Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
/*
|
|
|
|
* drivers/net/ibm_newemac/core.c
|
|
|
|
*
|
|
|
|
* Driver for PowerPC 4xx on-chip ethernet controller.
|
|
|
|
*
|
2007-12-04 17:14:33 -07:00
|
|
|
* Copyright 2007 Benjamin Herrenschmidt, IBM Corp.
|
|
|
|
* <benh@kernel.crashing.org>
|
|
|
|
*
|
|
|
|
* Based on the arch/ppc version of the driver:
|
|
|
|
*
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
* Copyright (c) 2004, 2005 Zultys Technologies.
|
|
|
|
* Eugene Surovegin <eugene.surovegin@zultys.com> or <ebs@ebshome.net>
|
|
|
|
*
|
|
|
|
* Based on original work by
|
|
|
|
* Matt Porter <mporter@kernel.crashing.org>
|
|
|
|
* (c) 2003 Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
* Armin Kuster <akuster@mvista.com>
|
|
|
|
* Johnnie Peters <jpeters@mvista.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
|
|
* option) any later version.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/etherdevice.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/crc32.h>
|
|
|
|
#include <linux/ethtool.h>
|
|
|
|
#include <linux/mii.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <linux/workqueue.h>
|
2008-01-08 12:20:40 -07:00
|
|
|
#include <linux/of.h>
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/dma.h>
|
|
|
|
#include <asm/uaccess.h>
|
2008-04-21 18:46:46 -06:00
|
|
|
#include <asm/dcr.h>
|
|
|
|
#include <asm/dcr-regs.h>
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
#include "core.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Lack of dma_unmap_???? calls is intentional.
|
|
|
|
*
|
|
|
|
* API-correct usage requires additional support state information to be
|
|
|
|
* maintained for every RX and TX buffer descriptor (BD). Unfortunately, due to
|
|
|
|
* EMAC design (e.g. TX buffer passed from network stack can be split into
|
|
|
|
* several BDs, dma_map_single/dma_map_page can be used to map particular BD),
|
|
|
|
* maintaining such information will add additional overhead.
|
|
|
|
* Current DMA API implementation for 4xx processors only ensures cache coherency
|
|
|
|
* and dma_unmap_???? routines are empty and are likely to stay this way.
|
|
|
|
* I decided to omit dma_unmap_??? calls because I don't want to add additional
|
|
|
|
* complexity just for the sake of following some abstract API, when it doesn't
|
|
|
|
* add any real benefit to the driver. I understand that this decision maybe
|
|
|
|
* controversial, but I really tried to make code API-correct and efficient
|
|
|
|
* at the same time and didn't come up with code I liked :(. --ebs
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define DRV_NAME "emac"
|
|
|
|
#define DRV_VERSION "3.54"
|
|
|
|
#define DRV_DESC "PPC 4xx OCP EMAC driver"
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION(DRV_DESC);
|
|
|
|
MODULE_AUTHOR
|
|
|
|
("Eugene Surovegin <eugene.surovegin@zultys.com> or <ebs@ebshome.net>");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PPC64 doesn't (yet) have a cacheable_memcpy
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_PPC64
|
|
|
|
#define cacheable_memcpy(d,s,n) memcpy((d),(s),(n))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* minimum number of free TX descriptors required to wake up TX process */
|
|
|
|
#define EMAC_TX_WAKEUP_THRESH (NUM_TX_BUFF / 4)
|
|
|
|
|
|
|
|
/* If packet size is less than this number, we allocate small skb and copy packet
|
|
|
|
* contents into it instead of just sending original big skb up
|
|
|
|
*/
|
|
|
|
#define EMAC_RX_COPY_THRESH CONFIG_IBM_NEW_EMAC_RX_COPY_THRESHOLD
|
|
|
|
|
|
|
|
/* Since multiple EMACs share MDIO lines in various ways, we need
|
|
|
|
* to avoid re-using the same PHY ID in cases where the arch didn't
|
|
|
|
* setup precise phy_map entries
|
|
|
|
*
|
|
|
|
* XXX This is something that needs to be reworked as we can have multiple
|
|
|
|
* EMAC "sets" (multiple ASICs containing several EMACs) though we can
|
|
|
|
* probably require in that case to have explicit PHY IDs in the device-tree
|
|
|
|
*/
|
|
|
|
static u32 busy_phy_map;
|
|
|
|
static DEFINE_MUTEX(emac_phy_map_lock);
|
|
|
|
|
|
|
|
/* This is the wait queue used to wait on any event related to probe, that
|
|
|
|
* is discovery of MALs, other EMACs, ZMII/RGMIIs, etc...
|
|
|
|
*/
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(emac_probe_wait);
|
|
|
|
|
|
|
|
/* Having stable interface names is a doomed idea. However, it would be nice
|
|
|
|
* if we didn't have completely random interface names at boot too :-) It's
|
|
|
|
* just a matter of making everybody's life easier. Since we are doing
|
|
|
|
* threaded probing, it's a bit harder though. The base idea here is that
|
|
|
|
* we make up a list of all emacs in the device-tree before we register the
|
|
|
|
* driver. Every emac will then wait for the previous one in the list to
|
|
|
|
* initialize before itself. We should also keep that list ordered by
|
|
|
|
* cell_index.
|
|
|
|
* That list is only 4 entries long, meaning that additional EMACs don't
|
|
|
|
* get ordering guarantees unless EMAC_BOOT_LIST_SIZE is increased.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define EMAC_BOOT_LIST_SIZE 4
|
|
|
|
static struct device_node *emac_boot_list[EMAC_BOOT_LIST_SIZE];
|
|
|
|
|
|
|
|
/* How long should I wait for dependent devices ? */
|
|
|
|
#define EMAC_PROBE_DEP_TIMEOUT (HZ * 5)
|
|
|
|
|
|
|
|
/* I don't want to litter system log with timeout errors
|
|
|
|
* when we have brain-damaged PHY.
|
|
|
|
*/
|
|
|
|
static inline void emac_report_timeout_error(struct emac_instance *dev,
|
|
|
|
const char *error)
|
|
|
|
{
|
2008-04-21 18:46:48 -06:00
|
|
|
if (emac_has_feature(dev, EMAC_FTR_440GX_PHY_CLK_FIX |
|
2008-10-02 00:37:57 -06:00
|
|
|
EMAC_FTR_460EX_PHY_CLK_FIX |
|
2008-04-21 18:46:48 -06:00
|
|
|
EMAC_FTR_440EP_PHY_CLK_FIX))
|
|
|
|
DBG(dev, "%s" NL, error);
|
|
|
|
else if (net_ratelimit())
|
2009-03-19 16:28:02 -06:00
|
|
|
printk(KERN_ERR "%s: %s\n", dev->ofdev->node->full_name, error);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
}
|
|
|
|
|
2008-04-21 18:46:48 -06:00
|
|
|
/* EMAC PHY clock workaround:
|
|
|
|
* 440EP/440GR has more sane SDR0_MFR register implementation than 440GX,
|
|
|
|
* which allows controlling each EMAC clock
|
|
|
|
*/
|
|
|
|
static inline void emac_rx_clk_tx(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_PPC_DCR_NATIVE
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_440EP_PHY_CLK_FIX))
|
|
|
|
dcri_clrset(SDR0, SDR0_MFR,
|
|
|
|
0, SDR0_MFR_ECS >> dev->cell_index);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void emac_rx_clk_default(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_PPC_DCR_NATIVE
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_440EP_PHY_CLK_FIX))
|
|
|
|
dcri_clrset(SDR0, SDR0_MFR,
|
|
|
|
SDR0_MFR_ECS >> dev->cell_index, 0);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
/* PHY polling intervals */
|
|
|
|
#define PHY_POLL_LINK_ON HZ
|
|
|
|
#define PHY_POLL_LINK_OFF (HZ / 5)
|
|
|
|
|
|
|
|
/* Graceful stop timeouts in us.
|
|
|
|
* We should allow up to 1 frame time (full-duplex, ignoring collisions)
|
|
|
|
*/
|
|
|
|
#define STOP_TIMEOUT_10 1230
|
|
|
|
#define STOP_TIMEOUT_100 124
|
|
|
|
#define STOP_TIMEOUT_1000 13
|
|
|
|
#define STOP_TIMEOUT_1000_JUMBO 73
|
|
|
|
|
2008-03-14 03:52:28 -06:00
|
|
|
static unsigned char default_mcast_addr[] = {
|
|
|
|
0x01, 0x80, 0xC2, 0x00, 0x00, 0x01
|
|
|
|
};
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
/* Please, keep in sync with struct ibm_emac_stats/ibm_emac_error_stats */
|
|
|
|
static const char emac_stats_keys[EMAC_ETHTOOL_STATS_COUNT][ETH_GSTRING_LEN] = {
|
|
|
|
"rx_packets", "rx_bytes", "tx_packets", "tx_bytes", "rx_packets_csum",
|
|
|
|
"tx_packets_csum", "tx_undo", "rx_dropped_stack", "rx_dropped_oom",
|
|
|
|
"rx_dropped_error", "rx_dropped_resize", "rx_dropped_mtu",
|
|
|
|
"rx_stopped", "rx_bd_errors", "rx_bd_overrun", "rx_bd_bad_packet",
|
|
|
|
"rx_bd_runt_packet", "rx_bd_short_event", "rx_bd_alignment_error",
|
|
|
|
"rx_bd_bad_fcs", "rx_bd_packet_too_long", "rx_bd_out_of_range",
|
|
|
|
"rx_bd_in_range", "rx_parity", "rx_fifo_overrun", "rx_overrun",
|
|
|
|
"rx_bad_packet", "rx_runt_packet", "rx_short_event",
|
|
|
|
"rx_alignment_error", "rx_bad_fcs", "rx_packet_too_long",
|
|
|
|
"rx_out_of_range", "rx_in_range", "tx_dropped", "tx_bd_errors",
|
|
|
|
"tx_bd_bad_fcs", "tx_bd_carrier_loss", "tx_bd_excessive_deferral",
|
|
|
|
"tx_bd_excessive_collisions", "tx_bd_late_collision",
|
|
|
|
"tx_bd_multple_collisions", "tx_bd_single_collision",
|
|
|
|
"tx_bd_underrun", "tx_bd_sqe", "tx_parity", "tx_underrun", "tx_sqe",
|
|
|
|
"tx_errors"
|
|
|
|
};
|
|
|
|
|
|
|
|
static irqreturn_t emac_irq(int irq, void *dev_instance);
|
|
|
|
static void emac_clean_tx_ring(struct emac_instance *dev);
|
|
|
|
static void __emac_set_multicast_list(struct emac_instance *dev);
|
|
|
|
|
|
|
|
static inline int emac_phy_supports_gige(int phy_mode)
|
|
|
|
{
|
|
|
|
return phy_mode == PHY_MODE_GMII ||
|
|
|
|
phy_mode == PHY_MODE_RGMII ||
|
2008-10-02 00:37:57 -06:00
|
|
|
phy_mode == PHY_MODE_SGMII ||
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
phy_mode == PHY_MODE_TBI ||
|
|
|
|
phy_mode == PHY_MODE_RTBI;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int emac_phy_gpcs(int phy_mode)
|
|
|
|
{
|
2008-10-02 00:37:57 -06:00
|
|
|
return phy_mode == PHY_MODE_SGMII ||
|
|
|
|
phy_mode == PHY_MODE_TBI ||
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
phy_mode == PHY_MODE_RTBI;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void emac_tx_enable(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 r;
|
|
|
|
|
|
|
|
DBG(dev, "tx_enable" NL);
|
|
|
|
|
|
|
|
r = in_be32(&p->mr0);
|
|
|
|
if (!(r & EMAC_MR0_TXE))
|
|
|
|
out_be32(&p->mr0, r | EMAC_MR0_TXE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_tx_disable(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 r;
|
|
|
|
|
|
|
|
DBG(dev, "tx_disable" NL);
|
|
|
|
|
|
|
|
r = in_be32(&p->mr0);
|
|
|
|
if (r & EMAC_MR0_TXE) {
|
|
|
|
int n = dev->stop_timeout;
|
|
|
|
out_be32(&p->mr0, r & ~EMAC_MR0_TXE);
|
|
|
|
while (!(in_be32(&p->mr0) & EMAC_MR0_TXI) && n) {
|
|
|
|
udelay(1);
|
|
|
|
--n;
|
|
|
|
}
|
|
|
|
if (unlikely(!n))
|
|
|
|
emac_report_timeout_error(dev, "TX disable timeout");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_rx_enable(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 r;
|
|
|
|
|
|
|
|
if (unlikely(test_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags)))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
DBG(dev, "rx_enable" NL);
|
|
|
|
|
|
|
|
r = in_be32(&p->mr0);
|
|
|
|
if (!(r & EMAC_MR0_RXE)) {
|
|
|
|
if (unlikely(!(r & EMAC_MR0_RXI))) {
|
|
|
|
/* Wait if previous async disable is still in progress */
|
|
|
|
int n = dev->stop_timeout;
|
|
|
|
while (!(r = in_be32(&p->mr0) & EMAC_MR0_RXI) && n) {
|
|
|
|
udelay(1);
|
|
|
|
--n;
|
|
|
|
}
|
|
|
|
if (unlikely(!n))
|
|
|
|
emac_report_timeout_error(dev,
|
|
|
|
"RX disable timeout");
|
|
|
|
}
|
|
|
|
out_be32(&p->mr0, r | EMAC_MR0_RXE);
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_rx_disable(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 r;
|
|
|
|
|
|
|
|
DBG(dev, "rx_disable" NL);
|
|
|
|
|
|
|
|
r = in_be32(&p->mr0);
|
|
|
|
if (r & EMAC_MR0_RXE) {
|
|
|
|
int n = dev->stop_timeout;
|
|
|
|
out_be32(&p->mr0, r & ~EMAC_MR0_RXE);
|
|
|
|
while (!(in_be32(&p->mr0) & EMAC_MR0_RXI) && n) {
|
|
|
|
udelay(1);
|
|
|
|
--n;
|
|
|
|
}
|
|
|
|
if (unlikely(!n))
|
|
|
|
emac_report_timeout_error(dev, "RX disable timeout");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void emac_netif_stop(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
netif_tx_lock_bh(dev->ndev);
|
2008-07-15 01:13:44 -06:00
|
|
|
netif_addr_lock(dev->ndev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->no_mcast = 1;
|
2008-07-15 01:13:44 -06:00
|
|
|
netif_addr_unlock(dev->ndev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
netif_tx_unlock_bh(dev->ndev);
|
|
|
|
dev->ndev->trans_start = jiffies; /* prevent tx timeout */
|
|
|
|
mal_poll_disable(dev->mal, &dev->commac);
|
|
|
|
netif_tx_disable(dev->ndev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void emac_netif_start(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
netif_tx_lock_bh(dev->ndev);
|
2008-07-15 01:13:44 -06:00
|
|
|
netif_addr_lock(dev->ndev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->no_mcast = 0;
|
|
|
|
if (dev->mcast_pending && netif_running(dev->ndev))
|
|
|
|
__emac_set_multicast_list(dev);
|
2008-07-15 01:13:44 -06:00
|
|
|
netif_addr_unlock(dev->ndev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
netif_tx_unlock_bh(dev->ndev);
|
|
|
|
|
|
|
|
netif_wake_queue(dev->ndev);
|
|
|
|
|
|
|
|
/* NOTE: unconditional netif_wake_queue is only appropriate
|
|
|
|
* so long as all callers are assured to have free tx slots
|
|
|
|
* (taken from tg3... though the case where that is wrong is
|
|
|
|
* not terribly harmful)
|
|
|
|
*/
|
|
|
|
mal_poll_enable(dev->mal, &dev->commac);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void emac_rx_disable_async(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 r;
|
|
|
|
|
|
|
|
DBG(dev, "rx_disable_async" NL);
|
|
|
|
|
|
|
|
r = in_be32(&p->mr0);
|
|
|
|
if (r & EMAC_MR0_RXE)
|
|
|
|
out_be32(&p->mr0, r & ~EMAC_MR0_RXE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_reset(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
int n = 20;
|
|
|
|
|
|
|
|
DBG(dev, "reset" NL);
|
|
|
|
|
|
|
|
if (!dev->reset_failed) {
|
|
|
|
/* 40x erratum suggests stopping RX channel before reset,
|
|
|
|
* we stop TX as well
|
|
|
|
*/
|
|
|
|
emac_rx_disable(dev);
|
|
|
|
emac_tx_disable(dev);
|
|
|
|
}
|
|
|
|
|
2008-10-02 00:37:57 -06:00
|
|
|
#ifdef CONFIG_PPC_DCR_NATIVE
|
|
|
|
/* Enable internal clock source */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_460EX_PHY_CLK_FIX))
|
|
|
|
dcri_clrset(SDR0, SDR0_ETH_CFG,
|
|
|
|
0, SDR0_ETH_CFG_ECS << dev->cell_index);
|
|
|
|
#endif
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
out_be32(&p->mr0, EMAC_MR0_SRST);
|
|
|
|
while ((in_be32(&p->mr0) & EMAC_MR0_SRST) && n)
|
|
|
|
--n;
|
|
|
|
|
2008-10-02 00:37:57 -06:00
|
|
|
#ifdef CONFIG_PPC_DCR_NATIVE
|
|
|
|
/* Enable external clock source */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_460EX_PHY_CLK_FIX))
|
|
|
|
dcri_clrset(SDR0, SDR0_ETH_CFG,
|
|
|
|
SDR0_ETH_CFG_ECS << dev->cell_index, 0);
|
|
|
|
#endif
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (n) {
|
|
|
|
dev->reset_failed = 0;
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
emac_report_timeout_error(dev, "reset timeout");
|
|
|
|
dev->reset_failed = 1;
|
|
|
|
return -ETIMEDOUT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_hash_mc(struct emac_instance *dev)
|
|
|
|
{
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
const int regs = EMAC_XAHT_REGS(dev);
|
|
|
|
u32 *gaht_base = emac_gaht_base(dev);
|
|
|
|
u32 gaht_temp[regs];
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
struct dev_mc_list *dmi;
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
int i;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
DBG(dev, "hash_mc %d" NL, dev->ndev->mc_count);
|
|
|
|
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
memset(gaht_temp, 0, sizeof (gaht_temp));
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
for (dmi = dev->ndev->mc_list; dmi; dmi = dmi->next) {
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
int slot, reg, mask;
|
2008-10-27 18:47:26 -06:00
|
|
|
DBG2(dev, "mc %pM" NL, dmi->dmi_addr);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
slot = EMAC_XAHT_CRC_TO_SLOT(dev, ether_crc(ETH_ALEN, dmi->dmi_addr));
|
|
|
|
reg = EMAC_XAHT_SLOT_TO_REG(dev, slot);
|
|
|
|
mask = EMAC_XAHT_SLOT_TO_MASK(dev, slot);
|
|
|
|
|
|
|
|
gaht_temp[reg] |= mask;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
}
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
|
|
|
|
for (i = 0; i < regs; i++)
|
|
|
|
out_be32(gaht_base + i, gaht_temp[i]);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 emac_iff2rmr(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
u32 r;
|
|
|
|
|
|
|
|
r = EMAC_RMR_SP | EMAC_RMR_SFCS | EMAC_RMR_IAE | EMAC_RMR_BAE;
|
|
|
|
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
r |= EMAC4_RMR_BASE;
|
|
|
|
else
|
|
|
|
r |= EMAC_RMR_BASE;
|
|
|
|
|
|
|
|
if (ndev->flags & IFF_PROMISC)
|
|
|
|
r |= EMAC_RMR_PME;
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
else if (ndev->flags & IFF_ALLMULTI ||
|
|
|
|
(ndev->mc_count > EMAC_XAHT_SLOTS(dev)))
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
r |= EMAC_RMR_PMME;
|
|
|
|
else if (ndev->mc_count > 0)
|
|
|
|
r |= EMAC_RMR_MAE;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 __emac_calc_base_mr1(struct emac_instance *dev, int tx_size, int rx_size)
|
|
|
|
{
|
|
|
|
u32 ret = EMAC_MR1_VLE | EMAC_MR1_IST | EMAC_MR1_TR0_MULT;
|
|
|
|
|
|
|
|
DBG2(dev, "__emac_calc_base_mr1" NL);
|
|
|
|
|
|
|
|
switch(tx_size) {
|
|
|
|
case 2048:
|
|
|
|
ret |= EMAC_MR1_TFS_2K;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_WARNING "%s: Unknown Rx FIFO size %d\n",
|
|
|
|
dev->ndev->name, tx_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch(rx_size) {
|
|
|
|
case 16384:
|
|
|
|
ret |= EMAC_MR1_RFS_16K;
|
|
|
|
break;
|
|
|
|
case 4096:
|
|
|
|
ret |= EMAC_MR1_RFS_4K;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_WARNING "%s: Unknown Rx FIFO size %d\n",
|
|
|
|
dev->ndev->name, rx_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 __emac4_calc_base_mr1(struct emac_instance *dev, int tx_size, int rx_size)
|
|
|
|
{
|
|
|
|
u32 ret = EMAC_MR1_VLE | EMAC_MR1_IST | EMAC4_MR1_TR |
|
2007-12-04 17:14:31 -07:00
|
|
|
EMAC4_MR1_OBCI(dev->opb_bus_freq / 1000000);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
DBG2(dev, "__emac4_calc_base_mr1" NL);
|
|
|
|
|
|
|
|
switch(tx_size) {
|
|
|
|
case 4096:
|
|
|
|
ret |= EMAC4_MR1_TFS_4K;
|
|
|
|
break;
|
|
|
|
case 2048:
|
|
|
|
ret |= EMAC4_MR1_TFS_2K;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_WARNING "%s: Unknown Rx FIFO size %d\n",
|
|
|
|
dev->ndev->name, tx_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch(rx_size) {
|
|
|
|
case 16384:
|
|
|
|
ret |= EMAC4_MR1_RFS_16K;
|
|
|
|
break;
|
|
|
|
case 4096:
|
|
|
|
ret |= EMAC4_MR1_RFS_4K;
|
|
|
|
break;
|
|
|
|
case 2048:
|
|
|
|
ret |= EMAC4_MR1_RFS_2K;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk(KERN_WARNING "%s: Unknown Rx FIFO size %d\n",
|
|
|
|
dev->ndev->name, rx_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 emac_calc_base_mr1(struct emac_instance *dev, int tx_size, int rx_size)
|
|
|
|
{
|
|
|
|
return emac_has_feature(dev, EMAC_FTR_EMAC4) ?
