kernel-fxtec-pro1x/drivers/hwmon/lm85.c

1601 lines
53 KiB
C
Raw Normal View History

/*
lm85.c - Part of lm_sensors, Linux kernel modules for hardware
monitoring
Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
Chip details at <http://www.national.com/ds/LM/LM85.pdf>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
/* The LM85 registers */
#define LM85_REG_IN(nr) (0x20 + (nr))
#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
#define LM85_REG_TEMP(nr) (0x25 + (nr))
#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
/* Fan speeds are LSB, MSB (2 bytes) */
#define LM85_REG_FAN(nr) (0x28 + (nr) *2)
#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) *2)
#define LM85_REG_PWM(nr) (0x30 + (nr))
#define ADT7463_REG_OPPOINT(nr) (0x33 + (nr))
#define ADT7463_REG_TMIN_CTL1 0x36
#define ADT7463_REG_TMIN_CTL2 0x37
#define LM85_REG_DEVICE 0x3d
#define LM85_REG_COMPANY 0x3e
#define LM85_REG_VERSTEP 0x3f
/* These are the recognized values for the above regs */
#define LM85_DEVICE_ADX 0x27
#define LM85_COMPANY_NATIONAL 0x01
#define LM85_COMPANY_ANALOG_DEV 0x41
#define LM85_COMPANY_SMSC 0x5c
#define LM85_VERSTEP_VMASK 0xf0
#define LM85_VERSTEP_GENERIC 0x60
#define LM85_VERSTEP_LM85C 0x60
#define LM85_VERSTEP_LM85B 0x62
#define LM85_VERSTEP_ADM1027 0x60
#define LM85_VERSTEP_ADT7463 0x62
#define LM85_VERSTEP_ADT7463C 0x6A
#define LM85_VERSTEP_EMC6D100_A0 0x60
#define LM85_VERSTEP_EMC6D100_A1 0x61
#define LM85_VERSTEP_EMC6D102 0x65
#define LM85_REG_CONFIG 0x40
#define LM85_REG_ALARM1 0x41
#define LM85_REG_ALARM2 0x42
#define LM85_REG_VID 0x43
/* Automated FAN control */
#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
#define LM85_REG_AFAN_SPIKE1 0x62
#define LM85_REG_AFAN_SPIKE2 0x63
#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
#define LM85_REG_AFAN_HYST1 0x6d
#define LM85_REG_AFAN_HYST2 0x6e
#define LM85_REG_TACH_MODE 0x74
#define LM85_REG_SPINUP_CTL 0x75
#define ADM1027_REG_TEMP_OFFSET(nr) (0x70 + (nr))
#define ADM1027_REG_CONFIG2 0x73
#define ADM1027_REG_INTMASK1 0x74
#define ADM1027_REG_INTMASK2 0x75
#define ADM1027_REG_EXTEND_ADC1 0x76
#define ADM1027_REG_EXTEND_ADC2 0x77
#define ADM1027_REG_CONFIG3 0x78
#define ADM1027_REG_FAN_PPR 0x7b
#define ADT7463_REG_THERM 0x79
#define ADT7463_REG_THERM_LIMIT 0x7A
#define EMC6D100_REG_ALARM3 0x7d
/* IN5, IN6 and IN7 */
#define EMC6D100_REG_IN(nr) (0x70 + ((nr)-5))
#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr)-5) * 2)
#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr)-5) * 2)
#define EMC6D102_REG_EXTEND_ADC1 0x85
#define EMC6D102_REG_EXTEND_ADC2 0x86
#define EMC6D102_REG_EXTEND_ADC3 0x87
#define EMC6D102_REG_EXTEND_ADC4 0x88
#define LM85_ALARM_IN0 0x0001
#define LM85_ALARM_IN1 0x0002
#define LM85_ALARM_IN2 0x0004
#define LM85_ALARM_IN3 0x0008
#define LM85_ALARM_TEMP1 0x0010
#define LM85_ALARM_TEMP2 0x0020
#define LM85_ALARM_TEMP3 0x0040
#define LM85_ALARM_ALARM2 0x0080
#define LM85_ALARM_IN4 0x0100
#define LM85_ALARM_RESERVED 0x0200
#define LM85_ALARM_FAN1 0x0400
#define LM85_ALARM_FAN2 0x0800
#define LM85_ALARM_FAN3 0x1000
#define LM85_ALARM_FAN4 0x2000
#define LM85_ALARM_TEMP1_FAULT 0x4000
#define LM85_ALARM_TEMP3_FAULT 0x8000
/* Conversions. Rounding and limit checking is only done on the TO_REG
variants. Note that you should be a bit careful with which arguments
these macros are called: arguments may be evaluated more than once.
*/
/* IN are scaled acording to built-in resistors */
static int lm85_scaling[] = { /* .001 Volts */
2500, 2250, 3300, 5000, 12000,
3300, 1500, 1800 /*EMC6D100*/
};
#define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from))
#define INS_TO_REG(n,val) \
SENSORS_LIMIT(SCALE(val,lm85_scaling[n],192),0,255)
#define INSEXT_FROM_REG(n,val,ext,scale) \
SCALE((val)*(scale) + (ext),192*(scale),lm85_scaling[n])
#define INS_FROM_REG(n,val) INSEXT_FROM_REG(n,val,0,1)
/* FAN speed is measured using 90kHz clock */
#define FAN_TO_REG(val) (SENSORS_LIMIT( (val)<=0?0: 5400000/(val),0,65534))
#define FAN_FROM_REG(val) ((val)==0?-1:(val)==0xffff?0:5400000/(val))
/* Temperature is reported in .001 degC increments */
#define TEMP_TO_REG(val) \
SENSORS_LIMIT(SCALE(val,1000,1),-127,127)
#define TEMPEXT_FROM_REG(val,ext,scale) \
SCALE((val)*scale + (ext),scale,1000)
#define TEMP_FROM_REG(val) \
TEMPEXT_FROM_REG(val,0,1)
#define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255))
#define PWM_FROM_REG(val) (val)
/* ZONEs have the following parameters:
* Limit (low) temp, 1. degC
* Hysteresis (below limit), 1. degC (0-15)
* Range of speed control, .1 degC (2-80)
* Critical (high) temp, 1. degC
*
* FAN PWMs have the following parameters:
* Reference Zone, 1, 2, 3, etc.
