer_on = 0;
/* just flush them all */
for (i = 0; i < g_num_of_iommus; i++) {
struct intel_iommu *iommu = g_iommus[i];
if (!iommu)
continue;
if (!deferred_flush[i].next)
continue;
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
DMA_TLB_GLOBAL_FLUSH);
for (j = 0; j < deferred_flush[i].next; j++) {
unsigned long mask;
struct iova *iova = deferred_flush[i].iova[j];
mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
mask = ilog2(mask >> VTD_PAGE_SHIFT);
iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
iova->pfn_lo << PAGE_SHIFT, mask);
__free_iova(&deferred_flush[i].domain[j]->iovad, iova);
}
deferred_flush[i].next = 0;
}
list_size = 0;
}
static void flush_unmaps_timeout(unsigned long data)
{
unsigned long flags;
spin_lock_irqsave(&async_umap_flush_lock, flags);
flush_unmaps();
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
}
static void add_unmap(struct dmar_domain *dom, struct iova *iova)
{
unsigned long flags;
int next, iommu_id;
struct intel_iommu *iommu;
spin_lock_irqsave(&async_umap_flush_lock, flags);
if (list_size == HIGH_WATER_MARK)
flush_unmaps();
iommu = domain_get_iommu(dom);
iommu_id = iommu->seq_id;
next = deferred_flush[iommu_id].next;
deferred_flush[iommu_id].domain[next] = dom;
deferred_flush[iommu_id].iova[next] = iova;
deferred_flush[iommu_id].next++;
if (!timer_on) {
mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
timer_on = 1;
}
list_size++;
spin_unlock_irqrestore(&async_umap_flush_lock, flags);
}
static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct pci_dev *pdev = to_pci_dev(dev);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
struct dmar_domain *domain;
unsigned long start_pfn, last_pfn;
struct iova *iova;
struct intel_iommu *iommu;
if (iommu_no_mapping(pdev))
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
return;
domain = find_domain(pdev);
BUG_ON(!domain);
iommu = domain_get_iommu(domain);
iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
if (!iova)
return;
start_pfn = mm_to_dma_pfn(iova->pfn_lo);
last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
pr_debug("Device %s unmapping: pfn %lx-%lx\n",
pci_name(pdev), start_pfn, last_pfn);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
/* clear the whole page */
dma_pte_clear_range(domain, start_pfn, last_pfn);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
/* free page tables */
dma_pte_free_pagetable(domain, start_pfn, last_pfn);
if (intel_iommu_strict) {
iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
last_pfn - start_pfn + 1);
/* free iova */
__free_iova(&domain->iovad, iova);
} else {
add_unmap(domain, iova);
/*
* queue up the release of the unmap to save the 1/6th of the
* cpu used up by the iotlb flush operation...
*/
}
}
static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
int dir)
{
intel_unmap_page(dev, dev_addr, size, dir, NULL);
}
static void *intel_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags)
{
void *vaddr;
int order;
size = PAGE_ALIGN(size);
order = get_order(size);
flags &= ~(GFP_DMA | GFP_DMA32);
vaddr = (void *)__get_free_pages(flags, order);
if (!vaddr)
return NULL;
memset(vaddr, 0, size);
*dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
DMA_BIDIRECTIONAL,
hwdev->coherent_dma_mask);
if (*dma_handle)
return vaddr;
free_pages((unsigned long)vaddr, order);
return NULL;
}
static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
int order;
size = PAGE_ALIGN(size);
order = get_order(size);
intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
free_pages((unsigned long)vaddr, order);
}
static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct pci_dev *pdev = to_pci_dev(hwdev);
struct dmar_domain *domain;
unsigned long start_pfn, last_pfn;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
struct iova *iova;
struct intel_iommu *iommu;
if (iommu_no_mapping(pdev))
return;
domain = find_domain(pdev);
BUG_ON(!domain);
iommu = domain_get_iommu(domain);
iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
if (!iova)
return;
start_pfn = mm_to_dma_pfn(iova->pfn_lo);
last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
/* clear the whole page */
dma_pte_clear_range(domain, start_pfn, last_pfn);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
/* free page tables */
dma_pte_free_pagetable(domain, start_pfn, last_pfn);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
(last_pfn - start_pfn + 1));
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
/* free iova */
__free_iova(&domain->iovad, iova);
}
static int intel_nontranslate_map_sg(struct device *hddev,
struct scatterlist *sglist, int nelems, int dir)
{
int i;
struct scatterlist *sg;
for_each_sg(sglist, sg, nelems, i) {
BUG_ON(!sg_page(sg));
sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
sg->dma_length = sg->length;
}
return nelems;
}
static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
int i;
struct pci_dev *pdev = to_pci_dev(hwdev);
struct dmar_domain *domain;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
size_t size = 0;
int prot = 0;
size_t offset_pfn = 0;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
struct iova *iova = NULL;
int ret;
struct scatterlist *sg;
unsigned long start_vpfn;
struct intel_iommu *iommu;
BUG_ON(dir == DMA_NONE);
if (iommu_no_mapping(pdev))
return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
domain = get_valid_domain_for_dev(pdev);
if (!domain)
return 0;
iommu = domain_get_iommu(domain);
for_each_sg(sglist, sg, nelems, i)
size += aligned_nrpages(sg->offset, sg->length);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
if (!iova) {
sglist->dma_length = 0;
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
return 0;
}
/*
* Check if DMAR supports zero-length reads on write only
* mappings..