|
|
|
|
__emac4_calc_base_mr1(dev, tx_size, rx_size) :
|
|
|
|
__emac_calc_base_mr1(dev, tx_size, rx_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 emac_calc_trtr(struct emac_instance *dev, unsigned int size)
|
|
|
|
{
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
return ((size >> 6) - 1) << EMAC_TRTR_SHIFT_EMAC4;
|
|
|
|
else
|
|
|
|
return ((size >> 6) - 1) << EMAC_TRTR_SHIFT;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u32 emac_calc_rwmr(struct emac_instance *dev,
|
|
|
|
unsigned int low, unsigned int high)
|
|
|
|
{
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
return (low << 22) | ( (high & 0x3ff) << 6);
|
|
|
|
else
|
|
|
|
return (low << 23) | ( (high & 0x1ff) << 7);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_configure(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
struct net_device *ndev = dev->ndev;
|
2007-12-04 17:14:27 -07:00
|
|
|
int tx_size, rx_size, link = netif_carrier_ok(dev->ndev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
u32 r, mr1 = 0;
|
|
|
|
|
|
|
|
DBG(dev, "configure" NL);
|
|
|
|
|
2007-12-04 17:14:27 -07:00
|
|
|
if (!link) {
|
|
|
|
out_be32(&p->mr1, in_be32(&p->mr1)
|
|
|
|
| EMAC_MR1_FDE | EMAC_MR1_ILE);
|
|
|
|
udelay(100);
|
|
|
|
} else if (emac_reset(dev) < 0)
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
return -ETIMEDOUT;
|
|
|
|
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH))
|
|
|
|
tah_reset(dev->tah_dev);
|
|
|
|
|
2007-12-04 17:14:27 -07:00
|
|
|
DBG(dev, " link = %d duplex = %d, pause = %d, asym_pause = %d\n",
|
|
|
|
link, dev->phy.duplex, dev->phy.pause, dev->phy.asym_pause);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
/* Default fifo sizes */
|
|
|
|
tx_size = dev->tx_fifo_size;
|
|
|
|
rx_size = dev->rx_fifo_size;
|
|
|
|
|
2007-12-04 17:14:27 -07:00
|
|
|
/* No link, force loopback */
|
|
|
|
if (!link)
|
|
|
|
mr1 = EMAC_MR1_FDE | EMAC_MR1_ILE;
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
/* Check for full duplex */
|
2007-12-04 17:14:27 -07:00
|
|
|
else if (dev->phy.duplex == DUPLEX_FULL)
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
mr1 |= EMAC_MR1_FDE | EMAC_MR1_MWSW_001;
|
|
|
|
|
|
|
|
/* Adjust fifo sizes, mr1 and timeouts based on link speed */
|
|
|
|
dev->stop_timeout = STOP_TIMEOUT_10;
|
|
|
|
switch (dev->phy.speed) {
|
|
|
|
case SPEED_1000:
|
|
|
|
if (emac_phy_gpcs(dev->phy.mode)) {
|
2008-10-02 00:37:57 -06:00
|
|
|
mr1 |= EMAC_MR1_MF_1000GPCS | EMAC_MR1_MF_IPPA(
|
|
|
|
(dev->phy.gpcs_address != 0xffffffff) ?
|
|
|
|
dev->phy.gpcs_address : dev->phy.address);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
/* Put some arbitrary OUI, Manuf & Rev IDs so we can
|
|
|
|
* identify this GPCS PHY later.
|
|
|
|
*/
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
out_be32(&p->u1.emac4.ipcr, 0xdeadbeef);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
} else
|
|
|
|
mr1 |= EMAC_MR1_MF_1000;
|
|
|
|
|
|
|
|
/* Extended fifo sizes */
|
|
|
|
tx_size = dev->tx_fifo_size_gige;
|
|
|
|
rx_size = dev->rx_fifo_size_gige;
|
|
|
|
|
|
|
|
if (dev->ndev->mtu > ETH_DATA_LEN) {
|
2008-04-21 18:46:42 -06:00
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
mr1 |= EMAC4_MR1_JPSM;
|
|
|
|
else
|
|
|
|
mr1 |= EMAC_MR1_JPSM;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->stop_timeout = STOP_TIMEOUT_1000_JUMBO;
|
|
|
|
} else
|
|
|
|
dev->stop_timeout = STOP_TIMEOUT_1000;
|
|
|
|
break;
|
|
|
|
case SPEED_100:
|
|
|
|
mr1 |= EMAC_MR1_MF_100;
|
|
|
|
dev->stop_timeout = STOP_TIMEOUT_100;
|
|
|
|
break;
|
|
|
|
default: /* make gcc happy */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
rgmii_set_speed(dev->rgmii_dev, dev->rgmii_port,
|
|
|
|
dev->phy.speed);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
zmii_set_speed(dev->zmii_dev, dev->zmii_port, dev->phy.speed);
|
|
|
|
|
|
|
|
/* on 40x erratum forces us to NOT use integrated flow control,
|
|
|
|
* let's hope it works on 44x ;)
|
|
|
|
*/
|
|
|
|
if (!emac_has_feature(dev, EMAC_FTR_NO_FLOW_CONTROL_40x) &&
|
|
|
|
dev->phy.duplex == DUPLEX_FULL) {
|
|
|
|
if (dev->phy.pause)
|
|
|
|
mr1 |= EMAC_MR1_EIFC | EMAC_MR1_APP;
|
|
|
|
else if (dev->phy.asym_pause)
|
|
|
|
mr1 |= EMAC_MR1_APP;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add base settings & fifo sizes & program MR1 */
|
|
|
|
mr1 |= emac_calc_base_mr1(dev, tx_size, rx_size);
|
|
|
|
out_be32(&p->mr1, mr1);
|
|
|
|
|
|
|
|
/* Set individual MAC address */
|
|
|
|
out_be32(&p->iahr, (ndev->dev_addr[0] << 8) | ndev->dev_addr[1]);
|
|
|
|
out_be32(&p->ialr, (ndev->dev_addr[2] << 24) |
|
|
|
|
(ndev->dev_addr[3] << 16) | (ndev->dev_addr[4] << 8) |
|
|
|
|
ndev->dev_addr[5]);
|
|
|
|
|
|
|
|
/* VLAN Tag Protocol ID */
|
|
|
|
out_be32(&p->vtpid, 0x8100);
|
|
|
|
|
|
|
|
/* Receive mode register */
|
|
|
|
r = emac_iff2rmr(ndev);
|
|
|
|
if (r & EMAC_RMR_MAE)
|
|
|
|
emac_hash_mc(dev);
|
|
|
|
out_be32(&p->rmr, r);
|
|
|
|
|
|
|
|
/* FIFOs thresholds */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
r = EMAC4_TMR1((dev->mal_burst_size / dev->fifo_entry_size) + 1,
|
|
|
|
tx_size / 2 / dev->fifo_entry_size);
|
|
|
|
else
|
|
|
|
r = EMAC_TMR1((dev->mal_burst_size / dev->fifo_entry_size) + 1,
|
|
|
|
tx_size / 2 / dev->fifo_entry_size);
|
|
|
|
out_be32(&p->tmr1, r);
|
|
|
|
out_be32(&p->trtr, emac_calc_trtr(dev, tx_size / 2));
|
|
|
|
|
|
|
|
/* PAUSE frame is sent when RX FIFO reaches its high-water mark,
|
|
|
|
there should be still enough space in FIFO to allow the our link
|
|
|
|
partner time to process this frame and also time to send PAUSE
|
|
|
|
frame itself.
|
|
|
|
|
|
|
|
Here is the worst case scenario for the RX FIFO "headroom"
|
|
|
|
(from "The Switch Book") (100Mbps, without preamble, inter-frame gap):
|
|
|
|
|
|
|
|
1) One maximum-length frame on TX 1522 bytes
|
|
|
|
2) One PAUSE frame time 64 bytes
|
|
|
|
3) PAUSE frame decode time allowance 64 bytes
|
|
|
|
4) One maximum-length frame on RX 1522 bytes
|
|
|
|
5) Round-trip propagation delay of the link (100Mb) 15 bytes
|
|
|
|
----------
|
|
|
|
3187 bytes
|
|
|
|
|
|
|
|
I chose to set high-water mark to RX_FIFO_SIZE / 4 (1024 bytes)
|
|
|
|
low-water mark to RX_FIFO_SIZE / 8 (512 bytes)
|
|
|
|
*/
|
|
|
|
r = emac_calc_rwmr(dev, rx_size / 8 / dev->fifo_entry_size,
|
|
|
|
rx_size / 4 / dev->fifo_entry_size);
|
|
|
|
out_be32(&p->rwmr, r);
|
|
|
|
|
|
|
|
/* Set PAUSE timer to the maximum */
|
|
|
|
out_be32(&p->ptr, 0xffff);
|
|
|
|
|
|
|
|
/* IRQ sources */
|
|
|
|
r = EMAC_ISR_OVR | EMAC_ISR_BP | EMAC_ISR_SE |
|
|
|
|
EMAC_ISR_ALE | EMAC_ISR_BFCS | EMAC_ISR_PTLE | EMAC_ISR_ORE |
|
|
|
|
EMAC_ISR_IRE | EMAC_ISR_TE;
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
r |= EMAC4_ISR_TXPE | EMAC4_ISR_RXPE /* | EMAC4_ISR_TXUE |
|
|
|
|
EMAC4_ISR_RXOE | */;
|
|
|
|
out_be32(&p->iser, r);
|
|
|
|
|
|
|
|
/* We need to take GPCS PHY out of isolate mode after EMAC reset */
|
2008-10-02 00:37:57 -06:00
|
|
|
if (emac_phy_gpcs(dev->phy.mode)) {
|
|
|
|
if (dev->phy.gpcs_address != 0xffffffff)
|
|
|
|
emac_mii_reset_gpcs(&dev->phy);
|
|
|
|
else
|
|
|
|
emac_mii_reset_phy(&dev->phy);
|
|
|
|
}
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_reinitialize(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
DBG(dev, "reinitialize" NL);
|
|
|
|
|
|
|
|
emac_netif_stop(dev);
|
|
|
|
if (!emac_configure(dev)) {
|
|
|
|
emac_tx_enable(dev);
|
|
|
|
emac_rx_enable(dev);
|
|
|
|
}
|
|
|
|
emac_netif_start(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_full_tx_reset(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
DBG(dev, "full_tx_reset" NL);
|
|
|
|
|
|
|
|
emac_tx_disable(dev);
|
|
|
|
mal_disable_tx_channel(dev->mal, dev->mal_tx_chan);
|
|
|
|
emac_clean_tx_ring(dev);
|
|
|
|
dev->tx_cnt = dev->tx_slot = dev->ack_slot = 0;
|
|
|
|
|
|
|
|
emac_configure(dev);
|
|
|
|
|
|
|
|
mal_enable_tx_channel(dev->mal, dev->mal_tx_chan);
|
|
|
|
emac_tx_enable(dev);
|
|
|
|
emac_rx_enable(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_reset_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = container_of(work, struct emac_instance, reset_work);
|
|
|
|
|
|
|
|
DBG(dev, "reset_work" NL);
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
2007-11-19 20:50:46 -07:00
|
|
|
if (dev->opened) {
|
|
|
|
emac_netif_stop(dev);
|
|
|
|
emac_full_tx_reset(dev);
|
|
|
|
emac_netif_start(dev);
|
|
|
|
}
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_tx_timeout(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
|
|
|
DBG(dev, "tx_timeout" NL);
|
|
|
|
|
|
|
|
schedule_work(&dev->reset_work);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline int emac_phy_done(struct emac_instance *dev, u32 stacr)
|
|
|
|
{
|
|
|
|
int done = !!(stacr & EMAC_STACR_OC);
|
|
|
|
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_STACR_OC_INVERT))
|
|
|
|
done = !done;
|
|
|
|
|
|
|
|
return done;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __emac_mdio_read(struct emac_instance *dev, u8 id, u8 reg)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 r = 0;
|
|
|
|
int n, err = -ETIMEDOUT;
|
|
|
|
|
|
|
|
mutex_lock(&dev->mdio_lock);
|
|
|
|
|
|
|
|
DBG2(dev, "mdio_read(%02x,%02x)" NL, id, reg);
|
|
|
|
|
|
|
|
/* Enable proper MDIO port */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
zmii_get_mdio(dev->zmii_dev, dev->zmii_port);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
rgmii_get_mdio(dev->rgmii_dev, dev->rgmii_port);
|
|
|
|
|
|
|
|
/* Wait for management interface to become idle */
|
2008-04-22 23:17:14 -06:00
|
|
|
n = 20;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
while (!emac_phy_done(dev, in_be32(&p->stacr))) {
|
|
|
|
udelay(1);
|
|
|
|
if (!--n) {
|
|
|
|
DBG2(dev, " -> timeout wait idle\n");
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Issue read command */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
r = EMAC4_STACR_BASE(dev->opb_bus_freq);
|
|
|
|
else
|
|
|
|
r = EMAC_STACR_BASE(dev->opb_bus_freq);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_STACR_OC_INVERT))
|
|
|
|
r |= EMAC_STACR_OC;
|
2007-12-04 17:14:29 -07:00
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_NEW_STACR))
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
r |= EMACX_STACR_STAC_READ;
|
|
|
|
else
|
|
|
|
r |= EMAC_STACR_STAC_READ;
|
|
|
|
r |= (reg & EMAC_STACR_PRA_MASK)
|
|
|
|
| ((id & EMAC_STACR_PCDA_MASK) << EMAC_STACR_PCDA_SHIFT);
|
|
|
|
out_be32(&p->stacr, r);
|
|
|
|
|
|
|
|
/* Wait for read to complete */
|
2008-04-22 23:17:14 -06:00
|
|
|
n = 200;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
while (!emac_phy_done(dev, (r = in_be32(&p->stacr)))) {
|
|
|
|
udelay(1);
|
|
|
|
if (!--n) {
|
|
|
|
DBG2(dev, " -> timeout wait complete\n");
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(r & EMAC_STACR_PHYE)) {
|
|
|
|
DBG(dev, "mdio_read(%02x, %02x) failed" NL, id, reg);
|
|
|
|
err = -EREMOTEIO;
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = ((r >> EMAC_STACR_PHYD_SHIFT) & EMAC_STACR_PHYD_MASK);
|
|
|
|
|
|
|
|
DBG2(dev, "mdio_read -> %04x" NL, r);
|
|
|
|
err = 0;
|
|
|
|
bail:
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
rgmii_put_mdio(dev->rgmii_dev, dev->rgmii_port);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
zmii_put_mdio(dev->zmii_dev, dev->zmii_port);
|
|
|
|
mutex_unlock(&dev->mdio_lock);
|
|
|
|
|
|
|
|
return err == 0 ? r : err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __emac_mdio_write(struct emac_instance *dev, u8 id, u8 reg,
|
|
|
|
u16 val)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 r = 0;
|
|
|
|
int n, err = -ETIMEDOUT;
|
|
|
|
|
|
|
|
mutex_lock(&dev->mdio_lock);
|
|
|
|
|
|
|
|
DBG2(dev, "mdio_write(%02x,%02x,%04x)" NL, id, reg, val);
|
|
|
|
|
|
|
|
/* Enable proper MDIO port */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
zmii_get_mdio(dev->zmii_dev, dev->zmii_port);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
rgmii_get_mdio(dev->rgmii_dev, dev->rgmii_port);
|
|
|
|
|
|
|
|
/* Wait for management interface to be idle */
|
2008-04-22 23:17:14 -06:00
|
|
|
n = 20;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
while (!emac_phy_done(dev, in_be32(&p->stacr))) {
|
|
|
|
udelay(1);
|
|
|
|
if (!--n) {
|
|
|
|
DBG2(dev, " -> timeout wait idle\n");
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Issue write command */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
r = EMAC4_STACR_BASE(dev->opb_bus_freq);
|
|
|
|
else
|
|
|
|
r = EMAC_STACR_BASE(dev->opb_bus_freq);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_STACR_OC_INVERT))
|
|
|
|
r |= EMAC_STACR_OC;
|
2007-12-04 17:14:29 -07:00
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_NEW_STACR))
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
r |= EMACX_STACR_STAC_WRITE;
|
|
|
|
else
|
|
|
|
r |= EMAC_STACR_STAC_WRITE;
|
|
|
|
r |= (reg & EMAC_STACR_PRA_MASK) |
|
|
|
|
((id & EMAC_STACR_PCDA_MASK) << EMAC_STACR_PCDA_SHIFT) |
|
|
|
|
(val << EMAC_STACR_PHYD_SHIFT);
|
|
|
|
out_be32(&p->stacr, r);
|
|
|
|
|
|
|
|
/* Wait for write to complete */
|
2008-04-22 23:17:14 -06:00
|
|
|
n = 200;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
while (!emac_phy_done(dev, in_be32(&p->stacr))) {
|
|
|
|
udelay(1);
|
|
|
|
if (!--n) {
|
|
|
|
DBG2(dev, " -> timeout wait complete\n");
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
err = 0;
|
|
|
|
bail:
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
rgmii_put_mdio(dev->rgmii_dev, dev->rgmii_port);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
zmii_put_mdio(dev->zmii_dev, dev->zmii_port);
|
|
|
|
mutex_unlock(&dev->mdio_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_mdio_read(struct net_device *ndev, int id, int reg)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
int res;
|
|
|
|
|
2008-10-02 00:37:57 -06:00
|
|
|
res = __emac_mdio_read((dev->mdio_instance &&
|
|
|
|
dev->phy.gpcs_address != id) ?