* Spinup time, .05 sec
* PWM value at limit/low temp, 1 count
* PWM Frequency, 1. Hz
* PWM is Min or OFF below limit, flag
* Invert PWM output, flag
*
* Some chips filter the temp, others the fan.
* Filter constant (or disabled) .1 seconds
*/
/* These are the zone temperature range encodings in .001 degree C */
static int lm85_range_map[] = {
2000, 2500, 3300, 4000, 5000, 6600,
8000, 10000, 13300, 16000, 20000, 26600,
32000, 40000, 53300, 80000
};
static int RANGE_TO_REG( int range )
{
int i;
if ( range < lm85_range_map[0] ) {
return 0 ;
} else if ( range > lm85_range_map[15] ) {
return 15 ;
} else { /* find closest match */
for ( i = 14 ; i >= 0 ; --i ) {
if ( range > lm85_range_map[i] ) { /* range bracketed */
if ((lm85_range_map[i+1] - range) <
(range - lm85_range_map[i])) {
i++;
break;
}
break;
}
}
}
return( i & 0x0f );
}
#define RANGE_FROM_REG(val) (lm85_range_map[(val)&0x0f])
/* These are the Acoustic Enhancement, or Temperature smoothing encodings
* NOTE: The enable/disable bit is INCLUDED in these encodings as the
* MSB (bit 3, value 8). If the enable bit is 0, the encoded value
* is ignored, or set to 0.
*/
/* These are the PWM frequency encodings */
static int lm85_freq_map[] = { /* .1 Hz */
100, 150, 230, 300, 380, 470, 620, 940
};
static int FREQ_TO_REG( int freq )
{
int i;
if( freq >= lm85_freq_map[7] ) { return 7 ; }
for( i = 0 ; i < 7 ; ++i )
if( freq <= lm85_freq_map[i] )
break ;
return( i & 0x07 );
}
#define FREQ_FROM_REG(val) (lm85_freq_map[(val)&0x07])
/* Since we can't use strings, I'm abusing these numbers
* to stand in for the following meanings:
* 1 -- PWM responds to Zone 1
* 2 -- PWM responds to Zone 2
* 3 -- PWM responds to Zone 3
* 23 -- PWM responds to the higher temp of Zone 2 or 3
* 123 -- PWM responds to highest of Zone 1, 2, or 3
* 0 -- PWM is always at 0% (ie, off)
* -1 -- PWM is always at 100%
* -2 -- PWM responds to manual control
*/
static int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
#define ZONE_FROM_REG(val) (lm85_zone_map[((val)>>5)&0x07])
static int ZONE_TO_REG( int zone )
{
int i;
for( i = 0 ; i <= 7 ; ++i )
if( zone == lm85_zone_map[i] )
break ;
if( i > 7 ) /* Not found. */
i = 3; /* Always 100% */
return( (i & 0x07)<<5 );
}
#define HYST_TO_REG(val) (SENSORS_LIMIT(((val)+500)/1000,0,15))
#define HYST_FROM_REG(val) ((val)*1000)
#define OFFSET_TO_REG(val) (SENSORS_LIMIT((val)/25,-127,127))
#define OFFSET_FROM_REG(val) ((val)*25)
#define PPR_MASK(fan) (0x03<<(fan *2))
#define PPR_TO_REG(val,fan) (SENSORS_LIMIT((val)-1,0,3)<<(fan *2))
#define PPR_FROM_REG(val,fan) ((((val)>>(fan * 2))&0x03)+1)
/* Chip sampling rates
*
* Some sensors are not updated more frequently than once per second
* so it doesn't make sense to read them more often than that.
* We cache the results and return the saved data if the driver
* is called again before a second has elapsed.
*
* Also, there is significant configuration data for this chip
* given the automatic PWM fan control that is possible. There
* are about 47 bytes of config data to only 22 bytes of actual
* readings. So, we keep the config data up to date in the cache
* when it is written and only sample it once every 1 *minute*
*/
#define LM85_DATA_INTERVAL (HZ + HZ / 2)
#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
/* For each registered LM85, we need to keep some data in memory. That
data is pointed to by lm85_list[NR]->data. The structure itself is
dynamically allocated, at the same time when a new lm85 client is
allocated. */
/* LM85 can automatically adjust fan speeds based on temperature
* This structure encapsulates an entire Zone config. There are
* three zones (one for each temperature input) on the lm85
*/
struct lm85_zone {
s8 limit; /* Low temp limit */
u8 hyst; /* Low limit hysteresis. (0-15) */
u8 range; /* Temp range, encoded */
s8 critical; /* "All fans ON" temp limit */
u8 off_desired; /* Actual "off" temperature specified. Preserved
* to prevent "drift" as other autofan control
* values change.
*/
u8 max_desired; /* Actual "max" temperature specified. Preserved
* to prevent "drift" as other autofan control
* values change.