*/
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
!cap_zlr(iommu->cap))
intel-iommu: optimize sg map/unmap calls This patch adds PageSelectiveInvalidation support replacing existing DomainSelectiveInvalidation for intel_{map/unmap}_sg() calls and also enables to mapping one big contiguous DMA virtual address which is mapped to discontiguous physical address for SG map/unmap calls. "Doamin selective invalidations" wipes out the IOMMU address translation cache based on domain ID where as "Page selective invalidations" wipes out the IOMMU address translation cache for that address mask range which is more cache friendly when compared to Domain selective invalidations. Here is how it is done. 1) changes to iova.c alloc_iova() now takes a bool size_aligned argument, which when when set, returns the io virtual address that is naturally aligned to 2 ^ x, where x is the order of the size requested. Returning this io vitual address which is naturally aligned helps iommu to do the "page selective invalidations" which is IOMMU cache friendly over "domain selective invalidations". 2) Changes to driver/pci/intel-iommu.c Clean up intel_{map/unmap}_{single/sg} () calls so that s/g map/unamp calls is no more dependent on intel_{map/unmap}_single() intel_map_sg() now computes the total DMA virtual address required and allocates the size aligned total DMA virtual address and maps the discontiguous physical address to the allocated contiguous DMA virtual address. In the intel_unmap_sg() case since the DMA virtual address is contiguous and size_aligned, PageSelectiveInvalidation is used replacing earlier DomainSelectiveInvalidations. Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: Greg KH <greg@kroah.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Suresh B <suresh.b.siddha@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-21 17:41:58 -06:00
prot |= DMA_PTE_READ;
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
prot |= DMA_PTE_WRITE;
start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
if (unlikely(ret)) {
/* clear the page */
dma_pte_clear_range(domain, start_vpfn,
start_vpfn + size - 1);
/* free page tables */
dma_pte_free_pagetable(domain, start_vpfn,
start_vpfn + size - 1);
/* free iova */
__free_iova(&domain->iovad, iova);
return 0;
}
/* it's a non-present to present mapping. Only flush if caching mode */
if (cap_caching_mode(iommu->cap))
iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
else
iommu_flush_write_buffer(iommu);
return nelems;
}
static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return !dma_addr;
}
struct dma_map_ops intel_dma_ops = {
.alloc_coherent = intel_alloc_coherent,
.free_coherent = intel_free_coherent,
.map_sg = intel_map_sg,
.unmap_sg = intel_unmap_sg,
.map_page = intel_map_page,
.unmap_page = intel_unmap_page,
.mapping_error = intel_mapping_error,
};
static inline int iommu_domain_cache_init(void)
{
int ret = 0;
iommu_domain_cache = kmem_cache_create("iommu_domain",
sizeof(struct dmar_domain),
0,
SLAB_HWCACHE_ALIGN,
NULL);
if (!iommu_domain_cache) {
printk(KERN_ERR "Couldn't create iommu_domain cache\n");
ret = -ENOMEM;
}
return ret;
}
static inline int iommu_devinfo_cache_init(void)
{
int ret = 0;
iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
sizeof(struct device_domain_info),
0,
SLAB_HWCACHE_ALIGN,
NULL);
if (!iommu_devinfo_cache) {
printk(KERN_ERR "Couldn't create devinfo cache\n");
ret = -ENOMEM;
}
return ret;
}
static inline int iommu_iova_cache_init(void)
{
int ret = 0;
iommu_iova_cache = kmem_cache_create("iommu_iova",
sizeof(struct iova),
0,
SLAB_HWCACHE_ALIGN,
NULL);
if (!iommu_iova_cache) {
printk(KERN_ERR "Couldn't create iova cache\n");
ret = -ENOMEM;
}
return ret;
}
static int __init iommu_init_mempool(void)
{
int ret;
ret = iommu_iova_cache_init();
if (ret)
return ret;
ret = iommu_domain_cache_init();
if (ret)
goto domain_error;
ret = iommu_devinfo_cache_init();
if (!ret)
return ret;
kmem_cache_destroy(iommu_domain_cache);
domain_error:
kmem_cache_destroy(iommu_iova_cache);
return -ENOMEM;
}
static void __init iommu_exit_mempool(void)