|
|
|
|
dev->mdio_instance : dev,
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
(u8) id, (u8) reg);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_mdio_write(struct net_device *ndev, int id, int reg, int val)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
2008-10-02 00:37:57 -06:00
|
|
|
__emac_mdio_write((dev->mdio_instance &&
|
|
|
|
dev->phy.gpcs_address != id) ?
|
|
|
|
dev->mdio_instance : dev,
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
(u8) id, (u8) reg, (u16) val);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Tx lock BH */
|
|
|
|
static void __emac_set_multicast_list(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
u32 rmr = emac_iff2rmr(dev->ndev);
|
|
|
|
|
|
|
|
DBG(dev, "__multicast %08x" NL, rmr);
|
|
|
|
|
|
|
|
/* I decided to relax register access rules here to avoid
|
|
|
|
* full EMAC reset.
|
|
|
|
*
|
|
|
|
* There is a real problem with EMAC4 core if we use MWSW_001 bit
|
|
|
|
* in MR1 register and do a full EMAC reset.
|
|
|
|
* One TX BD status update is delayed and, after EMAC reset, it
|
|
|
|
* never happens, resulting in TX hung (it'll be recovered by TX
|
|
|
|
* timeout handler eventually, but this is just gross).
|
|
|
|
* So we either have to do full TX reset or try to cheat here :)
|
|
|
|
*
|
|
|
|
* The only required change is to RX mode register, so I *think* all
|
|
|
|
* we need is just to stop RX channel. This seems to work on all
|
|
|
|
* tested SoCs. --ebs
|
|
|
|
*
|
|
|
|
* If we need the full reset, we might just trigger the workqueue
|
|
|
|
* and do it async... a bit nasty but should work --BenH
|
|
|
|
*/
|
|
|
|
dev->mcast_pending = 0;
|
|
|
|
emac_rx_disable(dev);
|
|
|
|
if (rmr & EMAC_RMR_MAE)
|
|
|
|
emac_hash_mc(dev);
|
|
|
|
out_be32(&p->rmr, rmr);
|
|
|
|
emac_rx_enable(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Tx lock BH */
|
|
|
|
static void emac_set_multicast_list(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
|
|
|
DBG(dev, "multicast" NL);
|
|
|
|
|
|
|
|
BUG_ON(!netif_running(dev->ndev));
|
|
|
|
|
|
|
|
if (dev->no_mcast) {
|
|
|
|
dev->mcast_pending = 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
__emac_set_multicast_list(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_resize_rx_ring(struct emac_instance *dev, int new_mtu)
|
|
|
|
{
|
|
|
|
int rx_sync_size = emac_rx_sync_size(new_mtu);
|
|
|
|
int rx_skb_size = emac_rx_skb_size(new_mtu);
|
|
|
|
int i, ret = 0;
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
|
|
|
emac_netif_stop(dev);
|
|
|
|
emac_rx_disable(dev);
|
|
|
|
mal_disable_rx_channel(dev->mal, dev->mal_rx_chan);
|
|
|
|
|
|
|
|
if (dev->rx_sg_skb) {
|
|
|
|
++dev->estats.rx_dropped_resize;
|
|
|
|
dev_kfree_skb(dev->rx_sg_skb);
|
|
|
|
dev->rx_sg_skb = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Make a first pass over RX ring and mark BDs ready, dropping
|
|
|
|
* non-processed packets on the way. We need this as a separate pass
|
|
|
|
* to simplify error recovery in the case of allocation failure later.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < NUM_RX_BUFF; ++i) {
|
|
|
|
if (dev->rx_desc[i].ctrl & MAL_RX_CTRL_FIRST)
|
|
|
|
++dev->estats.rx_dropped_resize;
|
|
|
|
|
|
|
|
dev->rx_desc[i].data_len = 0;
|
|
|
|
dev->rx_desc[i].ctrl = MAL_RX_CTRL_EMPTY |
|
|
|
|
(i == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reallocate RX ring only if bigger skb buffers are required */
|
|
|
|
if (rx_skb_size <= dev->rx_skb_size)
|
|
|
|
goto skip;
|
|
|
|
|
|
|
|
/* Second pass, allocate new skbs */
|
|
|
|
for (i = 0; i < NUM_RX_BUFF; ++i) {
|
|
|
|
struct sk_buff *skb = alloc_skb(rx_skb_size, GFP_ATOMIC);
|
|
|
|
if (!skb) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto oom;
|
|
|
|
}
|
|
|
|
|
|
|
|
BUG_ON(!dev->rx_skb[i]);
|
|
|
|
dev_kfree_skb(dev->rx_skb[i]);
|
|
|
|
|
|
|
|
skb_reserve(skb, EMAC_RX_SKB_HEADROOM + 2);
|
|
|
|
dev->rx_desc[i].data_ptr =
|
|
|
|
dma_map_single(&dev->ofdev->dev, skb->data - 2, rx_sync_size,
|
|
|
|
DMA_FROM_DEVICE) + 2;
|
|
|
|
dev->rx_skb[i] = skb;
|
|
|
|
}
|
|
|
|
skip:
|
|
|
|
/* Check if we need to change "Jumbo" bit in MR1 */
|
|
|
|
if ((new_mtu > ETH_DATA_LEN) ^ (dev->ndev->mtu > ETH_DATA_LEN)) {
|
|
|
|
/* This is to prevent starting RX channel in emac_rx_enable() */
|
|
|
|
set_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags);
|
|
|
|
|
|
|
|
dev->ndev->mtu = new_mtu;
|
|
|
|
emac_full_tx_reset(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
mal_set_rcbs(dev->mal, dev->mal_rx_chan, emac_rx_size(new_mtu));
|
|
|
|
oom:
|
|
|
|
/* Restart RX */
|
|
|
|
clear_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags);
|
|
|
|
dev->rx_slot = 0;
|
|
|
|
mal_enable_rx_channel(dev->mal, dev->mal_rx_chan);
|
|
|
|
emac_rx_enable(dev);
|
|
|
|
emac_netif_start(dev);
|
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Process ctx, rtnl_lock semaphore */
|
|
|
|
static int emac_change_mtu(struct net_device *ndev, int new_mtu)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (new_mtu < EMAC_MIN_MTU || new_mtu > dev->max_mtu)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
DBG(dev, "change_mtu(%d)" NL, new_mtu);
|
|
|
|
|
|
|
|
if (netif_running(ndev)) {
|
|
|
|
/* Check if we really need to reinitalize RX ring */
|
|
|
|
if (emac_rx_skb_size(ndev->mtu) != emac_rx_skb_size(new_mtu))
|
|
|
|
ret = emac_resize_rx_ring(dev, new_mtu);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ret) {
|
|
|
|
ndev->mtu = new_mtu;
|
|
|
|
dev->rx_skb_size = emac_rx_skb_size(new_mtu);
|
|
|
|
dev->rx_sync_size = emac_rx_sync_size(new_mtu);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_clean_tx_ring(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < NUM_TX_BUFF; ++i) {
|
|
|
|
if (dev->tx_skb[i]) {
|
|
|
|
dev_kfree_skb(dev->tx_skb[i]);
|
|
|
|
dev->tx_skb[i] = NULL;
|
|
|
|
if (dev->tx_desc[i].ctrl & MAL_TX_CTRL_READY)
|
|
|
|
++dev->estats.tx_dropped;
|
|
|
|
}
|
|
|
|
dev->tx_desc[i].ctrl = 0;
|
|
|
|
dev->tx_desc[i].data_ptr = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_clean_rx_ring(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < NUM_RX_BUFF; ++i)
|
|
|
|
if (dev->rx_skb[i]) {
|
|
|
|
dev->rx_desc[i].ctrl = 0;
|
|
|
|
dev_kfree_skb(dev->rx_skb[i]);
|
|
|
|
dev->rx_skb[i] = NULL;
|
|
|
|
dev->rx_desc[i].data_ptr = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev->rx_sg_skb) {
|
|
|
|
dev_kfree_skb(dev->rx_sg_skb);
|
|
|
|
dev->rx_sg_skb = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int emac_alloc_rx_skb(struct emac_instance *dev, int slot,
|
|
|
|
gfp_t flags)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb = alloc_skb(dev->rx_skb_size, flags);
|
|
|
|
if (unlikely(!skb))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
dev->rx_skb[slot] = skb;
|
|
|
|
dev->rx_desc[slot].data_len = 0;
|
|
|
|
|
|
|
|
skb_reserve(skb, EMAC_RX_SKB_HEADROOM + 2);
|
|
|
|
dev->rx_desc[slot].data_ptr =
|
|
|
|
dma_map_single(&dev->ofdev->dev, skb->data - 2, dev->rx_sync_size,
|
|
|
|
DMA_FROM_DEVICE) + 2;
|
|
|
|
wmb();
|
|
|
|
dev->rx_desc[slot].ctrl = MAL_RX_CTRL_EMPTY |
|
|
|
|
(slot == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_print_link_status(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
if (netif_carrier_ok(dev->ndev))
|
|
|
|
printk(KERN_INFO "%s: link is up, %d %s%s\n",
|
|
|
|
dev->ndev->name, dev->phy.speed,
|
|
|
|
dev->phy.duplex == DUPLEX_FULL ? "FDX" : "HDX",
|
|
|
|
dev->phy.pause ? ", pause enabled" :
|
|
|
|
dev->phy.asym_pause ? ", asymmetric pause enabled" : "");
|
|
|
|
else
|
|
|
|
printk(KERN_INFO "%s: link is down\n", dev->ndev->name);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Process ctx, rtnl_lock semaphore */
|
|
|
|
static int emac_open(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
int err, i;
|
|
|
|
|
|
|
|
DBG(dev, "open" NL);
|
|
|
|
|
|
|
|
/* Setup error IRQ handler */
|
|
|
|
err = request_irq(dev->emac_irq, emac_irq, 0, "EMAC", dev);
|
|
|
|
if (err) {
|
|
|
|
printk(KERN_ERR "%s: failed to request IRQ %d\n",
|
|
|
|
ndev->name, dev->emac_irq);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate RX ring */
|
|
|
|
for (i = 0; i < NUM_RX_BUFF; ++i)
|
|
|
|
if (emac_alloc_rx_skb(dev, i, GFP_KERNEL)) {
|
|
|
|
printk(KERN_ERR "%s: failed to allocate RX ring\n",
|
|
|
|
ndev->name);
|
|
|
|
goto oom;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev->tx_cnt = dev->tx_slot = dev->ack_slot = dev->rx_slot = 0;
|
|
|
|
clear_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags);
|
|
|
|
dev->rx_sg_skb = NULL;
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
2007-11-19 20:50:46 -07:00
|
|
|
dev->opened = 1;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
2007-11-19 20:50:46 -07:00
|
|
|
/* Start PHY polling now.