*/
};
struct lm85_autofan {
u8 config; /* Register value */
u8 freq; /* PWM frequency, encoded */
u8 min_pwm; /* Minimum PWM value, encoded */
u8 min_off; /* Min PWM or OFF below "limit", flag */
};
struct lm85_data {
struct i2c_client client;
struct class_device *class_dev;
struct mutex lock;
enum chips type;
struct mutex update_lock;
int valid; /* !=0 if following fields are valid */
unsigned long last_reading; /* In jiffies */
unsigned long last_config; /* In jiffies */
u8 in[8]; /* Register value */
u8 in_max[8]; /* Register value */
u8 in_min[8]; /* Register value */
s8 temp[3]; /* Register value */
s8 temp_min[3]; /* Register value */
s8 temp_max[3]; /* Register value */
s8 temp_offset[3]; /* Register value */
u16 fan[4]; /* Register value */
u16 fan_min[4]; /* Register value */
u8 pwm[3]; /* Register value */
u8 spinup_ctl; /* Register encoding, combined */
u8 tach_mode; /* Register encoding, combined */
u8 temp_ext[3]; /* Decoded values */
u8 in_ext[8]; /* Decoded values */
u8 adc_scale; /* ADC Extended bits scaling factor */
u8 fan_ppr; /* Register value */
u8 smooth[3]; /* Register encoding */
u8 vid; /* Register value */
u8 vrm; /* VRM version */
u8 syncpwm3; /* Saved PWM3 for TACH 2,3,4 config */
u8 oppoint[3]; /* Register value */
u16 tmin_ctl; /* Register value */
unsigned long therm_total; /* Cummulative therm count */
u8 therm_limit; /* Register value */
u32 alarms; /* Register encoding, combined */
struct lm85_autofan autofan[3];
struct lm85_zone zone[3];
};
static int lm85_attach_adapter(struct i2c_adapter *adapter);
static int lm85_detect(struct i2c_adapter *adapter, int address,
int kind);
static int lm85_detach_client(struct i2c_client *client);
static int lm85_read_value(struct i2c_client *client, u8 reg);
static int lm85_write_value(struct i2c_client *client, u8 reg, int value);
static struct lm85_data *lm85_update_device(struct device *dev);
static void lm85_init_client(struct i2c_client *client);
static struct i2c_driver lm85_driver = {
.driver = {
.name = "lm85",
},
.id = I2C_DRIVERID_LM85,
.attach_adapter = lm85_attach_adapter,
.detach_client = lm85_detach_client,
};
/* 4 Fans */
static ssize_t show_fan(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan[nr]) );
}
static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", FAN_FROM_REG(data->fan_min[nr]) );
}
static ssize_t set_fan_min(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val);
lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_fan_offset(offset) \
static ssize_t show_fan_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_fan(dev, buf, offset - 1); \
} \
static ssize_t show_fan_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_fan_min(dev, buf, offset - 1); \
} \
static ssize_t set_fan_##offset##_min (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_fan_min(dev, buf, count, offset - 1); \
} \
static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset, \
NULL); \
static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_##offset##_min, set_fan_##offset##_min);
show_fan_offset(1);
show_fan_offset(2);
show_fan_offset(3);
show_fan_offset(4);
/* vid, vrm, alarms */
static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
int vid;
if (data->type == adt7463 && (data->vid & 0x80)) {
/* 6-pin VID (VRM 10) */
vid = vid_from_reg(data->vid & 0x3f, data->vrm);
} else {
/* 5-pin VID (VRM 9) */
vid = vid_from_reg(data->vid & 0x1f, data->vrm);
}
return sprintf(buf, "%d\n", vid);
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%ld\n", (long) data->vrm);
}
static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
u32 val;
val = simple_strtoul(buf, NULL, 10);
data->vrm = val;
return count;
}
static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
static ssize_t show_alarms_reg(struct device *dev, struct device_attribute *attr, char *buf)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
/* pwm */
static ssize_t show_pwm(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", PWM_FROM_REG(data->pwm[nr]) );
}
static ssize_t set_pwm(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->pwm[nr] = PWM_TO_REG(val);
lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_enable(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
int pwm_zone;
pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
return sprintf(buf,"%d\n", (pwm_zone != 0 && pwm_zone != -1) );
}
#define show_pwm_reg(offset) \
static ssize_t show_pwm_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_pwm(dev, buf, offset - 1); \
} \
static ssize_t set_pwm_##offset (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_pwm(dev, buf, count, offset - 1); \
} \
static ssize_t show_pwm_enable##offset (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_pwm_enable(dev, buf, offset - 1); \
} \
static DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
show_pwm_##offset, set_pwm_##offset); \
static DEVICE_ATTR(pwm##offset##_enable, S_IRUGO, \
show_pwm_enable##offset, NULL);
show_pwm_reg(1);
show_pwm_reg(2);
show_pwm_reg(3);
/* Voltages */
static ssize_t show_in(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf( buf, "%d\n", INSEXT_FROM_REG(nr,
data->in[nr],
data->in_ext[nr],
data->adc_scale) );
}
static ssize_t show_in_min(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_min[nr]) );
}
static ssize_t set_in_min(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_in_max(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", INS_FROM_REG(nr, data->in_max[nr]) );
}
static ssize_t set_in_max(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[nr] = INS_TO_REG(nr, val);
lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_in_reg(offset) \
static ssize_t show_in_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_in(dev, buf, offset); \
} \
static ssize_t show_in_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_in_min(dev, buf, offset); \
} \
static ssize_t show_in_##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_in_max(dev, buf, offset); \
} \
static ssize_t set_in_##offset##_min (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_in_min(dev, buf, count, offset); \
} \
static ssize_t set_in_##offset##_max (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_in_max(dev, buf, count, offset); \
} \
static DEVICE_ATTR(in##offset##_input, S_IRUGO, show_in_##offset, \
NULL); \