{
kmem_cache_destroy(iommu_devinfo_cache);
kmem_cache_destroy(iommu_domain_cache);
kmem_cache_destroy(iommu_iova_cache);
}
static void __init init_no_remapping_devices(void)
{
struct dmar_drhd_unit *drhd;
for_each_drhd_unit(drhd) {
if (!drhd->include_all) {
int i;
for (i = 0; i < drhd->devices_cnt; i++)
if (drhd->devices[i] != NULL)
break;
/* ignore DMAR unit if no pci devices exist */
if (i == drhd->devices_cnt)
drhd->ignored = 1;
}
}
if (dmar_map_gfx)
return;
for_each_drhd_unit(drhd) {
int i;
if (drhd->ignored || drhd->include_all)
continue;
for (i = 0; i < drhd->devices_cnt; i++)
if (drhd->devices[i] &&
!IS_GFX_DEVICE(drhd->devices[i]))
break;
if (i < drhd->devices_cnt)
continue;
/* bypass IOMMU if it is just for gfx devices */
drhd->ignored = 1;
for (i = 0; i < drhd->devices_cnt; i++) {
if (!drhd->devices[i])
continue;
drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
}
}
}
#ifdef CONFIG_SUSPEND
static int init_iommu_hw(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu = NULL;
for_each_active_iommu(iommu, drhd)
if (iommu->qi)
dmar_reenable_qi(iommu);
for_each_active_iommu(iommu, drhd) {
iommu_flush_write_buffer(iommu);
iommu_set_root_entry(iommu);
iommu->flush.flush_context(iommu, 0, 0, 0,
DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
DMA_TLB_GLOBAL_FLUSH);
iommu_disable_protect_mem_regions(iommu);
iommu_enable_translation(iommu);
}
return 0;
}
static void iommu_flush_all(void)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
for_each_active_iommu(iommu, drhd) {
iommu->flush.flush_context(iommu, 0, 0, 0,
DMA_CCMD_GLOBAL_INVL);
iommu->flush.flush_iotlb(iommu, 0, 0, 0,
DMA_TLB_GLOBAL_FLUSH);
}
}
static int iommu_suspend(struct sys_device *dev, pm_message_t state)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu = NULL;
unsigned long flag;
for_each_active_iommu(iommu, drhd) {
iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
GFP_ATOMIC);
if (!iommu->iommu_state)
goto nomem;
}
iommu_flush_all();
for_each_active_iommu(iommu, drhd) {
iommu_disable_translation(iommu);
spin_lock_irqsave(&iommu->register_lock, flag);
iommu->iommu_state[SR_DMAR_FECTL_REG] =
readl(iommu->reg + DMAR_FECTL_REG);
iommu->iommu_state[SR_DMAR_FEDATA_REG] =
readl(iommu->reg + DMAR_FEDATA_REG);
iommu->iommu_state[SR_DMAR_FEADDR_REG] =
readl(iommu->reg + DMAR_FEADDR_REG);
iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
readl(iommu->reg + DMAR_FEUADDR_REG);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
return 0;
nomem:
for_each_active_iommu(iommu, drhd)
kfree(iommu->iommu_state);
return -ENOMEM;
}
static int iommu_resume(struct sys_device *dev)
{
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu = NULL;
unsigned long flag;
if (init_iommu_hw()) {
WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
return -EIO;
}
for_each_active_iommu(iommu, drhd) {
spin_lock_irqsave(&iommu->register_lock, flag);
writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
iommu->reg + DMAR_FECTL_REG);
writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
iommu->reg + DMAR_FEDATA_REG);
writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
iommu->reg + DMAR_FEADDR_REG);
writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
iommu->reg + DMAR_FEUADDR_REG);
spin_unlock_irqrestore(&iommu->register_lock, flag);
}
for_each_active_iommu(iommu, drhd)
kfree(iommu->iommu_state);
return 0;
}
static struct sysdev_class iommu_sysclass = {
.name = "iommu",
.resume = iommu_resume,
.suspend = iommu_suspend,
};
static struct sys_device device_iommu = {
.cls = &iommu_sysclass,
};
static int __init init_iommu_sysfs(void)
{
int error;
error = sysdev_class_register(&iommu_sysclass);
if (error)
return error;
error = sysdev_register(&device_iommu);
if (error)
sysdev_class_unregister(&iommu_sysclass);
return error;
}
#else
static int __init init_iommu_sysfs(void)
{
return 0;
}
#endif /* CONFIG_PM */
int __init intel_iommu_init(void)
{
int ret = 0;
if (dmar_table_init())
return -ENODEV;
if (dmar_dev_scope_init())
return -ENODEV;
/*
* Check the need for DMA-remapping initialization now.