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
*/
|
|
|
|
if (dev->phy.address >= 0) {
|
|
|
|
int link_poll_interval;
|
|
|
|
if (dev->phy.def->ops->poll_link(&dev->phy)) {
|
|
|
|
dev->phy.def->ops->read_link(&dev->phy);
|
2008-04-21 18:46:48 -06:00
|
|
|
emac_rx_clk_default(dev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
netif_carrier_on(dev->ndev);
|
|
|
|
link_poll_interval = PHY_POLL_LINK_ON;
|
|
|
|
} else {
|
2008-04-21 18:46:48 -06:00
|
|
|
emac_rx_clk_tx(dev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
netif_carrier_off(dev->ndev);
|
|
|
|
link_poll_interval = PHY_POLL_LINK_OFF;
|
|
|
|
}
|
|
|
|
dev->link_polling = 1;
|
|
|
|
wmb();
|
|
|
|
schedule_delayed_work(&dev->link_work, link_poll_interval);
|
|
|
|
emac_print_link_status(dev);
|
|
|
|
} else
|
|
|
|
netif_carrier_on(dev->ndev);
|
|
|
|
|
2008-08-17 15:29:23 -06:00
|
|
|
/* Required for Pause packet support in EMAC */
|
|
|
|
dev_mc_add(ndev, default_mcast_addr, sizeof(default_mcast_addr), 1);
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
emac_configure(dev);
|
|
|
|
mal_poll_add(dev->mal, &dev->commac);
|
|
|
|
mal_enable_tx_channel(dev->mal, dev->mal_tx_chan);
|
|
|
|
mal_set_rcbs(dev->mal, dev->mal_rx_chan, emac_rx_size(ndev->mtu));
|
|
|
|
mal_enable_rx_channel(dev->mal, dev->mal_rx_chan);
|
|
|
|
emac_tx_enable(dev);
|
|
|
|
emac_rx_enable(dev);
|
|
|
|
emac_netif_start(dev);
|
|
|
|
|
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
oom:
|
|
|
|
emac_clean_rx_ring(dev);
|
|
|
|
free_irq(dev->emac_irq, dev);
|
|
|
|
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BHs disabled */
|
|
|
|
#if 0
|
|
|
|
static int emac_link_differs(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
u32 r = in_be32(&dev->emacp->mr1);
|
|
|
|
|
|
|
|
int duplex = r & EMAC_MR1_FDE ? DUPLEX_FULL : DUPLEX_HALF;
|
|
|
|
int speed, pause, asym_pause;
|
|
|
|
|
|
|
|
if (r & EMAC_MR1_MF_1000)
|
|
|
|
speed = SPEED_1000;
|
|
|
|
else if (r & EMAC_MR1_MF_100)
|
|
|
|
speed = SPEED_100;
|
|
|
|
else
|
|
|
|
speed = SPEED_10;
|
|
|
|
|
|
|
|
switch (r & (EMAC_MR1_EIFC | EMAC_MR1_APP)) {
|
|
|
|
case (EMAC_MR1_EIFC | EMAC_MR1_APP):
|
|
|
|
pause = 1;
|
|
|
|
asym_pause = 0;
|
|
|
|
break;
|
|
|
|
case EMAC_MR1_APP:
|
|
|
|
pause = 0;
|
|
|
|
asym_pause = 1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
pause = asym_pause = 0;
|
|
|
|
}
|
|
|
|
return speed != dev->phy.speed || duplex != dev->phy.duplex ||
|
|
|
|
pause != dev->phy.pause || asym_pause != dev->phy.asym_pause;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void emac_link_timer(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev =
|
2009-04-05 20:27:10 -06:00
|
|
|
container_of(to_delayed_work(work),
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
struct emac_instance, link_work);
|
|
|
|
int link_poll_interval;
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
|
|
|
DBG2(dev, "link timer" NL);
|
|
|
|
|
2007-11-19 20:50:46 -07:00
|
|
|
if (!dev->opened)
|
|
|
|
goto bail;
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (dev->phy.def->ops->poll_link(&dev->phy)) {
|
|
|
|
if (!netif_carrier_ok(dev->ndev)) {
|
2008-04-21 18:46:48 -06:00
|
|
|
emac_rx_clk_default(dev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
/* Get new link parameters */
|
|
|
|
dev->phy.def->ops->read_link(&dev->phy);
|
|
|
|
|
|
|
|
netif_carrier_on(dev->ndev);
|
|
|
|
emac_netif_stop(dev);
|
|
|
|
emac_full_tx_reset(dev);
|
|
|
|
emac_netif_start(dev);
|
|
|
|
emac_print_link_status(dev);
|
|
|
|
}
|
|
|
|
link_poll_interval = PHY_POLL_LINK_ON;
|
|
|
|
} else {
|
|
|
|
if (netif_carrier_ok(dev->ndev)) {
|
2008-04-21 18:46:48 -06:00
|
|
|
emac_rx_clk_tx(dev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
netif_carrier_off(dev->ndev);
|
|
|
|
netif_tx_disable(dev->ndev);
|
2007-12-04 17:14:27 -07:00
|
|
|
emac_reinitialize(dev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
emac_print_link_status(dev);
|
|
|
|
}
|
|
|
|
link_poll_interval = PHY_POLL_LINK_OFF;
|
|
|
|
}
|
|
|
|
schedule_delayed_work(&dev->link_work, link_poll_interval);
|
2007-11-19 20:50:46 -07:00
|
|
|
bail:
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_force_link_update(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
netif_carrier_off(dev->ndev);
|
2007-11-19 20:50:46 -07:00
|
|
|
smp_rmb();
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (dev->link_polling) {
|
|
|
|
cancel_rearming_delayed_work(&dev->link_work);
|
|
|
|
if (dev->link_polling)
|
|
|
|
schedule_delayed_work(&dev->link_work, PHY_POLL_LINK_OFF);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Process ctx, rtnl_lock semaphore */
|
|
|
|
static int emac_close(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
|
|
|
DBG(dev, "close" NL);
|
|
|
|
|
2007-11-19 20:50:46 -07:00
|
|
|
if (dev->phy.address >= 0) {
|
|
|
|
dev->link_polling = 0;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
cancel_rearming_delayed_work(&dev->link_work);
|
2007-11-19 20:50:46 -07:00
|
|
|
}
|
|
|
|
mutex_lock(&dev->link_lock);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
emac_netif_stop(dev);
|
2007-11-19 20:50:46 -07:00
|
|
|
dev->opened = 0;
|
|
|
|
mutex_unlock(&dev->link_lock);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
emac_rx_disable(dev);
|
|
|
|
emac_tx_disable(dev);
|
|
|
|
mal_disable_rx_channel(dev->mal, dev->mal_rx_chan);
|
|
|
|
mal_disable_tx_channel(dev->mal, dev->mal_tx_chan);
|
|
|
|
mal_poll_del(dev->mal, &dev->commac);
|
|
|
|
|
|
|
|
emac_clean_tx_ring(dev);
|
|
|
|
emac_clean_rx_ring(dev);
|
|
|
|
|
|
|
|
free_irq(dev->emac_irq, dev);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u16 emac_tx_csum(struct emac_instance *dev,
|
|
|
|
struct sk_buff *skb)
|
|
|
|
{
|
2008-03-27 08:43:57 -06:00
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH) &&
|
|
|
|
(skb->ip_summed == CHECKSUM_PARTIAL)) {
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
++dev->stats.tx_packets_csum;
|
|
|
|
return EMAC_TX_CTRL_TAH_CSUM;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int emac_xmit_finish(struct emac_instance *dev, int len)
|
|
|
|
{
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
struct net_device *ndev = dev->ndev;
|
|
|
|
|
|
|
|
/* Send the packet out. If the if makes a significant perf
|
|
|
|
* difference, then we can store the TMR0 value in "dev"
|
|
|
|
* instead
|
|
|
|
*/
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
out_be32(&p->tmr0, EMAC4_TMR0_XMIT);
|
2007-10-02 06:01:07 -06:00
|
|
|
else
|
|
|
|
out_be32(&p->tmr0, EMAC_TMR0_XMIT);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
if (unlikely(++dev->tx_cnt == NUM_TX_BUFF)) {
|
|
|
|
netif_stop_queue(ndev);
|
|
|
|
DBG2(dev, "stopped TX queue" NL);
|
|
|
|
}
|
|
|
|
|
|
|
|
ndev->trans_start = jiffies;
|
|
|
|
++dev->stats.tx_packets;
|
|
|
|
dev->stats.tx_bytes += len;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Tx lock BH */
|
|
|
|
static int emac_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
unsigned int len = skb->len;
|
|
|
|
int slot;
|
|
|
|
|
|
|
|
u16 ctrl = EMAC_TX_CTRL_GFCS | EMAC_TX_CTRL_GP | MAL_TX_CTRL_READY |
|
|
|
|
MAL_TX_CTRL_LAST | emac_tx_csum(dev, skb);
|
|
|
|
|
|
|
|
slot = dev->tx_slot++;
|
|
|
|
if (dev->tx_slot == NUM_TX_BUFF) {
|
|
|
|
dev->tx_slot = 0;
|
|
|
|
ctrl |= MAL_TX_CTRL_WRAP;
|
|
|
|
}
|
|
|
|
|
|
|
|
DBG2(dev, "xmit(%u) %d" NL, len, slot);
|
|
|
|
|
|
|
|
dev->tx_skb[slot] = skb;
|
|
|
|
dev->tx_desc[slot].data_ptr = dma_map_single(&dev->ofdev->dev,
|
|
|
|
skb->data, len,
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
dev->tx_desc[slot].data_len = (u16) len;
|
|
|
|
wmb();
|
|
|
|
dev->tx_desc[slot].ctrl = ctrl;
|
|
|
|
|
|
|
|
return emac_xmit_finish(dev, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int emac_xmit_split(struct emac_instance *dev, int slot,
|
|
|
|
u32 pd, int len, int last, u16 base_ctrl)
|
|
|
|
{
|
|
|
|
while (1) {
|
|
|
|
u16 ctrl = base_ctrl;
|
|
|
|
int chunk = min(len, MAL_MAX_TX_SIZE);
|
|
|
|
len -= chunk;
|
|
|
|
|
|
|
|
slot = (slot + 1) % NUM_TX_BUFF;
|
|
|
|
|
|
|
|
if (last && !len)
|
|
|
|
ctrl |= MAL_TX_CTRL_LAST;
|
|
|
|
if (slot == NUM_TX_BUFF - 1)
|
|
|
|
ctrl |= MAL_TX_CTRL_WRAP;
|
|
|
|
|
|
|
|
dev->tx_skb[slot] = NULL;
|
|
|
|
dev->tx_desc[slot].data_ptr = pd;
|
|
|
|
dev->tx_desc[slot].data_len = (u16) chunk;
|
|
|
|
dev->tx_desc[slot].ctrl = ctrl;
|
|
|
|
++dev->tx_cnt;
|
|
|
|
|
|
|
|
if (!len)
|
|
|
|
break;
|
|
|
|
|
|
|
|
pd += chunk;
|
|
|
|
}
|
|
|
|
return slot;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Tx lock BH disabled (SG version for TAH equipped EMACs) */
|
|
|
|
static int emac_start_xmit_sg(struct sk_buff *skb, struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
int nr_frags = skb_shinfo(skb)->nr_frags;
|
|
|
|
int len = skb->len, chunk;
|
|
|
|
int slot, i;
|
|
|
|
u16 ctrl;
|
|
|
|
u32 pd;
|
|
|
|
|
|
|
|
/* This is common "fast" path */
|
|
|
|
if (likely(!nr_frags && len <= MAL_MAX_TX_SIZE))
|
|
|
|
return emac_start_xmit(skb, ndev);
|
|
|
|
|
|
|
|
len -= skb->data_len;
|
|
|
|
|
|
|
|
/* Note, this is only an *estimation*, we can still run out of empty
|
|
|
|
* slots because of the additional fragmentation into
|
|
|
|
* MAL_MAX_TX_SIZE-sized chunks
|
|
|
|
*/
|
|
|
|
if (unlikely(dev->tx_cnt + nr_frags + mal_tx_chunks(len) > NUM_TX_BUFF))
|
|
|
|
goto stop_queue;
|
|
|
|
|
|
|
|
ctrl = EMAC_TX_CTRL_GFCS | EMAC_TX_CTRL_GP | MAL_TX_CTRL_READY |
|
|
|
|
emac_tx_csum(dev, skb);
|
|
|
|
slot = dev->tx_slot;
|
|
|
|
|
|
|
|
/* skb data */
|
|
|
|
dev->tx_skb[slot] = NULL;
|
|
|
|
chunk = min(len, MAL_MAX_TX_SIZE);
|
|
|
|
dev->tx_desc[slot].data_ptr = pd =
|
|
|
|
dma_map_single(&dev->ofdev->dev, skb->data, len, DMA_TO_DEVICE);
|
|
|
|
dev->tx_desc[slot].data_len = (u16) chunk;
|
|
|
|
len -= chunk;
|
|
|
|
if (unlikely(len))
|
|
|
|
slot = emac_xmit_split(dev, slot, pd + chunk, len, !nr_frags,
|
|
|
|
ctrl);
|
|
|
|
/* skb fragments */
|
|
|
|
for (i = 0; i < nr_frags; ++i) {
|
|
|
|
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
len = frag->size;
|
|
|
|
|
|
|
|
if (unlikely(dev->tx_cnt + mal_tx_chunks(len) >= NUM_TX_BUFF))
|
|
|
|
goto undo_frame;
|
|
|
|
|
|
|
|
pd = dma_map_page(&dev->ofdev->dev, frag->page, frag->page_offset, len,
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
|
|
|
|
slot = emac_xmit_split(dev, slot, pd, len, i == nr_frags - 1,
|
|
|
|
ctrl);
|
|
|
|
}
|
|
|
|
|
|
|
|
DBG2(dev, "xmit_sg(%u) %d - %d" NL, skb->len, dev->tx_slot, slot);
|
|
|
|
|
|
|
|
/* Attach skb to the last slot so we don't release it too early */
|
|
|
|
dev->tx_skb[slot] = skb;
|
|
|
|
|
|
|
|
/* Send the packet out */
|
|
|
|
if (dev->tx_slot == NUM_TX_BUFF - 1)
|
|
|
|
ctrl |= MAL_TX_CTRL_WRAP;
|
|
|
|
wmb();
|
|
|
|
dev->tx_desc[dev->tx_slot].ctrl = ctrl;
|
|
|
|
dev->tx_slot = (slot + 1) % NUM_TX_BUFF;
|
|
|
|
|
|
|
|
return emac_xmit_finish(dev, skb->len);
|
|
|
|
|
|
|
|
undo_frame:
|
|
|
|
/* Well, too bad. Our previous estimation was overly optimistic.
|
|
|
|
* Undo everything.
|
|
|
|
*/
|
|
|
|
while (slot != dev->tx_slot) {
|
|
|
|
dev->tx_desc[slot].ctrl = 0;
|
|
|
|
--dev->tx_cnt;
|
|
|
|
if (--slot < 0)
|
|
|
|
slot = NUM_TX_BUFF - 1;
|
|
|
|
}
|
|
|
|
++dev->estats.tx_undo;
|
|
|
|
|
|
|
|
stop_queue:
|
|
|
|
netif_stop_queue(ndev);
|
|
|
|
DBG2(dev, "stopped TX queue" NL);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Tx lock BHs */
|
|
|
|
static void emac_parse_tx_error(struct emac_instance *dev, u16 ctrl)
|
|
|
|
{
|
|
|
|
struct emac_error_stats *st = &dev->estats;
|
|
|
|
|
|
|
|
DBG(dev, "BD TX error %04x" NL, ctrl);
|
|
|
|
|
|
|
|
++st->tx_bd_errors;
|
|
|
|
if (ctrl & EMAC_TX_ST_BFCS)
|
|
|
|
++st->tx_bd_bad_fcs;
|
|
|
|
if (ctrl & EMAC_TX_ST_LCS)
|
|
|
|
++st->tx_bd_carrier_loss;
|
|
|
|
if (ctrl & EMAC_TX_ST_ED)
|
|
|
|
++st->tx_bd_excessive_deferral;
|
|
|
|
if (ctrl & EMAC_TX_ST_EC)
|
|
|
|
++st->tx_bd_excessive_collisions;
|
|
|
|
if (ctrl & EMAC_TX_ST_LC)
|
|
|
|
++st->tx_bd_late_collision;
|
|
|
|
if (ctrl & EMAC_TX_ST_MC)
|
|
|
|
++st->tx_bd_multple_collisions;
|
|
|
|
if (ctrl & EMAC_TX_ST_SC)
|
|
|
|
++st->tx_bd_single_collision;
|
|
|
|
if (ctrl & EMAC_TX_ST_UR)
|
|
|
|
++st->tx_bd_underrun;
|
|
|
|
if (ctrl & EMAC_TX_ST_SQE)
|
|
|
|
++st->tx_bd_sqe;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_poll_tx(void *param)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = param;
|
|
|
|
u32 bad_mask;
|
|
|
|
|
|
|
|
DBG2(dev, "poll_tx, %d %d" NL, dev->tx_cnt, dev->ack_slot);
|
|
|
|
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH))
|
|
|
|
bad_mask = EMAC_IS_BAD_TX_TAH;
|
|
|
|
else
|
|
|
|
bad_mask = EMAC_IS_BAD_TX;
|
|
|
|
|
|
|
|
netif_tx_lock_bh(dev->ndev);
|
|
|
|
if (dev->tx_cnt) {
|
|
|
|
u16 ctrl;
|
|
|
|
int slot = dev->ack_slot, n = 0;
|
|
|
|
again:
|
|
|
|
ctrl = dev->tx_desc[slot].ctrl;
|
|
|
|
if (!(ctrl & MAL_TX_CTRL_READY)) {
|
|
|
|
struct sk_buff *skb = dev->tx_skb[slot];
|
|
|
|
++n;
|
|
|
|
|
|
|
|
if (skb) {
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
dev->tx_skb[slot] = NULL;
|
|
|
|
}
|
|
|
|
slot = (slot + 1) % NUM_TX_BUFF;
|
|
|
|
|
|
|
|
if (unlikely(ctrl & bad_mask))
|
|
|
|
emac_parse_tx_error(dev, ctrl);
|
|
|
|
|
|
|
|
if (--dev->tx_cnt)
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
if (n) {
|
|
|
|
dev->ack_slot = slot;
|
|
|
|
if (netif_queue_stopped(dev->ndev) &&
|
|
|
|
dev->tx_cnt < EMAC_TX_WAKEUP_THRESH)
|
|
|
|
netif_wake_queue(dev->ndev);
|
|
|
|
|
|
|
|
DBG2(dev, "tx %d pkts" NL, n);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
netif_tx_unlock_bh(dev->ndev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void emac_recycle_rx_skb(struct emac_instance *dev, int slot,
|
|
|
|
int len)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb = dev->rx_skb[slot];
|
|
|
|
|
|
|
|
DBG2(dev, "recycle %d %d" NL, slot, len);
|
|
|
|
|
|
|
|
if (len)
|
|
|
|
dma_map_single(&dev->ofdev->dev, skb->data - 2,
|
|
|
|
EMAC_DMA_ALIGN(len + 2), DMA_FROM_DEVICE);
|
|
|
|
|
|
|
|
dev->rx_desc[slot].data_len = 0;
|
|
|
|
wmb();
|
|
|
|
dev->rx_desc[slot].ctrl = MAL_RX_CTRL_EMPTY |
|
|
|
|
(slot == (NUM_RX_BUFF - 1) ? MAL_RX_CTRL_WRAP : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_parse_rx_error(struct emac_instance *dev, u16 ctrl)