static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_##offset##_min, set_in_##offset##_min); \
static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_##offset##_max, set_in_##offset##_max);
show_in_reg(0);
show_in_reg(1);
show_in_reg(2);
show_in_reg(3);
show_in_reg(4);
/* Temps */
static ssize_t show_temp(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMPEXT_FROM_REG(data->temp[nr],
data->temp_ext[nr],
data->adc_scale) );
}
static ssize_t show_temp_min(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_min[nr]) );
}
static ssize_t set_temp_min(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_max(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->temp_max[nr]) );
}
static ssize_t set_temp_max(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_temp_reg(offset) \
static ssize_t show_temp_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_temp(dev, buf, offset - 1); \
} \
static ssize_t show_temp_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_temp_min(dev, buf, offset - 1); \
} \
static ssize_t show_temp_##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
{ \
return show_temp_max(dev, buf, offset - 1); \
} \
static ssize_t set_temp_##offset##_min (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_temp_min(dev, buf, count, offset - 1); \
} \
static ssize_t set_temp_##offset##_max (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_temp_max(dev, buf, count, offset - 1); \
} \
static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset, \
NULL); \
static DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
show_temp_##offset##_min, set_temp_##offset##_min); \
static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_##offset##_max, set_temp_##offset##_max);
show_temp_reg(1);
show_temp_reg(2);
show_temp_reg(3);
/* Automatic PWM control */
static ssize_t show_pwm_auto_channels(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", ZONE_FROM_REG(data->autofan[nr].config));
}
static ssize_t set_pwm_auto_channels(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
| ZONE_TO_REG(val) ;
lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
data->autofan[nr].config);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_auto_pwm_min(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
}
static ssize_t set_pwm_auto_pwm_min(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].min_pwm = PWM_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
data->autofan[nr].min_pwm);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_auto_pwm_minctl(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", data->autofan[nr].min_off);
}
static ssize_t set_pwm_auto_pwm_minctl(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].min_off = val;
lm85_write_value(client, LM85_REG_AFAN_SPIKE1, data->smooth[0]
| data->syncpwm3
| (data->autofan[0].min_off ? 0x20 : 0)
| (data->autofan[1].min_off ? 0x40 : 0)
| (data->autofan[2].min_off ? 0x80 : 0)
);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm_auto_pwm_freq(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", FREQ_FROM_REG(data->autofan[nr].freq));
}
static ssize_t set_pwm_auto_pwm_freq(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->autofan[nr].freq = FREQ_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
(data->zone[nr].range << 4)
| data->autofan[nr].freq
);
mutex_unlock(&data->update_lock);
return count;
}
#define pwm_auto(offset) \
static ssize_t show_pwm##offset##_auto_channels (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_pwm_auto_channels(dev, buf, offset - 1); \
} \
static ssize_t set_pwm##offset##_auto_channels (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_pwm_auto_channels(dev, buf, count, offset - 1); \
} \
static ssize_t show_pwm##offset##_auto_pwm_min (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_pwm_auto_pwm_min(dev, buf, offset - 1); \
} \
static ssize_t set_pwm##offset##_auto_pwm_min (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_pwm_auto_pwm_min(dev, buf, count, offset - 1); \
} \
static ssize_t show_pwm##offset##_auto_pwm_minctl (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_pwm_auto_pwm_minctl(dev, buf, offset - 1); \
} \
static ssize_t set_pwm##offset##_auto_pwm_minctl (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_pwm_auto_pwm_minctl(dev, buf, count, offset - 1); \
} \
static ssize_t show_pwm##offset##_auto_pwm_freq (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_pwm_auto_pwm_freq(dev, buf, offset - 1); \
} \
static ssize_t set_pwm##offset##_auto_pwm_freq(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_pwm_auto_pwm_freq(dev, buf, count, offset - 1); \
} \
static DEVICE_ATTR(pwm##offset##_auto_channels, S_IRUGO | S_IWUSR, \
show_pwm##offset##_auto_channels, \
set_pwm##offset##_auto_channels); \
static DEVICE_ATTR(pwm##offset##_auto_pwm_min, S_IRUGO | S_IWUSR, \
show_pwm##offset##_auto_pwm_min, \
set_pwm##offset##_auto_pwm_min); \
static DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, S_IRUGO | S_IWUSR, \
show_pwm##offset##_auto_pwm_minctl, \
set_pwm##offset##_auto_pwm_minctl); \
static DEVICE_ATTR(pwm##offset##_auto_pwm_freq, S_IRUGO | S_IWUSR, \
show_pwm##offset##_auto_pwm_freq, \
set_pwm##offset##_auto_pwm_freq);
pwm_auto(1);
pwm_auto(2);
pwm_auto(3);
/* Temperature settings for automatic PWM control */
static ssize_t show_temp_auto_temp_off(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
HYST_FROM_REG(data->zone[nr].hyst));
}
static ssize_t set_temp_auto_temp_off(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
int min;
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
min = TEMP_FROM_REG(data->zone[nr].limit);
data->zone[nr].off_desired = TEMP_TO_REG(val);
data->zone[nr].hyst = HYST_TO_REG(min - val);
if ( nr == 0 || nr == 1 ) {
lm85_write_value(client, LM85_REG_AFAN_HYST1,
(data->zone[0].hyst << 4)
| data->zone[1].hyst
);
} else {
lm85_write_value(client, LM85_REG_AFAN_HYST2,
(data->zone[2].hyst << 4)
);
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_auto_temp_min(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) );
}
static ssize_t set_temp_auto_temp_min(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->zone[nr].limit = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
data->zone[nr].limit);
/* Update temp_auto_max and temp_auto_range */