* Above initialization will also be used by Interrupt-remapping.
*/
if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
return -ENODEV;
iommu_init_mempool();
dmar_init_reserved_ranges();
init_no_remapping_devices();
ret = init_dmars();
if (ret) {
printk(KERN_ERR "IOMMU: dmar init failed\n");
put_iova_domain(&reserved_iova_list);
iommu_exit_mempool();
return ret;
}
printk(KERN_INFO
"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
init_timer(&unmap_timer);
force_iommu = 1;
if (!iommu_pass_through) {
printk(KERN_INFO
"Multi-level page-table translation for DMAR.\n");
dma_ops = &intel_dma_ops;
} else
printk(KERN_INFO
"DMAR: Pass through translation for DMAR.\n");
init_iommu_sysfs();
register_iommu(&intel_iommu_ops);
return 0;
}
static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
struct pci_dev *pdev)
{
struct pci_dev *tmp, *parent;
if (!iommu || !pdev)
return;
/* dependent device detach */
tmp = pci_find_upstream_pcie_bridge(pdev);
/* Secondary interface's bus number and devfn 0 */
if (tmp) {
parent = pdev->bus->self;
while (parent != tmp) {
iommu_detach_dev(iommu, parent->bus->number,
parent->devfn);
parent = parent->bus->self;
}
if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
iommu_detach_dev(iommu,
tmp->subordinate->number, 0);
else /* this is a legacy PCI bridge */
iommu_detach_dev(iommu, tmp->bus->number,
tmp->devfn);
}
}
static void domain_remove_one_dev_info(struct dmar_domain *domain,
struct pci_dev *pdev)
{
struct device_domain_info *info;
struct intel_iommu *iommu;
unsigned long flags;
int found = 0;
struct list_head *entry, *tmp;
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
pdev->devfn);
if (!iommu)
return;
spin_lock_irqsave(&device_domain_lock, flags);
list_for_each_safe(entry, tmp, &domain->devices) {
info = list_entry(entry, struct device_domain_info, link);
/* No need to compare PCI domain; it has to be the same */
if (info->bus == pdev->bus->number &&
info->devfn == pdev->devfn) {
list_del(&info->link);
list_del(&info->global);
if (info->dev)
info->dev->dev.archdata.iommu = NULL;
spin_unlock_irqrestore(&device_domain_lock, flags);
iommu_disable_dev_iotlb(info);
iommu_detach_dev(iommu, info->bus, info->devfn);
iommu_detach_dependent_devices(iommu, pdev);
free_devinfo_mem(info);
spin_lock_irqsave(&device_domain_lock, flags);
if (found)
break;
else
continue;
}
/* if there is no other devices under the same iommu
* owned by this domain, clear this iommu in iommu_bmp
* update iommu count and coherency
*/
if (iommu == device_to_iommu(info->segment, info->bus,
info->devfn))
found = 1;
}
if (found == 0) {
unsigned long tmp_flags;
spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
clear_bit(iommu->seq_id, &domain->iommu_bmp);
domain->iommu_count--;
domain_update_iommu_cap(domain);
spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
}
spin_unlock_irqrestore(&device_domain_lock, flags);
}
static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
{
struct device_domain_info *info;
struct intel_iommu *iommu;
unsigned long flags1, flags2;
spin_lock_irqsave(&device_domain_lock, flags1);
while (!list_empty(&domain->devices)) {
info = list_entry(domain->devices.next,
struct device_domain_info, link);
list_del(&info->link);
list_del(&info->global);
if (info->dev)
info->dev->dev.archdata.iommu = NULL;
spin_unlock_irqrestore(&device_domain_lock, flags1);
iommu_disable_dev_iotlb(info);
iommu = device_to_iommu(info->segment, info->bus, info->devfn);
iommu_detach_dev(iommu, info->bus, info->devfn);
iommu_detach_dependent_devices(iommu, info->dev);
/* clear this iommu in iommu_bmp, update iommu count
* and capabilities
*/