|
|
|
|
{
|
|
|
|
struct emac_error_stats *st = &dev->estats;
|
|
|
|
|
|
|
|
DBG(dev, "BD RX error %04x" NL, ctrl);
|
|
|
|
|
|
|
|
++st->rx_bd_errors;
|
|
|
|
if (ctrl & EMAC_RX_ST_OE)
|
|
|
|
++st->rx_bd_overrun;
|
|
|
|
if (ctrl & EMAC_RX_ST_BP)
|
|
|
|
++st->rx_bd_bad_packet;
|
|
|
|
if (ctrl & EMAC_RX_ST_RP)
|
|
|
|
++st->rx_bd_runt_packet;
|
|
|
|
if (ctrl & EMAC_RX_ST_SE)
|
|
|
|
++st->rx_bd_short_event;
|
|
|
|
if (ctrl & EMAC_RX_ST_AE)
|
|
|
|
++st->rx_bd_alignment_error;
|
|
|
|
if (ctrl & EMAC_RX_ST_BFCS)
|
|
|
|
++st->rx_bd_bad_fcs;
|
|
|
|
if (ctrl & EMAC_RX_ST_PTL)
|
|
|
|
++st->rx_bd_packet_too_long;
|
|
|
|
if (ctrl & EMAC_RX_ST_ORE)
|
|
|
|
++st->rx_bd_out_of_range;
|
|
|
|
if (ctrl & EMAC_RX_ST_IRE)
|
|
|
|
++st->rx_bd_in_range;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void emac_rx_csum(struct emac_instance *dev,
|
|
|
|
struct sk_buff *skb, u16 ctrl)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_IBM_NEW_EMAC_TAH
|
|
|
|
if (!ctrl && dev->tah_dev) {
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
++dev->stats.rx_packets_csum;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int emac_rx_sg_append(struct emac_instance *dev, int slot)
|
|
|
|
{
|
|
|
|
if (likely(dev->rx_sg_skb != NULL)) {
|
|
|
|
int len = dev->rx_desc[slot].data_len;
|
|
|
|
int tot_len = dev->rx_sg_skb->len + len;
|
|
|
|
|
|
|
|
if (unlikely(tot_len + 2 > dev->rx_skb_size)) {
|
|
|
|
++dev->estats.rx_dropped_mtu;
|
|
|
|
dev_kfree_skb(dev->rx_sg_skb);
|
|
|
|
dev->rx_sg_skb = NULL;
|
|
|
|
} else {
|
2007-10-14 12:20:30 -06:00
|
|
|
cacheable_memcpy(skb_tail_pointer(dev->rx_sg_skb),
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->rx_skb[slot]->data, len);
|
|
|
|
skb_put(dev->rx_sg_skb, len);
|
|
|
|
emac_recycle_rx_skb(dev, slot, len);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
emac_recycle_rx_skb(dev, slot, 0);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* NAPI poll context */
|
|
|
|
static int emac_poll_rx(void *param, int budget)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = param;
|
|
|
|
int slot = dev->rx_slot, received = 0;
|
|
|
|
|
|
|
|
DBG2(dev, "poll_rx(%d)" NL, budget);
|
|
|
|
|
|
|
|
again:
|
|
|
|
while (budget > 0) {
|
|
|
|
int len;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
u16 ctrl = dev->rx_desc[slot].ctrl;
|
|
|
|
|
|
|
|
if (ctrl & MAL_RX_CTRL_EMPTY)
|
|
|
|
break;
|
|
|
|
|
|
|
|
skb = dev->rx_skb[slot];
|
|
|
|
mb();
|
|
|
|
len = dev->rx_desc[slot].data_len;
|
|
|
|
|
|
|
|
if (unlikely(!MAL_IS_SINGLE_RX(ctrl)))
|
|
|
|
goto sg;
|
|
|
|
|
|
|
|
ctrl &= EMAC_BAD_RX_MASK;
|
|
|
|
if (unlikely(ctrl && ctrl != EMAC_RX_TAH_BAD_CSUM)) {
|
|
|
|
emac_parse_rx_error(dev, ctrl);
|
|
|
|
++dev->estats.rx_dropped_error;
|
|
|
|
emac_recycle_rx_skb(dev, slot, 0);
|
|
|
|
len = 0;
|
|
|
|
goto next;
|
|
|
|
}
|
2008-07-01 02:58:19 -06:00
|
|
|
|
|
|
|
if (len < ETH_HLEN) {
|
|
|
|
++dev->estats.rx_dropped_stack;
|
|
|
|
emac_recycle_rx_skb(dev, slot, len);
|
|
|
|
goto next;
|
|
|
|
}
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
if (len && len < EMAC_RX_COPY_THRESH) {
|
|
|
|
struct sk_buff *copy_skb =
|
|
|
|
alloc_skb(len + EMAC_RX_SKB_HEADROOM + 2, GFP_ATOMIC);
|
|
|
|
if (unlikely(!copy_skb))
|
|
|
|
goto oom;
|
|
|
|
|
|
|
|
skb_reserve(copy_skb, EMAC_RX_SKB_HEADROOM + 2);
|
|
|
|
cacheable_memcpy(copy_skb->data - 2, skb->data - 2,
|
|
|
|
len + 2);
|
|
|
|
emac_recycle_rx_skb(dev, slot, len);
|
|
|
|
skb = copy_skb;
|
|
|
|
} else if (unlikely(emac_alloc_rx_skb(dev, slot, GFP_ATOMIC)))
|
|
|
|
goto oom;
|
|
|
|
|
|
|
|
skb_put(skb, len);
|
|
|
|
push_packet:
|
|
|
|
skb->dev = dev->ndev;
|
|
|
|
skb->protocol = eth_type_trans(skb, dev->ndev);
|
|
|
|
emac_rx_csum(dev, skb, ctrl);
|
|
|
|
|
|
|
|
if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
|
|
|
|
++dev->estats.rx_dropped_stack;
|
|
|
|
next:
|
|
|
|
++dev->stats.rx_packets;
|
|
|
|
skip:
|
|
|
|
dev->stats.rx_bytes += len;
|
|
|
|
slot = (slot + 1) % NUM_RX_BUFF;
|
|
|
|
--budget;
|
|
|
|
++received;
|
|
|
|
continue;
|
|
|
|
sg:
|
|
|
|
if (ctrl & MAL_RX_CTRL_FIRST) {
|
|
|
|
BUG_ON(dev->rx_sg_skb);
|
|
|
|
if (unlikely(emac_alloc_rx_skb(dev, slot, GFP_ATOMIC))) {
|
|
|
|
DBG(dev, "rx OOM %d" NL, slot);
|
|
|
|
++dev->estats.rx_dropped_oom;
|
|
|
|
emac_recycle_rx_skb(dev, slot, 0);
|
|
|
|
} else {
|
|
|
|
dev->rx_sg_skb = skb;
|
|
|
|
skb_put(skb, len);
|
|
|
|
}
|
|
|
|
} else if (!emac_rx_sg_append(dev, slot) &&
|
|
|
|
(ctrl & MAL_RX_CTRL_LAST)) {
|
|
|
|
|
|
|
|
skb = dev->rx_sg_skb;
|
|
|
|
dev->rx_sg_skb = NULL;
|
|
|
|
|
|
|
|
ctrl &= EMAC_BAD_RX_MASK;
|
|
|
|
if (unlikely(ctrl && ctrl != EMAC_RX_TAH_BAD_CSUM)) {
|
|
|
|
emac_parse_rx_error(dev, ctrl);
|
|
|
|
++dev->estats.rx_dropped_error;
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
len = 0;
|
|
|
|
} else
|
|
|
|
goto push_packet;
|
|
|
|
}
|
|
|
|
goto skip;
|
|
|
|
oom:
|
|
|
|
DBG(dev, "rx OOM %d" NL, slot);
|
|
|
|
/* Drop the packet and recycle skb */
|
|
|
|
++dev->estats.rx_dropped_oom;
|
|
|
|
emac_recycle_rx_skb(dev, slot, 0);
|
|
|
|
goto next;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (received) {
|
|
|
|
DBG2(dev, "rx %d BDs" NL, received);
|
|
|
|
dev->rx_slot = slot;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(budget && test_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags))) {
|
|
|
|
mb();
|
|
|
|
if (!(dev->rx_desc[slot].ctrl & MAL_RX_CTRL_EMPTY)) {
|
|
|
|
DBG2(dev, "rx restart" NL);
|
|
|
|
received = 0;
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev->rx_sg_skb) {
|
|
|
|
DBG2(dev, "dropping partial rx packet" NL);
|
|
|
|
++dev->estats.rx_dropped_error;
|
|
|
|
dev_kfree_skb(dev->rx_sg_skb);
|
|
|
|
dev->rx_sg_skb = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
clear_bit(MAL_COMMAC_RX_STOPPED, &dev->commac.flags);
|
|
|
|
mal_enable_rx_channel(dev->mal, dev->mal_rx_chan);
|
|
|
|
emac_rx_enable(dev);
|
|
|
|
dev->rx_slot = 0;
|
|
|
|
}
|
|
|
|
return received;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* NAPI poll context */
|
|
|
|
static int emac_peek_rx(void *param)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = param;
|
|
|
|
|
|
|
|
return !(dev->rx_desc[dev->rx_slot].ctrl & MAL_RX_CTRL_EMPTY);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* NAPI poll context */
|
|
|
|
static int emac_peek_rx_sg(void *param)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = param;
|
|
|
|
|
|
|
|
int slot = dev->rx_slot;
|
|
|
|
while (1) {
|
|
|
|
u16 ctrl = dev->rx_desc[slot].ctrl;
|
|
|
|
if (ctrl & MAL_RX_CTRL_EMPTY)
|
|
|
|
return 0;
|
|
|
|
else if (ctrl & MAL_RX_CTRL_LAST)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
slot = (slot + 1) % NUM_RX_BUFF;
|
|
|
|
|
|
|
|
/* I'm just being paranoid here :) */
|
|
|
|
if (unlikely(slot == dev->rx_slot))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Hard IRQ */
|
|
|
|
static void emac_rxde(void *param)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = param;
|
|
|
|
|
|
|
|
++dev->estats.rx_stopped;
|
|
|
|
emac_rx_disable_async(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Hard IRQ */
|
|
|
|
static irqreturn_t emac_irq(int irq, void *dev_instance)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = dev_instance;
|
|
|
|
struct emac_regs __iomem *p = dev->emacp;
|
|
|
|
struct emac_error_stats *st = &dev->estats;
|
|
|
|
u32 isr;
|
|
|
|
|
|
|
|
spin_lock(&dev->lock);
|
|
|
|
|
|
|
|
isr = in_be32(&p->isr);
|
|
|
|
out_be32(&p->isr, isr);
|
|
|
|
|
|
|
|
DBG(dev, "isr = %08x" NL, isr);
|
|
|
|
|
|
|
|
if (isr & EMAC4_ISR_TXPE)
|
|
|
|
++st->tx_parity;
|
|
|
|
if (isr & EMAC4_ISR_RXPE)
|
|
|
|
++st->rx_parity;
|
|
|
|
if (isr & EMAC4_ISR_TXUE)
|
|
|
|
++st->tx_underrun;
|
|
|
|
if (isr & EMAC4_ISR_RXOE)
|
|
|
|
++st->rx_fifo_overrun;
|
|
|
|
if (isr & EMAC_ISR_OVR)
|
|
|
|
++st->rx_overrun;
|
|
|
|
if (isr & EMAC_ISR_BP)
|
|
|
|
++st->rx_bad_packet;
|
|
|
|
if (isr & EMAC_ISR_RP)
|
|
|
|
++st->rx_runt_packet;
|
|
|
|
if (isr & EMAC_ISR_SE)
|
|
|
|
++st->rx_short_event;
|
|
|
|
if (isr & EMAC_ISR_ALE)
|
|
|
|
++st->rx_alignment_error;
|
|
|
|
if (isr & EMAC_ISR_BFCS)
|
|
|
|
++st->rx_bad_fcs;
|
|
|
|
if (isr & EMAC_ISR_PTLE)
|
|
|
|
++st->rx_packet_too_long;
|
|
|
|
if (isr & EMAC_ISR_ORE)
|
|
|
|
++st->rx_out_of_range;
|
|
|
|
if (isr & EMAC_ISR_IRE)
|
|
|
|
++st->rx_in_range;
|
|
|
|
if (isr & EMAC_ISR_SQE)
|
|
|
|
++st->tx_sqe;
|
|
|
|
if (isr & EMAC_ISR_TE)
|
|
|
|
++st->tx_errors;
|
|
|
|
|
|
|
|
spin_unlock(&dev->lock);
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct net_device_stats *emac_stats(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
struct emac_stats *st = &dev->stats;
|
|
|
|
struct emac_error_stats *est = &dev->estats;
|
|
|
|
struct net_device_stats *nst = &dev->nstats;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
DBG2(dev, "stats" NL);
|
|
|
|
|
|
|
|
/* Compute "legacy" statistics */
|
|
|
|
spin_lock_irqsave(&dev->lock, flags);
|
|
|
|
nst->rx_packets = (unsigned long)st->rx_packets;
|
|
|
|
nst->rx_bytes = (unsigned long)st->rx_bytes;
|
|
|
|
nst->tx_packets = (unsigned long)st->tx_packets;
|
|
|
|
nst->tx_bytes = (unsigned long)st->tx_bytes;
|
|
|
|
nst->rx_dropped = (unsigned long)(est->rx_dropped_oom +
|
|
|
|
est->rx_dropped_error +
|
|
|
|
est->rx_dropped_resize +
|
|
|
|
est->rx_dropped_mtu);
|
|
|
|
nst->tx_dropped = (unsigned long)est->tx_dropped;
|
|
|
|
|
|
|
|
nst->rx_errors = (unsigned long)est->rx_bd_errors;
|
|
|
|
nst->rx_fifo_errors = (unsigned long)(est->rx_bd_overrun +
|
|
|
|
est->rx_fifo_overrun +
|
|
|
|
est->rx_overrun);
|
|
|
|
nst->rx_frame_errors = (unsigned long)(est->rx_bd_alignment_error +
|
|
|
|
est->rx_alignment_error);
|
|
|
|
nst->rx_crc_errors = (unsigned long)(est->rx_bd_bad_fcs +
|
|
|
|
est->rx_bad_fcs);
|
|
|
|
nst->rx_length_errors = (unsigned long)(est->rx_bd_runt_packet +
|
|
|
|
est->rx_bd_short_event +
|
|
|
|
est->rx_bd_packet_too_long +
|
|
|
|
est->rx_bd_out_of_range +
|
|
|
|
est->rx_bd_in_range +
|
|
|
|
est->rx_runt_packet +
|
|
|
|
est->rx_short_event +
|
|
|
|
est->rx_packet_too_long +
|
|
|
|
est->rx_out_of_range +
|
|
|
|
est->rx_in_range);
|
|
|
|
|
|
|
|
nst->tx_errors = (unsigned long)(est->tx_bd_errors + est->tx_errors);
|
|
|
|
nst->tx_fifo_errors = (unsigned long)(est->tx_bd_underrun +
|
|
|
|
est->tx_underrun);
|
|
|
|
nst->tx_carrier_errors = (unsigned long)est->tx_bd_carrier_loss;
|
|
|
|
nst->collisions = (unsigned long)(est->tx_bd_excessive_deferral +
|
|
|
|
est->tx_bd_excessive_collisions +
|
|
|
|
est->tx_bd_late_collision +
|
|
|
|
est->tx_bd_multple_collisions);
|
|
|
|
spin_unlock_irqrestore(&dev->lock, flags);
|
|
|
|
return nst;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mal_commac_ops emac_commac_ops = {
|
|
|
|
.poll_tx = &emac_poll_tx,
|
|
|
|
.poll_rx = &emac_poll_rx,
|
|
|
|
.peek_rx = &emac_peek_rx,
|
|
|
|
.rxde = &emac_rxde,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct mal_commac_ops emac_commac_sg_ops = {
|
|
|
|
.poll_tx = &emac_poll_tx,
|
|
|
|
.poll_rx = &emac_poll_rx,
|
|
|
|
.peek_rx = &emac_peek_rx_sg,
|
|
|
|
.rxde = &emac_rxde,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Ethtool support */
|
|
|
|
static int emac_ethtool_get_settings(struct net_device *ndev,
|
|
|
|
struct ethtool_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
|
|
|
cmd->supported = dev->phy.features;
|
|
|
|
cmd->port = PORT_MII;
|
|
|
|
cmd->phy_address = dev->phy.address;
|
|
|
|
cmd->transceiver =
|
|
|
|
dev->phy.address >= 0 ? XCVR_EXTERNAL : XCVR_INTERNAL;
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
|
|
|
cmd->advertising = dev->phy.advertising;
|
|
|
|
cmd->autoneg = dev->phy.autoneg;
|
|
|
|
cmd->speed = dev->phy.speed;
|
|
|
|
cmd->duplex = dev->phy.duplex;
|
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_ethtool_set_settings(struct net_device *ndev,
|
|
|
|
struct ethtool_cmd *cmd)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
u32 f = dev->phy.features;
|
|
|
|
|
|
|
|
DBG(dev, "set_settings(%d, %d, %d, 0x%08x)" NL,
|
|
|
|
cmd->autoneg, cmd->speed, cmd->duplex, cmd->advertising);
|
|
|
|
|
|
|
|
/* Basic sanity checks */
|
|
|
|
if (dev->phy.address < 0)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
|
|
|
|
return -EINVAL;
|
|
|
|
if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
|
|
|
|
return -EINVAL;
|
|
|
|
if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (cmd->autoneg == AUTONEG_DISABLE) {
|
|
|
|
switch (cmd->speed) {
|
|
|
|
case SPEED_10:
|
|
|
|
if (cmd->duplex == DUPLEX_HALF
|
|
|
|
&& !(f & SUPPORTED_10baseT_Half))
|
|
|
|
return -EINVAL;
|
|
|
|
if (cmd->duplex == DUPLEX_FULL
|
|
|
|
&& !(f & SUPPORTED_10baseT_Full))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
case SPEED_100:
|
|
|
|
if (cmd->duplex == DUPLEX_HALF
|
|
|
|
&& !(f & SUPPORTED_100baseT_Half))
|
|
|
|
return -EINVAL;
|
|
|
|
if (cmd->duplex == DUPLEX_FULL
|
|
|
|
&& !(f & SUPPORTED_100baseT_Full))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
case SPEED_1000:
|
|
|
|
if (cmd->duplex == DUPLEX_HALF
|
|
|
|
&& !(f & SUPPORTED_1000baseT_Half))
|
|
|
|
return -EINVAL;
|
|
|
|
if (cmd->duplex == DUPLEX_FULL
|
|
|
|
&& !(f & SUPPORTED_1000baseT_Full))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
|
|
|
dev->phy.def->ops->setup_forced(&dev->phy, cmd->speed,
|
|
|
|
cmd->duplex);
|
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
if (!(f & SUPPORTED_Autoneg))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
|
|
|
dev->phy.def->ops->setup_aneg(&dev->phy,
|
|
|
|
(cmd->advertising & f) |
|
|
|
|
(dev->phy.advertising &
|
|
|
|
(ADVERTISED_Pause |
|
|
|
|
ADVERTISED_Asym_Pause)));
|
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
}
|
|
|
|
emac_force_link_update(dev);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_ethtool_get_ringparam(struct net_device *ndev,
|
|
|
|
struct ethtool_ringparam *rp)
|
|
|
|
{
|
|
|
|
rp->rx_max_pending = rp->rx_pending = NUM_RX_BUFF;
|
|
|
|
rp->tx_max_pending = rp->tx_pending = NUM_TX_BUFF;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_ethtool_get_pauseparam(struct net_device *ndev,
|
|
|