data->zone[nr].range = RANGE_TO_REG(
TEMP_FROM_REG(data->zone[nr].max_desired) -
TEMP_FROM_REG(data->zone[nr].limit));
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
((data->zone[nr].range & 0x0f) << 4)
| (data->autofan[nr].freq & 0x07));
/* Update temp_auto_hyst and temp_auto_off */
data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
data->zone[nr].limit) - TEMP_FROM_REG(
data->zone[nr].off_desired));
if ( nr == 0 || nr == 1 ) {
lm85_write_value(client, LM85_REG_AFAN_HYST1,
(data->zone[0].hyst << 4)
| data->zone[1].hyst
);
} else {
lm85_write_value(client, LM85_REG_AFAN_HYST2,
(data->zone[2].hyst << 4)
);
}
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_auto_temp_max(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
RANGE_FROM_REG(data->zone[nr].range));
}
static ssize_t set_temp_auto_temp_max(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
int min;
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
min = TEMP_FROM_REG(data->zone[nr].limit);
data->zone[nr].max_desired = TEMP_TO_REG(val);
data->zone[nr].range = RANGE_TO_REG(
val - min);
lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
((data->zone[nr].range & 0x0f) << 4)
| (data->autofan[nr].freq & 0x07));
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_auto_temp_crit(struct device *dev, char *buf, int nr)
{
struct lm85_data *data = lm85_update_device(dev);
return sprintf(buf,"%d\n", TEMP_FROM_REG(data->zone[nr].critical));
}
static ssize_t set_temp_auto_temp_crit(struct device *dev, const char *buf,
size_t count, int nr)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->zone[nr].critical = TEMP_TO_REG(val);
lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
data->zone[nr].critical);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_auto(offset) \
static ssize_t show_temp##offset##_auto_temp_off (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_temp_auto_temp_off(dev, buf, offset - 1); \
} \
static ssize_t set_temp##offset##_auto_temp_off (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_temp_auto_temp_off(dev, buf, count, offset - 1); \
} \
static ssize_t show_temp##offset##_auto_temp_min (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_temp_auto_temp_min(dev, buf, offset - 1); \
} \
static ssize_t set_temp##offset##_auto_temp_min (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_temp_auto_temp_min(dev, buf, count, offset - 1); \
} \
static ssize_t show_temp##offset##_auto_temp_max (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_temp_auto_temp_max(dev, buf, offset - 1); \
} \
static ssize_t set_temp##offset##_auto_temp_max (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_temp_auto_temp_max(dev, buf, count, offset - 1); \
} \
static ssize_t show_temp##offset##_auto_temp_crit (struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
return show_temp_auto_temp_crit(dev, buf, offset - 1); \
} \
static ssize_t set_temp##offset##_auto_temp_crit (struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
return set_temp_auto_temp_crit(dev, buf, count, offset - 1); \
} \
static DEVICE_ATTR(temp##offset##_auto_temp_off, S_IRUGO | S_IWUSR, \
show_temp##offset##_auto_temp_off, \
set_temp##offset##_auto_temp_off); \
static DEVICE_ATTR(temp##offset##_auto_temp_min, S_IRUGO | S_IWUSR, \
show_temp##offset##_auto_temp_min, \
set_temp##offset##_auto_temp_min); \
static DEVICE_ATTR(temp##offset##_auto_temp_max, S_IRUGO | S_IWUSR, \
show_temp##offset##_auto_temp_max, \
set_temp##offset##_auto_temp_max); \
static DEVICE_ATTR(temp##offset##_auto_temp_crit, S_IRUGO | S_IWUSR, \
show_temp##offset##_auto_temp_crit, \
set_temp##offset##_auto_temp_crit);
temp_auto(1);
temp_auto(2);
temp_auto(3);
static int lm85_attach_adapter(struct i2c_adapter *adapter)
{
if (!(adapter->class & I2C_CLASS_HWMON))
return 0;
return i2c_probe(adapter, &addr_data, lm85_detect);
}
static int lm85_detect(struct i2c_adapter *adapter, int address,
int kind)
{
int company, verstep ;
struct i2c_client *new_client = NULL;
struct lm85_data *data;
int err = 0;
const char *type_name = "";
if (!i2c_check_functionality(adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
/* We need to be able to do byte I/O */
goto ERROR0 ;
};
/* OK. For now, we presume we have a valid client. We now create the
client structure, even though we cannot fill it completely yet.
But it allows us to access lm85_{read,write}_value. */
if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
err = -ENOMEM;
goto ERROR0;
}
new_client = &data->client;
i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &lm85_driver;
new_client->flags = 0;
/* Now, we do the remaining detection. */
company = lm85_read_value(new_client, LM85_REG_COMPANY);
verstep = lm85_read_value(new_client, LM85_REG_VERSTEP);
dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with"
" COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
i2c_adapter_id(new_client->adapter), new_client->addr,
company, verstep);
/* If auto-detecting, Determine the chip type. */
if (kind <= 0) {
dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n",
i2c_adapter_id(adapter), address );
if( company == LM85_COMPANY_NATIONAL
&& verstep == LM85_VERSTEP_LM85C ) {
kind = lm85c ;
} else if( company == LM85_COMPANY_NATIONAL
&& verstep == LM85_VERSTEP_LM85B ) {
kind = lm85b ;
} else if( company == LM85_COMPANY_NATIONAL
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) {
dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
" Defaulting to LM85.\n", verstep);
kind = any_chip ;
} else if( company == LM85_COMPANY_ANALOG_DEV
&& verstep == LM85_VERSTEP_ADM1027 ) {
kind = adm1027 ;
} else if( company == LM85_COMPANY_ANALOG_DEV
&& (verstep == LM85_VERSTEP_ADT7463
|| verstep == LM85_VERSTEP_ADT7463C) ) {
kind = adt7463 ;
} else if( company == LM85_COMPANY_ANALOG_DEV
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC ) {
dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
" Defaulting to Generic LM85.\n", verstep );
kind = any_chip ;
} else if( company == LM85_COMPANY_SMSC
&& (verstep == LM85_VERSTEP_EMC6D100_A0
|| verstep == LM85_VERSTEP_EMC6D100_A1) ) {
/* Unfortunately, we can't tell a '100 from a '101
* from the registers. Since a '101 is a '100
* in a package with fewer pins and therefore no
* 3.3V, 1.5V or 1.8V inputs, perhaps if those
* inputs read 0, then it's a '101.