spin_lock_irqsave(&domain->iommu_lock, flags2);
if (test_and_clear_bit(iommu->seq_id,
&domain->iommu_bmp)) {
domain->iommu_count--;
domain_update_iommu_cap(domain);
}
spin_unlock_irqrestore(&domain->iommu_lock, flags2);
free_devinfo_mem(info);
spin_lock_irqsave(&device_domain_lock, flags1);
}
spin_unlock_irqrestore(&device_domain_lock, flags1);
}
/* domain id for virtual machine, it won't be set in context */
static unsigned long vm_domid;
static int vm_domain_min_agaw(struct dmar_domain *domain)
{
int i;
int min_agaw = domain->agaw;
i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
for (; i < g_num_of_iommus; ) {
if (min_agaw > g_iommus[i]->agaw)
min_agaw = g_iommus[i]->agaw;
i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
}
return min_agaw;
}
static struct dmar_domain *iommu_alloc_vm_domain(void)
{
struct dmar_domain *domain;
domain = alloc_domain_mem();
if (!domain)
return NULL;
domain->id = vm_domid++;
memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
return domain;
}
static int md_domain_init(struct dmar_domain *domain, int guest_width)
{
int adjust_width;
init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
spin_lock_init(&domain->mapping_lock);
spin_lock_init(&domain->iommu_lock);
domain_reserve_special_ranges(domain);
/* calculate AGAW */
domain->gaw = guest_width;
adjust_width = guestwidth_to_adjustwidth(guest_width);
domain->agaw = width_to_agaw(adjust_width);
INIT_LIST_HEAD(&domain->devices);
domain->iommu_count = 0;
domain->iommu_coherency = 0;
domain->max_addr = 0;
/* always allocate the top pgd */
domain->pgd = (struct dma_pte *)alloc_pgtable_page();
if (!domain->pgd)
return -ENOMEM;
domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
return 0;
}
static void iommu_free_vm_domain(struct dmar_domain *domain)
{
unsigned long flags;
struct dmar_drhd_unit *drhd;
struct intel_iommu *iommu;
unsigned long i;
unsigned long ndomains;
for_each_drhd_unit(drhd) {
if (drhd->ignored)
continue;
iommu = drhd->iommu;
ndomains = cap_ndoms(iommu->cap);
i = find_first_bit(iommu->domain_ids, ndomains);
for (; i < ndomains; ) {
if (iommu->domains[i] == domain) {
spin_lock_irqsave(&iommu->lock, flags);
clear_bit(i, iommu->domain_ids);
iommu->domains[i] = NULL;
spin_unlock_irqrestore(&iommu->lock, flags);
break;
}
i = find_next_bit(iommu->domain_ids, ndomains, i+1);
}
}
}
static void vm_domain_exit(struct dmar_domain *domain)
{
/* Domain 0 is reserved, so dont process it */
if (!domain)
return;
vm_domain_remove_all_dev_info(domain);
/* destroy iovas */
put_iova_domain(&domain->iovad);
/* clear ptes */
dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
/* free page tables */
dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
iommu_free_vm_domain(domain);
free_domain_mem(domain);
}
static int intel_iommu_domain_init(struct iommu_domain *domain)
{
struct dmar_domain *dmar_domain;
dmar_domain = iommu_alloc_vm_domain();
if (!dmar_domain) {
printk(KERN_ERR
"intel_iommu_domain_init: dmar_domain == NULL\n");
return -ENOMEM;
}
if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
printk(KERN_ERR
"intel_iommu_domain_init() failed\n");
vm_domain_exit(dmar_domain);
return -ENOMEM;
}
domain->priv = dmar_domain;
return 0;
}
static void intel_iommu_domain_destroy(struct iommu_domain *domain)
{
struct dmar_domain *dmar_domain = domain->priv;
domain->priv = NULL;
vm_domain_exit(dmar_domain);
}
static int intel_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct dmar_domain *dmar_domain = domain->priv;
struct pci_dev *pdev = to_pci_dev(dev);
struct intel_iommu *iommu;
int addr_width;
u64 end;
int ret;
/* normally pdev is not mapped */
if (unlikely(domain_context_mapped(pdev))) {