|
struct ethtool_pauseparam *pp)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
|
|
|
if ((dev->phy.features & SUPPORTED_Autoneg) &&
|
|
|
|
(dev->phy.advertising & (ADVERTISED_Pause | ADVERTISED_Asym_Pause)))
|
|
|
|
pp->autoneg = 1;
|
|
|
|
|
|
|
|
if (dev->phy.duplex == DUPLEX_FULL) {
|
|
|
|
if (dev->phy.pause)
|
|
|
|
pp->rx_pause = pp->tx_pause = 1;
|
|
|
|
else if (dev->phy.asym_pause)
|
|
|
|
pp->tx_pause = 1;
|
|
|
|
}
|
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 emac_ethtool_get_rx_csum(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
2007-10-14 12:36:10 -06:00
|
|
|
return dev->tah_dev != NULL;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_get_regs_len(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4))
|
|
|
|
return sizeof(struct emac_ethtool_regs_subhdr) +
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
EMAC4_ETHTOOL_REGS_SIZE(dev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
else
|
|
|
|
return sizeof(struct emac_ethtool_regs_subhdr) +
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
EMAC_ETHTOOL_REGS_SIZE(dev);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_ethtool_get_regs_len(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
int size;
|
|
|
|
|
|
|
|
size = sizeof(struct emac_ethtool_regs_hdr) +
|
|
|
|
emac_get_regs_len(dev) + mal_get_regs_len(dev->mal);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
size += zmii_get_regs_len(dev->zmii_dev);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
size += rgmii_get_regs_len(dev->rgmii_dev);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH))
|
|
|
|
size += tah_get_regs_len(dev->tah_dev);
|
|
|
|
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *emac_dump_regs(struct emac_instance *dev, void *buf)
|
|
|
|
{
|
|
|
|
struct emac_ethtool_regs_subhdr *hdr = buf;
|
|
|
|
|
|
|
|
hdr->index = dev->cell_index;
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4)) {
|
|
|
|
hdr->version = EMAC4_ETHTOOL_REGS_VER;
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
memcpy_fromio(hdr + 1, dev->emacp, EMAC4_ETHTOOL_REGS_SIZE(dev));
|
|
|
|
return ((void *)(hdr + 1) + EMAC4_ETHTOOL_REGS_SIZE(dev));
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
} else {
|
|
|
|
hdr->version = EMAC_ETHTOOL_REGS_VER;
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
memcpy_fromio(hdr + 1, dev->emacp, EMAC_ETHTOOL_REGS_SIZE(dev));
|
|
|
|
return ((void *)(hdr + 1) + EMAC_ETHTOOL_REGS_SIZE(dev));
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_ethtool_get_regs(struct net_device *ndev,
|
|
|
|
struct ethtool_regs *regs, void *buf)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
struct emac_ethtool_regs_hdr *hdr = buf;
|
|
|
|
|
|
|
|
hdr->components = 0;
|
|
|
|
buf = hdr + 1;
|
|
|
|
|
|
|
|
buf = mal_dump_regs(dev->mal, buf);
|
|
|
|
buf = emac_dump_regs(dev, buf);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII)) {
|
|
|
|
hdr->components |= EMAC_ETHTOOL_REGS_ZMII;
|
|
|
|
buf = zmii_dump_regs(dev->zmii_dev, buf);
|
|
|
|
}
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII)) {
|
|
|
|
hdr->components |= EMAC_ETHTOOL_REGS_RGMII;
|
|
|
|
buf = rgmii_dump_regs(dev->rgmii_dev, buf);
|
|
|
|
}
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH)) {
|
|
|
|
hdr->components |= EMAC_ETHTOOL_REGS_TAH;
|
|
|
|
buf = tah_dump_regs(dev->tah_dev, buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_ethtool_nway_reset(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
int res = 0;
|
|
|
|
|
|
|
|
DBG(dev, "nway_reset" NL);
|
|
|
|
|
|
|
|
if (dev->phy.address < 0)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
mutex_lock(&dev->link_lock);
|
|
|
|
if (!dev->phy.autoneg) {
|
|
|
|
res = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev->phy.def->ops->setup_aneg(&dev->phy, dev->phy.advertising);
|
|
|
|
out:
|
|
|
|
mutex_unlock(&dev->link_lock);
|
|
|
|
emac_force_link_update(dev);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int emac_ethtool_get_stats_count(struct net_device *ndev)
|
|
|
|
{
|
|
|
|
return EMAC_ETHTOOL_STATS_COUNT;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_ethtool_get_strings(struct net_device *ndev, u32 stringset,
|
|
|
|
u8 * buf)
|
|
|
|
{
|
|
|
|
if (stringset == ETH_SS_STATS)
|
|
|
|
memcpy(buf, &emac_stats_keys, sizeof(emac_stats_keys));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_ethtool_get_ethtool_stats(struct net_device *ndev,
|
|
|
|
struct ethtool_stats *estats,
|
|
|
|
u64 * tmp_stats)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
|
|
|
memcpy(tmp_stats, &dev->stats, sizeof(dev->stats));
|
|
|
|
tmp_stats += sizeof(dev->stats) / sizeof(u64);
|
|
|
|
memcpy(tmp_stats, &dev->estats, sizeof(dev->estats));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_ethtool_get_drvinfo(struct net_device *ndev,
|
|
|
|
struct ethtool_drvinfo *info)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
|
|
|
|
strcpy(info->driver, "ibm_emac");
|
|
|
|
strcpy(info->version, DRV_VERSION);
|
|
|
|
info->fw_version[0] = '\0';
|
|
|
|
sprintf(info->bus_info, "PPC 4xx EMAC-%d %s",
|
|
|
|
dev->cell_index, dev->ofdev->node->full_name);
|
|
|
|
info->n_stats = emac_ethtool_get_stats_count(ndev);
|
|
|
|
info->regdump_len = emac_ethtool_get_regs_len(ndev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct ethtool_ops emac_ethtool_ops = {
|
|
|
|
.get_settings = emac_ethtool_get_settings,
|
|
|
|
.set_settings = emac_ethtool_set_settings,
|
|
|
|
.get_drvinfo = emac_ethtool_get_drvinfo,
|
|
|
|
|
|
|
|
.get_regs_len = emac_ethtool_get_regs_len,
|
|
|
|
.get_regs = emac_ethtool_get_regs,
|
|
|
|
|
|
|
|
.nway_reset = emac_ethtool_nway_reset,
|
|
|
|
|
|
|
|
.get_ringparam = emac_ethtool_get_ringparam,
|
|
|
|
.get_pauseparam = emac_ethtool_get_pauseparam,
|
|
|
|
|
|
|
|
.get_rx_csum = emac_ethtool_get_rx_csum,
|
|
|
|
|
|
|
|
.get_strings = emac_ethtool_get_strings,
|
|
|
|
.get_stats_count = emac_ethtool_get_stats_count,
|
|
|
|
.get_ethtool_stats = emac_ethtool_get_ethtool_stats,
|
|
|
|
|
|
|
|
.get_link = ethtool_op_get_link,
|
|
|
|
.get_tx_csum = ethtool_op_get_tx_csum,
|
|
|
|
.get_sg = ethtool_op_get_sg,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int emac_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = netdev_priv(ndev);
|
|
|
|
uint16_t *data = (uint16_t *) & rq->ifr_ifru;
|
|
|
|
|
|
|
|
DBG(dev, "ioctl %08x" NL, cmd);
|
|
|
|
|
|
|
|
if (dev->phy.address < 0)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCGMIIPHY:
|
|
|
|
case SIOCDEVPRIVATE:
|
|
|
|
data[0] = dev->phy.address;
|
|
|
|
/* Fall through */
|
|
|
|
case SIOCGMIIREG:
|
|
|
|
case SIOCDEVPRIVATE + 1:
|
|
|
|
data[3] = emac_mdio_read(ndev, dev->phy.address, data[1]);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
case SIOCSMIIREG:
|
|
|
|
case SIOCDEVPRIVATE + 2:
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
|
|
return -EPERM;
|
|
|
|
emac_mdio_write(ndev, dev->phy.address, data[1], data[2]);
|
|
|
|
return 0;
|
|
|
|
default:
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct emac_depentry {
|
|
|
|
u32 phandle;
|
|
|
|
struct device_node *node;
|
|
|
|
struct of_device *ofdev;
|
|
|
|
void *drvdata;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define EMAC_DEP_MAL_IDX 0
|
|
|
|
#define EMAC_DEP_ZMII_IDX 1
|
|
|
|
#define EMAC_DEP_RGMII_IDX 2
|
|
|
|
#define EMAC_DEP_TAH_IDX 3
|
|
|
|
#define EMAC_DEP_MDIO_IDX 4
|
|
|
|
#define EMAC_DEP_PREV_IDX 5
|
|
|
|
#define EMAC_DEP_COUNT 6
|
|
|
|
|
|
|
|
static int __devinit emac_check_deps(struct emac_instance *dev,
|
|
|
|
struct emac_depentry *deps)
|
|
|
|
{
|
|
|
|
int i, there = 0;
|
|
|
|
struct device_node *np;
|
|
|
|
|
|
|
|
for (i = 0; i < EMAC_DEP_COUNT; i++) {
|
|
|
|
/* no dependency on that item, allright */
|
|
|
|
if (deps[i].phandle == 0) {
|
|
|
|
there++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* special case for blist as the dependency might go away */
|
|
|
|
if (i == EMAC_DEP_PREV_IDX) {
|
|
|
|
np = *(dev->blist - 1);
|
|
|
|
if (np == NULL) {
|
|
|
|
deps[i].phandle = 0;
|
|
|
|
there++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (deps[i].node == NULL)
|
|
|
|
deps[i].node = of_node_get(np);
|
|
|
|
}
|
|
|
|
if (deps[i].node == NULL)
|
|
|
|
deps[i].node = of_find_node_by_phandle(deps[i].phandle);
|
|
|
|
if (deps[i].node == NULL)
|
|
|
|
continue;
|
|
|
|
if (deps[i].ofdev == NULL)
|
|
|
|
deps[i].ofdev = of_find_device_by_node(deps[i].node);
|
|
|
|
if (deps[i].ofdev == NULL)
|
|
|
|
continue;
|
|
|
|
if (deps[i].drvdata == NULL)
|
|
|
|
deps[i].drvdata = dev_get_drvdata(&deps[i].ofdev->dev);
|
|
|
|
if (deps[i].drvdata != NULL)
|
|
|
|
there++;
|
|
|
|
}
|
|
|
|
return (there == EMAC_DEP_COUNT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void emac_put_deps(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
if (dev->mal_dev)
|
|
|
|
of_dev_put(dev->mal_dev);
|
|
|
|
if (dev->zmii_dev)
|
|
|
|
of_dev_put(dev->zmii_dev);
|
|
|
|
if (dev->rgmii_dev)
|
|
|
|
of_dev_put(dev->rgmii_dev);
|
|
|
|
if (dev->mdio_dev)
|
|
|
|
of_dev_put(dev->mdio_dev);
|
|
|
|
if (dev->tah_dev)
|
|
|
|
of_dev_put(dev->tah_dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __devinit emac_of_bus_notify(struct notifier_block *nb,
|
|
|
|
unsigned long action, void *data)
|
|
|
|
{
|
|
|
|
/* We are only intereted in device addition */
|
|
|
|
if (action == BUS_NOTIFY_BOUND_DRIVER)
|
|
|
|
wake_up_all(&emac_probe_wait);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-04-21 18:46:43 -06:00
|
|
|
static struct notifier_block emac_of_bus_notifier __devinitdata = {
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
.notifier_call = emac_of_bus_notify
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __devinit emac_wait_deps(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct emac_depentry deps[EMAC_DEP_COUNT];
|
|
|
|
int i, err;
|
|
|
|
|
|
|
|
memset(&deps, 0, sizeof(deps));
|
|
|
|
|
|
|
|
deps[EMAC_DEP_MAL_IDX].phandle = dev->mal_ph;
|
|
|
|
deps[EMAC_DEP_ZMII_IDX].phandle = dev->zmii_ph;
|
|
|
|
deps[EMAC_DEP_RGMII_IDX].phandle = dev->rgmii_ph;
|
|
|
|
if (dev->tah_ph)
|
|
|
|
deps[EMAC_DEP_TAH_IDX].phandle = dev->tah_ph;
|
|
|
|
if (dev->mdio_ph)
|
|
|
|
deps[EMAC_DEP_MDIO_IDX].phandle = dev->mdio_ph;
|
|
|
|
if (dev->blist && dev->blist > emac_boot_list)
|
|
|
|
deps[EMAC_DEP_PREV_IDX].phandle = 0xffffffffu;
|
|
|
|
bus_register_notifier(&of_platform_bus_type, &emac_of_bus_notifier);
|
|
|
|
wait_event_timeout(emac_probe_wait,
|
|
|
|
emac_check_deps(dev, deps),
|
|
|
|
EMAC_PROBE_DEP_TIMEOUT);
|
|
|
|
bus_unregister_notifier(&of_platform_bus_type, &emac_of_bus_notifier);
|
|
|
|
err = emac_check_deps(dev, deps) ? 0 : -ENODEV;
|
|
|
|
for (i = 0; i < EMAC_DEP_COUNT; i++) {
|
|
|
|
if (deps[i].node)
|
|
|
|
of_node_put(deps[i].node);
|
|
|
|
if (err && deps[i].ofdev)
|
|
|
|
of_dev_put(deps[i].ofdev);
|
|
|
|
}
|
|
|
|
if (err == 0) {
|
|
|
|
dev->mal_dev = deps[EMAC_DEP_MAL_IDX].ofdev;
|
|
|
|
dev->zmii_dev = deps[EMAC_DEP_ZMII_IDX].ofdev;
|
|
|
|
dev->rgmii_dev = deps[EMAC_DEP_RGMII_IDX].ofdev;
|
|
|
|
dev->tah_dev = deps[EMAC_DEP_TAH_IDX].ofdev;
|
|
|
|
dev->mdio_dev = deps[EMAC_DEP_MDIO_IDX].ofdev;
|
|
|
|
}
|
|
|
|
if (deps[EMAC_DEP_PREV_IDX].ofdev)
|
|
|
|
of_dev_put(deps[EMAC_DEP_PREV_IDX].ofdev);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __devinit emac_read_uint_prop(struct device_node *np, const char *name,
|
|
|
|
u32 *val, int fatal)
|
|
|
|
{
|
|
|
|
int len;
|
|
|
|
const u32 *prop = of_get_property(np, name, &len);
|
|
|
|
if (prop == NULL || len < sizeof(u32)) {
|
|
|
|
if (fatal)
|
|
|
|
printk(KERN_ERR "%s: missing %s property\n",
|
|
|
|
np->full_name, name);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
*val = *prop;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __devinit emac_init_phy(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct device_node *np = dev->ofdev->node;
|
|
|
|
struct net_device *ndev = dev->ndev;
|
|
|
|
u32 phy_map, adv;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
dev->phy.dev = ndev;
|
|
|
|
dev->phy.mode = dev->phy_mode;
|
|
|
|
|
|
|
|
/* PHY-less configuration.
|
|
|
|
* XXX I probably should move these settings to the dev tree
|
|
|
|
*/
|
|
|
|
if (dev->phy_address == 0xffffffff && dev->phy_map == 0xffffffff) {
|
|
|
|
emac_reset(dev);
|
|
|
|
|
|
|
|
/* PHY-less configuration.
|
|
|
|
* XXX I probably should move these settings to the dev tree
|
|
|
|
*/
|
|
|
|
dev->phy.address = -1;
|
2008-10-02 00:37:57 -06:00
|
|
|
dev->phy.features = SUPPORTED_MII;
|
|
|
|
if (emac_phy_supports_gige(dev->phy_mode))
|
|
|
|
dev->phy.features |= SUPPORTED_1000baseT_Full;
|
|
|
|
else
|
|
|
|
dev->phy.features |= SUPPORTED_100baseT_Full;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->phy.pause = 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_lock(&emac_phy_map_lock);
|
|
|
|
phy_map = dev->phy_map | busy_phy_map;
|
|
|
|
|
|
|
|
DBG(dev, "PHY maps %08x %08x" NL, dev->phy_map, busy_phy_map);
|
|
|
|
|
|
|
|
dev->phy.mdio_read = emac_mdio_read;
|
|
|
|
dev->phy.mdio_write = emac_mdio_write;
|
|
|
|
|
2008-04-21 18:46:46 -06:00
|
|
|
/* Enable internal clock source */
|
|
|
|
#ifdef CONFIG_PPC_DCR_NATIVE
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_440GX_PHY_CLK_FIX))
|
|
|
|
dcri_clrset(SDR0, SDR0_MFR, 0, SDR0_MFR_ECS);
|
2008-04-21 18:46:48 -06:00
|
|
|
#endif
|
|
|
|
/* PHY clock workaround */
|
|
|
|
emac_rx_clk_tx(dev);
|
|
|
|
|
|
|
|
/* Enable internal clock source on 440GX*/
|
|
|
|
#ifdef CONFIG_PPC_DCR_NATIVE
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_440GX_PHY_CLK_FIX))
|
|
|
|
dcri_clrset(SDR0, SDR0_MFR, 0, SDR0_MFR_ECS);
|
2008-04-21 18:46:46 -06:00
|
|
|
#endif
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
/* Configure EMAC with defaults so we can at least use MDIO
|
|
|
|
* This is needed mostly for 440GX
|
|
|
|
*/
|
|
|
|
if (emac_phy_gpcs(dev->phy.mode)) {
|
|
|
|
/* XXX
|
|
|
|
* Make GPCS PHY address equal to EMAC index.
|
|
|
|
* We probably should take into account busy_phy_map
|
|
|
|
* and/or phy_map here.
|
|
|
|
*
|
|
|
|
* Note that the busy_phy_map is currently global
|
|
|
|
* while it should probably be per-ASIC...