*/
kind = emc6d100 ;
} else if( company == LM85_COMPANY_SMSC
&& verstep == LM85_VERSTEP_EMC6D102) {
kind = emc6d102 ;
} else if( company == LM85_COMPANY_SMSC
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
dev_err(&adapter->dev, "lm85: Detected SMSC chip\n");
dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x"
" Defaulting to Generic LM85.\n", verstep );
kind = any_chip ;
} else if( kind == any_chip
&& (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n");
/* Leave kind as "any_chip" */
} else {
dev_dbg(&adapter->dev, "Autodetection failed\n");
/* Not an LM85 ... */
if( kind == any_chip ) { /* User used force=x,y */
dev_err(&adapter->dev, "Generic LM85 Version 6 not"
" found at %d,0x%02x. Try force_lm85c.\n",
i2c_adapter_id(adapter), address );
}
err = 0 ;
goto ERROR1;
}
}
/* Fill in the chip specific driver values */
if ( kind == any_chip ) {
type_name = "lm85";
} else if ( kind == lm85b ) {
type_name = "lm85b";
} else if ( kind == lm85c ) {
type_name = "lm85c";
} else if ( kind == adm1027 ) {
type_name = "adm1027";
} else if ( kind == adt7463 ) {
type_name = "adt7463";
} else if ( kind == emc6d100){
type_name = "emc6d100";
} else if ( kind == emc6d102 ) {
type_name = "emc6d102";
}
strlcpy(new_client->name, type_name, I2C_NAME_SIZE);
/* Fill in the remaining client fields */
data->type = kind;
data->valid = 0;
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto ERROR1;
/* Set the VRM version */
data->vrm = vid_which_vrm();
/* Initialize the LM85 chip */
lm85_init_client(new_client);
/* Register sysfs hooks */
data->class_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->class_dev)) {
err = PTR_ERR(data->class_dev);
goto ERROR2;
}
device_create_file(&new_client->dev, &dev_attr_fan1_input);
device_create_file(&new_client->dev, &dev_attr_fan2_input);
device_create_file(&new_client->dev, &dev_attr_fan3_input);
device_create_file(&new_client->dev, &dev_attr_fan4_input);
device_create_file(&new_client->dev, &dev_attr_fan1_min);
device_create_file(&new_client->dev, &dev_attr_fan2_min);
device_create_file(&new_client->dev, &dev_attr_fan3_min);
device_create_file(&new_client->dev, &dev_attr_fan4_min);
device_create_file(&new_client->dev, &dev_attr_pwm1);
device_create_file(&new_client->dev, &dev_attr_pwm2);
device_create_file(&new_client->dev, &dev_attr_pwm3);
device_create_file(&new_client->dev, &dev_attr_pwm1_enable);
device_create_file(&new_client->dev, &dev_attr_pwm2_enable);
device_create_file(&new_client->dev, &dev_attr_pwm3_enable);
device_create_file(&new_client->dev, &dev_attr_in0_input);
device_create_file(&new_client->dev, &dev_attr_in1_input);
device_create_file(&new_client->dev, &dev_attr_in2_input);
device_create_file(&new_client->dev, &dev_attr_in3_input);
device_create_file(&new_client->dev, &dev_attr_in0_min);
device_create_file(&new_client->dev, &dev_attr_in1_min);
device_create_file(&new_client->dev, &dev_attr_in2_min);
device_create_file(&new_client->dev, &dev_attr_in3_min);
device_create_file(&new_client->dev, &dev_attr_in0_max);
device_create_file(&new_client->dev, &dev_attr_in1_max);
device_create_file(&new_client->dev, &dev_attr_in2_max);
device_create_file(&new_client->dev, &dev_attr_in3_max);
device_create_file(&new_client->dev, &dev_attr_temp1_input);
device_create_file(&new_client->dev, &dev_attr_temp2_input);
device_create_file(&new_client->dev, &dev_attr_temp3_input);
device_create_file(&new_client->dev, &dev_attr_temp1_min);
device_create_file(&new_client->dev, &dev_attr_temp2_min);
device_create_file(&new_client->dev, &dev_attr_temp3_min);
device_create_file(&new_client->dev, &dev_attr_temp1_max);
device_create_file(&new_client->dev, &dev_attr_temp2_max);
device_create_file(&new_client->dev, &dev_attr_temp3_max);
device_create_file(&new_client->dev, &dev_attr_vrm);
device_create_file(&new_client->dev, &dev_attr_cpu0_vid);
device_create_file(&new_client->dev, &dev_attr_alarms);
device_create_file(&new_client->dev, &dev_attr_pwm1_auto_channels);
device_create_file(&new_client->dev, &dev_attr_pwm2_auto_channels);
device_create_file(&new_client->dev, &dev_attr_pwm3_auto_channels);
device_create_file(&new_client->dev, &dev_attr_pwm1_auto_pwm_min);
device_create_file(&new_client->dev, &dev_attr_pwm2_auto_pwm_min);
device_create_file(&new_client->dev, &dev_attr_pwm3_auto_pwm_min);
device_create_file(&new_client->dev, &dev_attr_pwm1_auto_pwm_minctl);
device_create_file(&new_client->dev, &dev_attr_pwm2_auto_pwm_minctl);
device_create_file(&new_client->dev, &dev_attr_pwm3_auto_pwm_minctl);
device_create_file(&new_client->dev, &dev_attr_pwm1_auto_pwm_freq);
device_create_file(&new_client->dev, &dev_attr_pwm2_auto_pwm_freq);
device_create_file(&new_client->dev, &dev_attr_pwm3_auto_pwm_freq);
device_create_file(&new_client->dev, &dev_attr_temp1_auto_temp_off);
device_create_file(&new_client->dev, &dev_attr_temp2_auto_temp_off);
device_create_file(&new_client->dev, &dev_attr_temp3_auto_temp_off);
device_create_file(&new_client->dev, &dev_attr_temp1_auto_temp_min);
device_create_file(&new_client->dev, &dev_attr_temp2_auto_temp_min);
device_create_file(&new_client->dev, &dev_attr_temp3_auto_temp_min);
device_create_file(&new_client->dev, &dev_attr_temp1_auto_temp_max);
device_create_file(&new_client->dev, &dev_attr_temp2_auto_temp_max);
device_create_file(&new_client->dev, &dev_attr_temp3_auto_temp_max);
device_create_file(&new_client->dev, &dev_attr_temp1_auto_temp_crit);
device_create_file(&new_client->dev, &dev_attr_temp2_auto_temp_crit);
device_create_file(&new_client->dev, &dev_attr_temp3_auto_temp_crit);
/* The ADT7463 has an optional VRM 10 mode where pin 21 is used
as a sixth digital VID input rather than an analog input. */