struct dmar_domain *old_domain;
old_domain = find_domain(pdev);
if (old_domain) {
if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
domain_remove_one_dev_info(old_domain, pdev);
else
domain_remove_dev_info(old_domain);
}
}
iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
pdev->devfn);
if (!iommu)
return -ENODEV;
/* check if this iommu agaw is sufficient for max mapped address */
addr_width = agaw_to_width(iommu->agaw);
end = DOMAIN_MAX_ADDR(addr_width);
end = end & VTD_PAGE_MASK;
if (end < dmar_domain->max_addr) {
printk(KERN_ERR "%s: iommu agaw (%d) is not "
"sufficient for the mapped address (%llx)\n",
__func__, iommu->agaw, dmar_domain->max_addr);
return -EFAULT;
}
ret = domain_add_dev_info(dmar_domain, pdev);
if (ret)
return ret;
ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
return ret;
}
static void intel_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct dmar_domain *dmar_domain = domain->priv;
struct pci_dev *pdev = to_pci_dev(dev);
domain_remove_one_dev_info(dmar_domain, pdev);
}
static int intel_iommu_map_range(struct iommu_domain *domain,
unsigned long iova, phys_addr_t hpa,
size_t size, int iommu_prot)
{
struct dmar_domain *dmar_domain = domain->priv;
u64 max_addr;
int addr_width;
int prot = 0;
int ret;
if (iommu_prot & IOMMU_READ)
prot |= DMA_PTE_READ;
if (iommu_prot & IOMMU_WRITE)
prot |= DMA_PTE_WRITE;
if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
prot |= DMA_PTE_SNP;
max_addr = iova + size;
if (dmar_domain->max_addr < max_addr) {
int min_agaw;
u64 end;
/* check if minimum agaw is sufficient for mapped address */
min_agaw = vm_domain_min_agaw(dmar_domain);
addr_width = agaw_to_width(min_agaw);
end = DOMAIN_MAX_ADDR(addr_width);
end = end & VTD_PAGE_MASK;
if (end < max_addr) {
printk(KERN_ERR "%s: iommu agaw (%d) is not "
"sufficient for the mapped address (%llx)\n",
__func__, min_agaw, max_addr);
return -EFAULT;
}
dmar_domain->max_addr = max_addr;
}
/* Round up size to next multiple of PAGE_SIZE, if it and
the low bits of hpa would take us onto the next page */
size = aligned_nrpages(hpa, size);
ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
hpa >> VTD_PAGE_SHIFT, size, prot);
return ret;
}
static void intel_iommu_unmap_range(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
struct dmar_domain *dmar_domain = domain->priv;
dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
(iova + size - 1) >> VTD_PAGE_SHIFT);
if (dmar_domain->max_addr == iova + size)
dmar_domain->max_addr = iova;
}
static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
unsigned long iova)
{
struct dmar_domain *dmar_domain = domain->priv;
struct dma_pte *pte;
u64 phys = 0;
pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
if (pte)
phys = dma_pte_addr(pte);
return phys;
}
static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
unsigned long cap)
{
struct dmar_domain *dmar_domain = domain->priv;
if (cap == IOMMU_CAP_CACHE_COHERENCY)
return dmar_domain->iommu_snooping;
return 0;
}
static struct iommu_ops intel_iommu_ops = {
.domain_init = intel_iommu_domain_init,
.domain_destroy = intel_iommu_domain_destroy,
.attach_dev = intel_iommu_attach_device,
.detach_dev = intel_iommu_detach_device,
.map = intel_iommu_map_range,
.unmap = intel_iommu_unmap_range,
.iova_to_phys = intel_iommu_iova_to_phys,
.domain_has_cap = intel_iommu_domain_has_cap,
};
static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
{
/*
* Mobile 4 Series Chipset neglects to set RWBF capability,
* but needs it:
*/
printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
rwbf_quirk = 1;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);