|
|
|
|
*/
|
2008-10-02 00:37:57 -06:00
|
|
|
dev->phy.gpcs_address = dev->gpcs_address;
|
|
|
|
if (dev->phy.gpcs_address == 0xffffffff)
|
|
|
|
dev->phy.address = dev->cell_index;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
emac_configure(dev);
|
|
|
|
|
|
|
|
if (dev->phy_address != 0xffffffff)
|
|
|
|
phy_map = ~(1 << dev->phy_address);
|
|
|
|
|
|
|
|
for (i = 0; i < 0x20; phy_map >>= 1, ++i)
|
|
|
|
if (!(phy_map & 1)) {
|
|
|
|
int r;
|
|
|
|
busy_phy_map |= 1 << i;
|
|
|
|
|
|
|
|
/* Quick check if there is a PHY at the address */
|
|
|
|
r = emac_mdio_read(dev->ndev, i, MII_BMCR);
|
|
|
|
if (r == 0xffff || r < 0)
|
|
|
|
continue;
|
|
|
|
if (!emac_mii_phy_probe(&dev->phy, i))
|
|
|
|
break;
|
|
|
|
}
|
2008-04-21 18:46:46 -06:00
|
|
|
|
|
|
|
/* Enable external clock source */
|
|
|
|
#ifdef CONFIG_PPC_DCR_NATIVE
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_440GX_PHY_CLK_FIX))
|
|
|
|
dcri_clrset(SDR0, SDR0_MFR, SDR0_MFR_ECS, 0);
|
|
|
|
#endif
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
mutex_unlock(&emac_phy_map_lock);
|
|
|
|
if (i == 0x20) {
|
|
|
|
printk(KERN_WARNING "%s: can't find PHY!\n", np->full_name);
|
|
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Init PHY */
|
|
|
|
if (dev->phy.def->ops->init)
|
|
|
|
dev->phy.def->ops->init(&dev->phy);
|
|
|
|
|
|
|
|
/* Disable any PHY features not supported by the platform */
|
|
|
|
dev->phy.def->features &= ~dev->phy_feat_exc;
|
|
|
|
|
|
|
|
/* Setup initial link parameters */
|
|
|
|
if (dev->phy.features & SUPPORTED_Autoneg) {
|
|
|
|
adv = dev->phy.features;
|
|
|
|
if (!emac_has_feature(dev, EMAC_FTR_NO_FLOW_CONTROL_40x))
|
|
|
|
adv |= ADVERTISED_Pause | ADVERTISED_Asym_Pause;
|
|
|
|
/* Restart autonegotiation */
|
|
|
|
dev->phy.def->ops->setup_aneg(&dev->phy, adv);
|
|
|
|
} else {
|
|
|
|
u32 f = dev->phy.def->features;
|
|
|
|
int speed = SPEED_10, fd = DUPLEX_HALF;
|
|
|
|
|
|
|
|
/* Select highest supported speed/duplex */
|
|
|
|
if (f & SUPPORTED_1000baseT_Full) {
|
|
|
|
speed = SPEED_1000;
|
|
|
|
fd = DUPLEX_FULL;
|
|
|
|
} else if (f & SUPPORTED_1000baseT_Half)
|
|
|
|
speed = SPEED_1000;
|
|
|
|
else if (f & SUPPORTED_100baseT_Full) {
|
|
|
|
speed = SPEED_100;
|
|
|
|
fd = DUPLEX_FULL;
|
|
|
|
} else if (f & SUPPORTED_100baseT_Half)
|
|
|
|
speed = SPEED_100;
|
|
|
|
else if (f & SUPPORTED_10baseT_Full)
|
|
|
|
fd = DUPLEX_FULL;
|
|
|
|
|
|
|
|
/* Force link parameters */
|
|
|
|
dev->phy.def->ops->setup_forced(&dev->phy, speed, fd);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __devinit emac_init_config(struct emac_instance *dev)
|
|
|
|
{
|
|
|
|
struct device_node *np = dev->ofdev->node;
|
|
|
|
const void *p;
|
|
|
|
unsigned int plen;
|
|
|
|
const char *pm, *phy_modes[] = {
|
|
|
|
[PHY_MODE_NA] = "",
|
|
|
|
[PHY_MODE_MII] = "mii",
|
|
|
|
[PHY_MODE_RMII] = "rmii",
|
|
|
|
[PHY_MODE_SMII] = "smii",
|
|
|
|
[PHY_MODE_RGMII] = "rgmii",
|
|
|
|
[PHY_MODE_TBI] = "tbi",
|
|
|
|
[PHY_MODE_GMII] = "gmii",
|
|
|
|
[PHY_MODE_RTBI] = "rtbi",
|
|
|
|
[PHY_MODE_SGMII] = "sgmii",
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Read config from device-tree */
|
|
|
|
if (emac_read_uint_prop(np, "mal-device", &dev->mal_ph, 1))
|
|
|
|
return -ENXIO;
|
|
|
|
if (emac_read_uint_prop(np, "mal-tx-channel", &dev->mal_tx_chan, 1))
|
|
|
|
return -ENXIO;
|
|
|
|
if (emac_read_uint_prop(np, "mal-rx-channel", &dev->mal_rx_chan, 1))
|
|
|
|
return -ENXIO;
|
|
|
|
if (emac_read_uint_prop(np, "cell-index", &dev->cell_index, 1))
|
|
|
|
return -ENXIO;
|
|
|
|
if (emac_read_uint_prop(np, "max-frame-size", &dev->max_mtu, 0))
|
|
|
|
dev->max_mtu = 1500;
|
|
|
|
if (emac_read_uint_prop(np, "rx-fifo-size", &dev->rx_fifo_size, 0))
|
|
|
|
dev->rx_fifo_size = 2048;
|
|
|
|
if (emac_read_uint_prop(np, "tx-fifo-size", &dev->tx_fifo_size, 0))
|
|
|
|
dev->tx_fifo_size = 2048;
|
|
|
|
if (emac_read_uint_prop(np, "rx-fifo-size-gige", &dev->rx_fifo_size_gige, 0))
|
|
|
|
dev->rx_fifo_size_gige = dev->rx_fifo_size;
|
|
|
|
if (emac_read_uint_prop(np, "tx-fifo-size-gige", &dev->tx_fifo_size_gige, 0))
|
|
|
|
dev->tx_fifo_size_gige = dev->tx_fifo_size;
|
|
|
|
if (emac_read_uint_prop(np, "phy-address", &dev->phy_address, 0))
|
|
|
|
dev->phy_address = 0xffffffff;
|
|
|
|
if (emac_read_uint_prop(np, "phy-map", &dev->phy_map, 0))
|
|
|
|
dev->phy_map = 0xffffffff;
|
2008-10-02 00:37:57 -06:00
|
|
|
if (emac_read_uint_prop(np, "gpcs-address", &dev->gpcs_address, 0))
|
|
|
|
dev->gpcs_address = 0xffffffff;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (emac_read_uint_prop(np->parent, "clock-frequency", &dev->opb_bus_freq, 1))
|
|
|
|
return -ENXIO;
|
|
|
|
if (emac_read_uint_prop(np, "tah-device", &dev->tah_ph, 0))
|
|
|
|
dev->tah_ph = 0;
|
|
|
|
if (emac_read_uint_prop(np, "tah-channel", &dev->tah_port, 0))
|
2007-12-04 17:14:31 -07:00
|
|
|
dev->tah_port = 0;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (emac_read_uint_prop(np, "mdio-device", &dev->mdio_ph, 0))
|
|
|
|
dev->mdio_ph = 0;
|
|
|
|
if (emac_read_uint_prop(np, "zmii-device", &dev->zmii_ph, 0))
|
|
|
|
dev->zmii_ph = 0;;
|
|
|
|
if (emac_read_uint_prop(np, "zmii-channel", &dev->zmii_port, 0))
|
|
|
|
dev->zmii_port = 0xffffffff;;
|
|
|
|
if (emac_read_uint_prop(np, "rgmii-device", &dev->rgmii_ph, 0))
|
|
|
|
dev->rgmii_ph = 0;;
|
|
|
|
if (emac_read_uint_prop(np, "rgmii-channel", &dev->rgmii_port, 0))
|
|
|
|
dev->rgmii_port = 0xffffffff;;
|
|
|
|
if (emac_read_uint_prop(np, "fifo-entry-size", &dev->fifo_entry_size, 0))
|
|
|
|
dev->fifo_entry_size = 16;
|
|
|
|
if (emac_read_uint_prop(np, "mal-burst-size", &dev->mal_burst_size, 0))
|
|
|
|
dev->mal_burst_size = 256;
|
|
|
|
|
|
|
|
/* PHY mode needs some decoding */
|
|
|
|
dev->phy_mode = PHY_MODE_NA;
|
|
|
|
pm = of_get_property(np, "phy-mode", &plen);
|
|
|
|
if (pm != NULL) {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(phy_modes); i++)
|
|
|
|
if (!strcasecmp(pm, phy_modes[i])) {
|
|
|
|
dev->phy_mode = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Backward compat with non-final DT */
|
|
|
|
if (dev->phy_mode == PHY_MODE_NA && pm != NULL && plen == 4) {
|
|
|
|
u32 nmode = *(const u32 *)pm;
|
|
|
|
if (nmode > PHY_MODE_NA && nmode <= PHY_MODE_SGMII)
|
|
|
|
dev->phy_mode = nmode;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check EMAC version */
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
if (of_device_is_compatible(np, "ibm,emac4sync")) {
|
|
|
|
dev->features |= (EMAC_FTR_EMAC4 | EMAC_FTR_EMAC4SYNC);
|
2008-10-02 00:37:57 -06:00
|
|
|
if (of_device_is_compatible(np, "ibm,emac-460ex") ||
|
|
|
|
of_device_is_compatible(np, "ibm,emac-460gt"))
|
|
|
|
dev->features |= EMAC_FTR_460EX_PHY_CLK_FIX;
|
2009-03-13 14:48:46 -06:00
|
|
|
if (of_device_is_compatible(np, "ibm,emac-405ex") ||
|
|
|
|
of_device_is_compatible(np, "ibm,emac-405exr"))
|
|
|
|
dev->features |= EMAC_FTR_440EP_PHY_CLK_FIX;
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
} else if (of_device_is_compatible(np, "ibm,emac4")) {
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->features |= EMAC_FTR_EMAC4;
|
2008-04-21 18:46:46 -06:00
|
|
|
if (of_device_is_compatible(np, "ibm,emac-440gx"))
|
|
|
|
dev->features |= EMAC_FTR_440GX_PHY_CLK_FIX;
|
2008-04-21 18:46:48 -06:00
|
|
|
} else {
|
|
|
|
if (of_device_is_compatible(np, "ibm,emac-440ep") ||
|
|
|
|
of_device_is_compatible(np, "ibm,emac-440gr"))
|
|
|
|
dev->features |= EMAC_FTR_440EP_PHY_CLK_FIX;
|
2008-10-15 22:38:40 -06:00
|
|
|
if (of_device_is_compatible(np, "ibm,emac-405ez")) {
|
2008-10-24 07:53:14 -06:00
|
|
|
#ifdef CONFIG_IBM_NEW_EMAC_NO_FLOW_CTRL
|
2008-09-03 20:57:57 -06:00
|
|
|
dev->features |= EMAC_FTR_NO_FLOW_CONTROL_40x;
|
2008-10-15 22:38:40 -06:00
|
|
|
#else
|
|
|
|
printk(KERN_ERR "%s: Flow control not disabled!\n",
|
|
|
|
np->full_name);
|
|
|
|
return -ENXIO;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2008-04-21 18:46:46 -06:00
|
|
|
}
|
2007-12-04 17:14:29 -07:00
|
|
|
|
|
|
|
/* Fixup some feature bits based on the device tree */
|
|
|
|
if (of_get_property(np, "has-inverted-stacr-oc", NULL))
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->features |= EMAC_FTR_STACR_OC_INVERT;
|
2007-12-04 17:14:29 -07:00
|
|
|
if (of_get_property(np, "has-new-stacr-staopc", NULL))
|
|
|
|
dev->features |= EMAC_FTR_HAS_NEW_STACR;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
2007-12-04 17:14:29 -07:00
|
|
|
/* CAB lacks the appropriate properties */
|
|
|
|
if (of_device_is_compatible(np, "ibm,emac-axon"))
|
|
|
|
dev->features |= EMAC_FTR_HAS_NEW_STACR |
|
|
|
|
EMAC_FTR_STACR_OC_INVERT;
|
|
|
|
|
|
|
|
/* Enable TAH/ZMII/RGMII features as found */
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (dev->tah_ph != 0) {
|
|
|
|
#ifdef CONFIG_IBM_NEW_EMAC_TAH
|
|
|
|
dev->features |= EMAC_FTR_HAS_TAH;
|
|
|
|
#else
|
|
|
|
printk(KERN_ERR "%s: TAH support not enabled !\n",
|
|
|
|
np->full_name);
|
|
|
|
return -ENXIO;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev->zmii_ph != 0) {
|
|
|
|
#ifdef CONFIG_IBM_NEW_EMAC_ZMII
|
|
|
|
dev->features |= EMAC_FTR_HAS_ZMII;
|
|
|
|
#else
|
|
|
|
printk(KERN_ERR "%s: ZMII support not enabled !\n",
|
|
|
|
np->full_name);
|
|
|
|
return -ENXIO;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev->rgmii_ph != 0) {
|
|
|
|
#ifdef CONFIG_IBM_NEW_EMAC_RGMII
|
|
|
|
dev->features |= EMAC_FTR_HAS_RGMII;
|
|
|
|
#else
|
|
|
|
printk(KERN_ERR "%s: RGMII support not enabled !\n",
|
|
|
|
np->full_name);
|
|
|
|
return -ENXIO;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read MAC-address */
|
|
|
|
p = of_get_property(np, "local-mac-address", NULL);
|
|
|
|
if (p == NULL) {
|
|
|
|
printk(KERN_ERR "%s: Can't find local-mac-address property\n",
|
|
|
|
np->full_name);
|
|
|
|
return -ENXIO;
|
|
|
|
}
|
|
|
|
memcpy(dev->ndev->dev_addr, p, 6);
|
|
|
|
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
/* IAHT and GAHT filter parameterization */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_EMAC4SYNC)) {
|
|
|
|
dev->xaht_slots_shift = EMAC4SYNC_XAHT_SLOTS_SHIFT;
|
|
|
|
dev->xaht_width_shift = EMAC4SYNC_XAHT_WIDTH_SHIFT;
|
|
|
|
} else {
|
|
|
|
dev->xaht_slots_shift = EMAC4_XAHT_SLOTS_SHIFT;
|
|
|
|
dev->xaht_width_shift = EMAC4_XAHT_WIDTH_SHIFT;
|
|
|
|
}
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
DBG(dev, "features : 0x%08x / 0x%08x\n", dev->features, EMAC_FTRS_POSSIBLE);
|
|
|
|
DBG(dev, "tx_fifo_size : %d (%d gige)\n", dev->tx_fifo_size, dev->tx_fifo_size_gige);
|
|
|
|
DBG(dev, "rx_fifo_size : %d (%d gige)\n", dev->rx_fifo_size, dev->rx_fifo_size_gige);
|
|
|
|
DBG(dev, "max_mtu : %d\n", dev->max_mtu);
|
|
|
|
DBG(dev, "OPB freq : %d\n", dev->opb_bus_freq);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-04-09 09:56:14 -06:00
|
|
|
static const struct net_device_ops emac_netdev_ops = {
|
|
|
|
.ndo_open = emac_open,
|
|
|
|
.ndo_stop = emac_close,
|
|
|
|
.ndo_get_stats = emac_stats,
|
|
|
|
.ndo_set_multicast_list = emac_set_multicast_list,
|
|
|
|
.ndo_do_ioctl = emac_ioctl,
|
|
|
|
.ndo_tx_timeout = emac_tx_timeout,
|
|
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
|
|
.ndo_start_xmit = emac_start_xmit,
|
|
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const struct net_device_ops emac_gige_netdev_ops = {
|
|
|
|
.ndo_open = emac_open,
|
|
|
|
.ndo_stop = emac_close,
|
|
|
|
.ndo_get_stats = emac_stats,
|
|
|
|
.ndo_set_multicast_list = emac_set_multicast_list,
|
|
|
|
.ndo_do_ioctl = emac_ioctl,
|
|
|
|
.ndo_tx_timeout = emac_tx_timeout,
|
|
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
|
|
.ndo_start_xmit = emac_start_xmit_sg,
|
|
|
|
.ndo_change_mtu = emac_change_mtu,
|
|
|
|
};
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
static int __devinit emac_probe(struct of_device *ofdev,
|
|
|
|
const struct of_device_id *match)
|
|
|
|
{
|
|
|
|
struct net_device *ndev;
|
|
|
|
struct emac_instance *dev;
|
|
|
|
struct device_node *np = ofdev->node;
|
|
|
|
struct device_node **blist = NULL;
|
|
|
|
int err, i;
|
|
|
|
|
2008-04-21 18:46:44 -06:00
|
|
|
/* Skip unused/unwired EMACS. We leave the check for an unused
|
|
|
|
* property here for now, but new flat device trees should set a
|
|
|
|
* status property to "disabled" instead.