data->vid = lm85_read_value(new_client, LM85_REG_VID);
if (!(kind == adt7463 && (data->vid & 0x80))) {
device_create_file(&new_client->dev, &dev_attr_in4_input);
device_create_file(&new_client->dev, &dev_attr_in4_min);
device_create_file(&new_client->dev, &dev_attr_in4_max);
}
return 0;
/* Error out and cleanup code */
ERROR2:
i2c_detach_client(new_client);
ERROR1:
kfree(data);
ERROR0:
return err;
}
static int lm85_detach_client(struct i2c_client *client)
{
struct lm85_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->class_dev);
i2c_detach_client(client);
kfree(data);
return 0;
}
static int lm85_read_value(struct i2c_client *client, u8 reg)
{
int res;
/* What size location is it? */
switch( reg ) {
case LM85_REG_FAN(0) : /* Read WORD data */
case LM85_REG_FAN(1) :
case LM85_REG_FAN(2) :
case LM85_REG_FAN(3) :
case LM85_REG_FAN_MIN(0) :
case LM85_REG_FAN_MIN(1) :
case LM85_REG_FAN_MIN(2) :
case LM85_REG_FAN_MIN(3) :
case LM85_REG_ALARM1 : /* Read both bytes at once */
res = i2c_smbus_read_byte_data(client, reg) & 0xff ;
res |= i2c_smbus_read_byte_data(client, reg+1) << 8 ;
break ;
case ADT7463_REG_TMIN_CTL1 : /* Read WORD MSB, LSB */
res = i2c_smbus_read_byte_data(client, reg) << 8 ;
res |= i2c_smbus_read_byte_data(client, reg+1) & 0xff ;
break ;
default: /* Read BYTE data */
res = i2c_smbus_read_byte_data(client, reg);
break ;
}
return res ;
}
static int lm85_write_value(struct i2c_client *client, u8 reg, int value)
{
int res ;
switch( reg ) {
case LM85_REG_FAN(0) : /* Write WORD data */
case LM85_REG_FAN(1) :
case LM85_REG_FAN(2) :
case LM85_REG_FAN(3) :
case LM85_REG_FAN_MIN(0) :
case LM85_REG_FAN_MIN(1) :
case LM85_REG_FAN_MIN(2) :
case LM85_REG_FAN_MIN(3) :
/* NOTE: ALARM is read only, so not included here */
res = i2c_smbus_write_byte_data(client, reg, value & 0xff) ;
res |= i2c_smbus_write_byte_data(client, reg+1, (value>>8) & 0xff) ;
break ;
case ADT7463_REG_TMIN_CTL1 : /* Write WORD MSB, LSB */
res = i2c_smbus_write_byte_data(client, reg, (value>>8) & 0xff);
res |= i2c_smbus_write_byte_data(client, reg+1, value & 0xff) ;
break ;
default: /* Write BYTE data */
res = i2c_smbus_write_byte_data(client, reg, value);
break ;
}
return res ;
}
static void lm85_init_client(struct i2c_client *client)
{
int value;
struct lm85_data *data = i2c_get_clientdata(client);
dev_dbg(&client->dev, "Initializing device\n");
/* Warn if part was not "READY" */
value = lm85_read_value(client, LM85_REG_CONFIG);
dev_dbg(&client->dev, "LM85_REG_CONFIG is: 0x%02x\n", value);
if( value & 0x02 ) {
dev_err(&client->dev, "Client (%d,0x%02x) config is locked.\n",
i2c_adapter_id(client->adapter), client->addr );
};
if( ! (value & 0x04) ) {
dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
i2c_adapter_id(client->adapter), client->addr );
};
if( value & 0x10
&& ( data->type == adm1027
|| data->type == adt7463 ) ) {
dev_err(&client->dev, "Client (%d,0x%02x) VxI mode is set. "
"Please report this to the lm85 maintainer.\n",
i2c_adapter_id(client->adapter), client->addr );
};
/* WE INTENTIONALLY make no changes to the limits,
* offsets, pwms, fans and zones. If they were
* configured, we don't want to mess with them.
* If they weren't, the default is 100% PWM, no
* control and will suffice until 'sensors -s'
* can be run by the user.
*/
/* Start monitoring */
value = lm85_read_value(client, LM85_REG_CONFIG);
/* Try to clear LOCK, Set START, save everything else */
value = (value & ~ 0x02) | 0x01 ;
dev_dbg(&client->dev, "Setting CONFIG to: 0x%02x\n", value);
lm85_write_value(client, LM85_REG_CONFIG, value);
}
static struct lm85_data *lm85_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm85_data *data = i2c_get_clientdata(client);
int i;
mutex_lock(&data->update_lock);
if ( !data->valid ||
time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL) ) {
/* Things that change quickly */
dev_dbg(&client->dev, "Reading sensor values\n");
/* Have to read extended bits first to "freeze" the
* more significant bits that are read later.
*/
if ( (data->type == adm1027) || (data->type == adt7463) ) {
int ext1 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
ADM1027_REG_EXTEND_ADC2);
int val = (ext1 << 8) + ext2;
for(i = 0; i <= 4; i++)
data->in_ext[i] = (val>>(i * 2))&0x03;
for(i = 0; i <= 2; i++)
data->temp_ext[i] = (val>>((i + 5) * 2))&0x03;
}
/* adc_scale is 2^(number of LSBs). There are 4 extra bits in
the emc6d102 and 2 in the adt7463 and adm1027. In all
other chips ext is always 0 and the value of scale is
irrelevant. So it is left in 4*/
data->adc_scale = (data->type == emc6d102 ) ? 16 : 4;
data->vid = lm85_read_value(client, LM85_REG_VID);
for (i = 0; i <= 3; ++i) {
data->in[i] =
lm85_read_value(client, LM85_REG_IN(i));
}
if (!(data->type == adt7463 && (data->vid & 0x80))) {
data->in[4] = lm85_read_value(client,
LM85_REG_IN(4));
}
for (i = 0; i <= 3; ++i) {
data->fan[i] =
lm85_read_value(client, LM85_REG_FAN(i));
}
for (i = 0; i <= 2; ++i) {
data->temp[i] =
lm85_read_value(client, LM85_REG_TEMP(i));
}
for (i = 0; i <= 2; ++i) {
data->pwm[i] =
lm85_read_value(client, LM85_REG_PWM(i));
}
data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
if ( data->type == adt7463 ) {
if( data->therm_total < ULONG_MAX - 256 ) {
data->therm_total +=
lm85_read_value(client, ADT7463_REG_THERM );
}
} else if ( data->type == emc6d100 ) {
/* Three more voltage sensors */
for (i = 5; i <= 7; ++i) {
data->in[i] =
lm85_read_value(client, EMC6D100_REG_IN(i));
}
/* More alarm bits */
data->alarms |=
lm85_read_value(client, EMC6D100_REG_ALARM3) << 16;
} else if (data->type == emc6d102 ) {
/* Have to read LSB bits after the MSB ones because
the reading of the MSB bits has frozen the
LSBs (backward from the ADM1027).
*/
int ext1 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC1);
int ext2 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC2);
int ext3 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC3);
int ext4 = lm85_read_value(client,
EMC6D102_REG_EXTEND_ADC4);
data->in_ext[0] = ext3 & 0x0f;
data->in_ext[1] = ext4 & 0x0f;
data->in_ext[2] = (ext4 >> 4) & 0x0f;
data->in_ext[3] = (ext3 >> 4) & 0x0f;
data->in_ext[4] = (ext2 >> 4) & 0x0f;
data->temp_ext[0] = ext1 & 0x0f;
data->temp_ext[1] = ext2 & 0x0f;
data->temp_ext[2] = (ext1 >> 4) & 0x0f;
}
data->last_reading = jiffies ;
}; /* last_reading */
if ( !data->valid ||
time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL) ) {
/* Things that don't change often */
dev_dbg(&client->dev, "Reading config values\n");
for (i = 0; i <= 3; ++i) {
data->in_min[i] =
lm85_read_value(client, LM85_REG_IN_MIN(i));
data->in_max[i] =
lm85_read_value(client, LM85_REG_IN_MAX(i));
}
if (!(data->type == adt7463 && (data->vid & 0x80))) {
data->in_min[4] = lm85_read_value(client,
LM85_REG_IN_MIN(4));
data->in_max[4] = lm85_read_value(client,
LM85_REG_IN_MAX(4));
}
if ( data->type == emc6d100 ) {
for (i = 5; i <= 7; ++i) {
data->in_min[i] =
lm85_read_value(client, EMC6D100_REG_IN_MIN(i));
data->in_max[i] =
lm85_read_value(client, EMC6D100_REG_IN_MAX(i));
}
}
for (i = 0; i <= 3; ++i) {
data->fan_min[i] =
lm85_read_value(client, LM85_REG_FAN_MIN(i));
}
for (i = 0; i <= 2; ++i) {
data->temp_min[i] =
lm85_read_value(client, LM85_REG_TEMP_MIN(i));
data->temp_max[i] =
lm85_read_value(client, LM85_REG_TEMP_MAX(i));
}
for (i = 0; i <= 2; ++i) {
int val ;
data->autofan[i].config =
lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
data->autofan[i].freq = val & 0x07 ;
data->zone[i].range = (val >> 4) & 0x0f ;
data->autofan[i].min_pwm =
lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
data->zone[i].limit =
lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
data->zone[i].critical =
lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
}
i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
data->smooth[0] = i & 0x0f ;
data->syncpwm3 = i & 0x10 ; /* Save PWM3 config */
data->autofan[0].min_off = (i & 0x20) != 0 ;
data->autofan[1].min_off = (i & 0x40) != 0 ;
data->autofan[2].min_off = (i & 0x80) != 0 ;
i = lm85_read_value(client, LM85_REG_AFAN_SPIKE2);
data->smooth[1] = (i>>4) & 0x0f ;
data->smooth[2] = i & 0x0f ;
i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
data->zone[0].hyst = (i>>4) & 0x0f ;
data->zone[1].hyst = i & 0x0f ;
i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
data->zone[2].hyst = (i>>4) & 0x0f ;
if ( (data->type == lm85b) || (data->type == lm85c) ) {
data->tach_mode = lm85_read_value(client,
LM85_REG_TACH_MODE );
data->spinup_ctl = lm85_read_value(client,
LM85_REG_SPINUP_CTL );
} else if ( (data->type == adt7463) || (data->type == adm1027) ) {
if ( data->type == adt7463 ) {
for (i = 0; i <= 2; ++i) {
data->oppoint[i] = lm85_read_value(client,
ADT7463_REG_OPPOINT(i) );
}
data->tmin_ctl = lm85_read_value(client,
ADT7463_REG_TMIN_CTL1 );
data->therm_limit = lm85_read_value(client,
ADT7463_REG_THERM_LIMIT );
}
for (i = 0; i <= 2; ++i) {
data->temp_offset[i] = lm85_read_value(client,
ADM1027_REG_TEMP_OFFSET(i) );
}
data->tach_mode = lm85_read_value(client,
ADM1027_REG_CONFIG3 );
data->fan_ppr = lm85_read_value(client,
ADM1027_REG_FAN_PPR );
}
data->last_config = jiffies;
}; /* last_config */
data->valid = 1;
mutex_unlock(&data->update_lock);
return data;
}
static int __init sm_lm85_init(void)
{
return i2c_add_driver(&lm85_driver);
}
static void __exit sm_lm85_exit(void)
{
i2c_del_driver(&lm85_driver);
}
/* Thanks to Richard Barrington for adding the LM85 to sensors-detect.
* Thanks to Margit Schubert-While <margitsw@t-online.de> for help with
* post 2.7.0 CVS changes.
*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, Margit Schubert-While <margitsw@t-online.de>, Justin Thiessen <jthiessen@penguincomputing.com");
MODULE_DESCRIPTION("LM85-B, LM85-C driver");
module_init(sm_lm85_init);
module_exit(sm_lm85_exit);