|
|
|
|
*/
|
|
|
|
if (of_get_property(np, "unused", NULL) || !of_device_is_available(np))
|
2007-12-04 17:14:30 -07:00
|
|
|
return -ENODEV;
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
/* Find ourselves in the bootlist if we are there */
|
|
|
|
for (i = 0; i < EMAC_BOOT_LIST_SIZE; i++)
|
|
|
|
if (emac_boot_list[i] == np)
|
|
|
|
blist = &emac_boot_list[i];
|
|
|
|
|
|
|
|
/* Allocate our net_device structure */
|
|
|
|
err = -ENOMEM;
|
|
|
|
ndev = alloc_etherdev(sizeof(struct emac_instance));
|
|
|
|
if (!ndev) {
|
|
|
|
printk(KERN_ERR "%s: could not allocate ethernet device!\n",
|
|
|
|
np->full_name);
|
|
|
|
goto err_gone;
|
|
|
|
}
|
|
|
|
dev = netdev_priv(ndev);
|
|
|
|
dev->ndev = ndev;
|
|
|
|
dev->ofdev = ofdev;
|
|
|
|
dev->blist = blist;
|
|
|
|
SET_NETDEV_DEV(ndev, &ofdev->dev);
|
|
|
|
|
|
|
|
/* Initialize some embedded data structures */
|
|
|
|
mutex_init(&dev->mdio_lock);
|
|
|
|
mutex_init(&dev->link_lock);
|
|
|
|
spin_lock_init(&dev->lock);
|
|
|
|
INIT_WORK(&dev->reset_work, emac_reset_work);
|
|
|
|
|
|
|
|
/* Init various config data based on device-tree */
|
|
|
|
err = emac_init_config(dev);
|
|
|
|
if (err != 0)
|
|
|
|
goto err_free;
|
|
|
|
|
|
|
|
/* Get interrupts. EMAC irq is mandatory, WOL irq is optional */
|
|
|
|
dev->emac_irq = irq_of_parse_and_map(np, 0);
|
|
|
|
dev->wol_irq = irq_of_parse_and_map(np, 1);
|
|
|
|
if (dev->emac_irq == NO_IRQ) {
|
|
|
|
printk(KERN_ERR "%s: Can't map main interrupt\n", np->full_name);
|
|
|
|
goto err_free;
|
|
|
|
}
|
|
|
|
ndev->irq = dev->emac_irq;
|
|
|
|
|
|
|
|
/* Map EMAC regs */
|
|
|
|
if (of_address_to_resource(np, 0, &dev->rsrc_regs)) {
|
|
|
|
printk(KERN_ERR "%s: Can't get registers address\n",
|
|
|
|
np->full_name);
|
|
|
|
goto err_irq_unmap;
|
|
|
|
}
|
|
|
|
// TODO : request_mem_region
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
dev->emacp = ioremap(dev->rsrc_regs.start,
|
|
|
|
dev->rsrc_regs.end - dev->rsrc_regs.start + 1);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (dev->emacp == NULL) {
|
|
|
|
printk(KERN_ERR "%s: Can't map device registers!\n",
|
|
|
|
np->full_name);
|
|
|
|
err = -ENOMEM;
|
|
|
|
goto err_irq_unmap;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Wait for dependent devices */
|
|
|
|
err = emac_wait_deps(dev);
|
|
|
|
if (err) {
|
|
|
|
printk(KERN_ERR
|
|
|
|
"%s: Timeout waiting for dependent devices\n",
|
|
|
|
np->full_name);
|
|
|
|
/* display more info about what's missing ? */
|
|
|
|
goto err_reg_unmap;
|
|
|
|
}
|
|
|
|
dev->mal = dev_get_drvdata(&dev->mal_dev->dev);
|
|
|
|
if (dev->mdio_dev != NULL)
|
|
|
|
dev->mdio_instance = dev_get_drvdata(&dev->mdio_dev->dev);
|
|
|
|
|
|
|
|
/* Register with MAL */
|
|
|
|
dev->commac.ops = &emac_commac_ops;
|
|
|
|
dev->commac.dev = dev;
|
|
|
|
dev->commac.tx_chan_mask = MAL_CHAN_MASK(dev->mal_tx_chan);
|
|
|
|
dev->commac.rx_chan_mask = MAL_CHAN_MASK(dev->mal_rx_chan);
|
|
|
|
err = mal_register_commac(dev->mal, &dev->commac);
|
|
|
|
if (err) {
|
|
|
|
printk(KERN_ERR "%s: failed to register with mal %s!\n",
|
|
|
|
np->full_name, dev->mal_dev->node->full_name);
|
|
|
|
goto err_rel_deps;
|
|
|
|
}
|
|
|
|
dev->rx_skb_size = emac_rx_skb_size(ndev->mtu);
|
|
|
|
dev->rx_sync_size = emac_rx_sync_size(ndev->mtu);
|
|
|
|
|
|
|
|
/* Get pointers to BD rings */
|
|
|
|
dev->tx_desc =
|
|
|
|
dev->mal->bd_virt + mal_tx_bd_offset(dev->mal, dev->mal_tx_chan);
|
|
|
|
dev->rx_desc =
|
|
|
|
dev->mal->bd_virt + mal_rx_bd_offset(dev->mal, dev->mal_rx_chan);
|
|
|
|
|
|
|
|
DBG(dev, "tx_desc %p" NL, dev->tx_desc);
|
|
|
|
DBG(dev, "rx_desc %p" NL, dev->rx_desc);
|
|
|
|
|
|
|
|
/* Clean rings */
|
|
|
|
memset(dev->tx_desc, 0, NUM_TX_BUFF * sizeof(struct mal_descriptor));
|
|
|
|
memset(dev->rx_desc, 0, NUM_RX_BUFF * sizeof(struct mal_descriptor));
|
2008-07-01 02:58:05 -06:00
|
|
|
memset(dev->tx_skb, 0, NUM_TX_BUFF * sizeof(struct sk_buff *));
|
|
|
|
memset(dev->rx_skb, 0, NUM_RX_BUFF * sizeof(struct sk_buff *));
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
|
|
|
/* Attach to ZMII, if needed */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII) &&
|
|
|
|
(err = zmii_attach(dev->zmii_dev, dev->zmii_port, &dev->phy_mode)) != 0)
|
|
|
|
goto err_unreg_commac;
|
|
|
|
|
|
|
|
/* Attach to RGMII, if needed */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII) &&
|
|
|
|
(err = rgmii_attach(dev->rgmii_dev, dev->rgmii_port, dev->phy_mode)) != 0)
|
|
|
|
goto err_detach_zmii;
|
|
|
|
|
|
|
|
/* Attach to TAH, if needed */
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH) &&
|
|
|
|
(err = tah_attach(dev->tah_dev, dev->tah_port)) != 0)
|
|
|
|
goto err_detach_rgmii;
|
|
|
|
|
|
|
|
/* Set some link defaults before we can find out real parameters */
|
|
|
|
dev->phy.speed = SPEED_100;
|
|
|
|
dev->phy.duplex = DUPLEX_FULL;
|
|
|
|
dev->phy.autoneg = AUTONEG_DISABLE;
|
|
|
|
dev->phy.pause = dev->phy.asym_pause = 0;
|
|
|
|
dev->stop_timeout = STOP_TIMEOUT_100;
|
|
|
|
INIT_DELAYED_WORK(&dev->link_work, emac_link_timer);
|
|
|
|
|
|
|
|
/* Find PHY if any */
|
|
|
|
err = emac_init_phy(dev);
|
|
|
|
if (err != 0)
|
|
|
|
goto err_detach_tah;
|
|
|
|
|
2008-01-16 00:11:15 -07:00
|
|
|
if (dev->tah_dev)
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
|
|
|
|
ndev->watchdog_timeo = 5 * HZ;
|
|
|
|
if (emac_phy_supports_gige(dev->phy_mode)) {
|
2009-04-09 09:56:14 -06:00
|
|
|
ndev->netdev_ops = &emac_gige_netdev_ops;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
dev->commac.ops = &emac_commac_sg_ops;
|
2009-04-09 09:56:14 -06:00
|
|
|
} else
|
|
|
|
ndev->netdev_ops = &emac_netdev_ops;
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
SET_ETHTOOL_OPS(ndev, &emac_ethtool_ops);
|
|
|
|
|
|
|
|
netif_carrier_off(ndev);
|
|
|
|
netif_stop_queue(ndev);
|
|
|
|
|
|
|
|
err = register_netdev(ndev);
|
|
|
|
if (err) {
|
|
|
|
printk(KERN_ERR "%s: failed to register net device (%d)!\n",
|
|
|
|
np->full_name, err);
|
|
|
|
goto err_detach_tah;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set our drvdata last as we don't want them visible until we are
|
|
|
|
* fully initialized
|
|
|
|
*/
|
|
|
|
wmb();
|
|
|
|
dev_set_drvdata(&ofdev->dev, dev);
|
|
|
|
|
|
|
|
/* There's a new kid in town ! Let's tell everybody */
|
|
|
|
wake_up_all(&emac_probe_wait);
|
|
|
|
|
|
|
|
|
2008-10-27 18:47:26 -06:00
|
|
|
printk(KERN_INFO "%s: EMAC-%d %s, MAC %pM\n",
|
|
|
|
ndev->name, dev->cell_index, np->full_name, ndev->dev_addr);
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
|
2008-10-02 00:37:57 -06:00
|
|
|
if (dev->phy_mode == PHY_MODE_SGMII)
|
|
|
|
printk(KERN_NOTICE "%s: in SGMII mode\n", ndev->name);
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (dev->phy.address >= 0)
|
|
|
|
printk("%s: found %s PHY (0x%02x)\n", ndev->name,
|
|
|
|
dev->phy.def->name, dev->phy.address);
|
|
|
|
|
|
|
|
emac_dbg_register(dev);
|
|
|
|
|
|
|
|
/* Life is good */
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* I have a bad feeling about this ... */
|
|
|
|
|
|
|
|
err_detach_tah:
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH))
|
|
|
|
tah_detach(dev->tah_dev, dev->tah_port);
|
|
|
|
err_detach_rgmii:
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
rgmii_detach(dev->rgmii_dev, dev->rgmii_port);
|
|
|
|
err_detach_zmii:
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
zmii_detach(dev->zmii_dev, dev->zmii_port);
|
|
|
|
err_unreg_commac:
|
|
|
|
mal_unregister_commac(dev->mal, &dev->commac);
|
|
|
|
err_rel_deps:
|
|
|
|
emac_put_deps(dev);
|
|
|
|
err_reg_unmap:
|
|
|
|
iounmap(dev->emacp);
|
|
|
|
err_irq_unmap:
|
|
|
|
if (dev->wol_irq != NO_IRQ)
|
|
|
|
irq_dispose_mapping(dev->wol_irq);
|
|
|
|
if (dev->emac_irq != NO_IRQ)
|
|
|
|
irq_dispose_mapping(dev->emac_irq);
|
|
|
|
err_free:
|
|
|
|
kfree(ndev);
|
|
|
|
err_gone:
|
|
|
|
/* if we were on the bootlist, remove us as we won't show up and
|
|
|
|
* wake up all waiters to notify them in case they were waiting
|
|
|
|
* on us
|
|
|
|
*/
|
|
|
|
if (blist) {
|
|
|
|
*blist = NULL;
|
|
|
|
wake_up_all(&emac_probe_wait);
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __devexit emac_remove(struct of_device *ofdev)
|
|
|
|
{
|
|
|
|
struct emac_instance *dev = dev_get_drvdata(&ofdev->dev);
|
|
|
|
|
|
|
|
DBG(dev, "remove" NL);
|
|
|
|
|
|
|
|
dev_set_drvdata(&ofdev->dev, NULL);
|
|
|
|
|
|
|
|
unregister_netdev(dev->ndev);
|
|
|
|
|
2007-11-19 20:50:46 -07:00
|
|
|
flush_scheduled_work();
|
|
|
|
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_TAH))
|
|
|
|
tah_detach(dev->tah_dev, dev->tah_port);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_RGMII))
|
|
|
|
rgmii_detach(dev->rgmii_dev, dev->rgmii_port);
|
|
|
|
if (emac_has_feature(dev, EMAC_FTR_HAS_ZMII))
|
|
|
|
zmii_detach(dev->zmii_dev, dev->zmii_port);
|
|
|
|
|
|
|
|
mal_unregister_commac(dev->mal, &dev->commac);
|
|
|
|
emac_put_deps(dev);
|
|
|
|
|
|
|
|
emac_dbg_unregister(dev);
|
|
|
|
iounmap(dev->emacp);
|
|
|
|
|
|
|
|
if (dev->wol_irq != NO_IRQ)
|
|
|
|
irq_dispose_mapping(dev->wol_irq);
|
|
|
|
if (dev->emac_irq != NO_IRQ)
|
|
|
|
irq_dispose_mapping(dev->emac_irq);
|
|
|
|
|
|
|
|
kfree(dev->ndev);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX Features in here should be replaced by properties... */
|
|
|
|
static struct of_device_id emac_match[] =
|
|
|
|
{
|
|
|
|
{
|
|
|
|
.type = "network",
|
|
|
|
.compatible = "ibm,emac",
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.type = "network",
|
|
|
|
.compatible = "ibm,emac4",
|
|
|
|
},
|
ibm_newemac: Parameterize EMAC Multicast Match Handling
Various instances of the EMAC core have varying: 1) number of address
match slots, 2) width of the registers for handling address match slots,
3) number of registers for handling address match slots and 4) base
offset for those registers.
As the driver stands today, it assumes that all EMACs have 4 IAHT and
GAHT 32-bit registers, starting at offset 0x30 from the register base,
with only 16-bits of each used for a total of 64 match slots.
The 405EX(r) and 460EX now use the EMAC4SYNC core rather than the EMAC4
core. This core has 8 IAHT and GAHT registers, starting at offset 0x80
from the register base, with ALL 32-bits of each used for a total of
256 match slots.
This adds a new compatible device tree entry "emac4sync" and a new,
related feature flag "EMAC_FTR_EMAC4SYNC" along with a series of macros
and inlines which supply the appropriate parameterized value based on
the presence or absence of the EMAC4SYNC feature.
The code has further been reworked where appropriate to use those macros
and inlines.
In addition, the register size passed to ioremap is now taken from the
device tree:
c4 for EMAC4SYNC cores
74 for EMAC4 cores
70 for EMAC cores
rather than sizeof (emac_regs).
Finally, the device trees have been updated with the appropriate compatible
entries and resource sizes.
This has been tested on an AMCC Haleakala board such that: 1) inbound
ICMP requests to 'haleakala.local' via MDNS from both Mac OS X 10.4.11
and Ubuntu 8.04 systems as well as 2) outbound ICMP requests from
'haleakala.local' to those same systems in the '.local' domain via MDNS
now work.
Signed-off-by: Grant Erickson <gerickson@nuovations.com>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-07-07 16:03:11 -06:00
|
|
|
{
|
|
|
|
.type = "network",
|
|
|
|
.compatible = "ibm,emac4sync",
|
|
|
|
},
|
Device tree aware EMAC driver
Based on BenH's earlier work, this is a new version of the EMAC driver
for the built-in ethernet found on PowerPC 4xx embedded CPUs. The
same ASIC is also found in the Axon bridge chip. This new version is
designed to work in the arch/powerpc tree, using the device tree to
probe the device, rather than the old and ugly arch/ppc OCP layer.
This driver is designed to sit alongside the old driver (that lies in
drivers/net/ibm_emac and this one in drivers/net/ibm_newemac). The
old driver is left in place to support arch/ppc until arch/ppc itself
reaches its final demise (not too long now, with luck).
This driver still has a number of things that could do with cleaning
up, but I think they can be fixed up after merging. Specifically:
- Should be adjusted to properly use the dma mapping API.
Axon needs this.
- Probe logic needs reworking, in conjuction with the general
probing code for of_platform devices. The dependencies here between
EMAC, MAL, ZMII etc. make this complicated. At present, it usually
works, because we initialize and register the sub-drivers before the
EMAC driver itself, and (being in driver code) runs after the devices
themselves have been instantiated from the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-08-22 21:56:01 -06:00
|
|
|
{},
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct of_platform_driver emac_driver = {
|
|
|
|
.name = "emac",
|
|
|
|
.match_table = emac_match,
|
|
|
|
|
|
|
|
.probe = emac_probe,
|
|
|
|
.remove = emac_remove,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void __init emac_make_bootlist(void)
|
|
|
|
{
|
|
|
|
struct device_node *np = NULL;
|
|
|
|
int j, max, i = 0, k;
|
|
|
|
int cell_indices[EMAC_BOOT_LIST_SIZE];
|
|
|
|
|
|
|
|
/* Collect EMACs */
|
|
|
|
while((np = of_find_all_nodes(np)) != NULL) {
|
|
|
|
const u32 *idx;
|
|
|
|
|
|
|
|
if (of_match_node(emac_match, np) == NULL)
|
|
|
|
continue;
|
|
|
|
if (of_get_property(np, "unused", NULL))
|
|
|
|
continue;
|
|
|
|
idx = of_get_property(np, "cell-index", NULL);
|
|
|
|
if (idx == NULL)
|
|
|
|
continue;
|
|
|
|
cell_indices[i] = *idx;
|
|
|
|
emac_boot_list[i++] = of_node_get(np);
|
|
|
|
if (i >= EMAC_BOOT_LIST_SIZE) {
|
|
|
|
of_node_put(np);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
max = i;
|
|
|
|
|
|
|
|
/* Bubble sort them (doh, what a creative algorithm :-) */
|
|
|
|
for (i = 0; max > 1 && (i < (max - 1)); i++)
|
|
|
|
for (j = i; j < max; j++) {
|
|
|
|
if (cell_indices[i] > cell_indices[j]) {
|
|
|
|
np = emac_boot_list[i];
|
|
|
|
emac_boot_list[i] = emac_boot_list[j];
|
|
|
|
emac_boot_list[j] = np;
|
|
|
|
k = cell_indices[i];
|
|
|
|
cell_indices[i] = cell_indices[j];
|
|
|
|
cell_indices[j] = k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init emac_init(void)
|
|
|
|
{
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
printk(KERN_INFO DRV_DESC ", version " DRV_VERSION "\n");
|
|
|
|
|
|
|
|
/* Init debug stuff */
|
|
|
|
emac_init_debug();
|
|
|
|
|
|
|
|
/* Build EMAC boot list */
|
|
|
|
emac_make_bootlist();
|
|
|
|
|
|
|
|
/* Init submodules */
|
|
|
|
rc = mal_init();
|
|
|
|
if (rc)
|
|
|
|
goto err;
|
|
|
|
rc = zmii_init();
|
|
|
|
if (rc)
|
|
|
|
goto err_mal;
|
|
|
|
rc = rgmii_init();
|
|
|
|
if (rc)
|
|
|
|
goto err_zmii;
|
|
|
|
rc = tah_init();
|
|
|
|
if (rc)
|
|
|
|
goto err_rgmii;
|
|
|
|
rc = of_register_platform_driver(&emac_driver);
|
|
|
|
if (rc)
|
|
|
|
goto err_tah;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_tah:
|
|
|
|
tah_exit();
|
|
|
|
err_rgmii:
|
|
|
|
rgmii_exit();
|
|
|
|
err_zmii:
|
|
|
|
zmii_exit();
|
|
|
|
err_mal:
|
|
|
|
mal_exit();
|
|
|
|
err:
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit emac_exit(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
of_unregister_platform_driver(&emac_driver);
|
|
|
|
|
|
|
|
tah_exit();
|
|
|
|
rgmii_exit();
|
|
|
|
zmii_exit();
|
|
|
|
mal_exit();
|
|
|
|
emac_fini_debug();
|
|
|
|
|
|
|
|
/* Destroy EMAC boot list */
|
|
|
|
for (i = 0; i < EMAC_BOOT_LIST_SIZE; i++)
|
|
|
|
if (emac_boot_list[i])
|
|
|
|
of_node_put(emac_boot_list[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(emac_init);
|
|
|
|
module_exit(emac_exit);
|