kernel-fxtec-pro1x/drivers/iommu/amd_iommu.c

4339 lines
97 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <joerg.roedel@amd.com>
* Leo Duran <leo.duran@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/ratelimit.h>
#include <linux/pci.h>
#include <linux/pci-ats.h>
#include <linux/bitmap.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/iommu-helper.h>
#include <linux/iommu.h>
#include <linux/delay.h>
#include <linux/amd-iommu.h>
#include <linux/notifier.h>
#include <linux/export.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
#include <asm/msidef.h>
#include <asm/proto.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/dma.h>
#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
#include "irq_remapping.h"
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
#define LOOP_TIMEOUT 100000
/*
* This bitmap is used to advertise the page sizes our hardware support
* to the IOMMU core, which will then use this information to split
* physically contiguous memory regions it is mapping into page sizes
* that we support.
*
* 512GB Pages are not supported due to a hardware bug
*/
#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
/*
* Domain for untranslated devices - only allocated
* if iommu=pt passed on kernel cmd line.
*/
static struct protection_domain *pt_domain;
static struct iommu_ops amd_iommu_ops;
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
int amd_iommu_max_glx_val = -1;
static struct dma_map_ops amd_iommu_dma_ops;
/*
* general struct to manage commands send to an IOMMU
*/
struct iommu_cmd {
u32 data[4];
};
struct kmem_cache *amd_iommu_irq_cache;
static void update_domain(struct protection_domain *domain);
static int __init alloc_passthrough_domain(void);
/****************************************************************************
*
* Helper functions
*
****************************************************************************/
static struct iommu_dev_data *alloc_dev_data(u16 devid)
{
struct iommu_dev_data *dev_data;
unsigned long flags;
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return NULL;
dev_data->devid = devid;
atomic_set(&dev_data->bind, 0);
spin_lock_irqsave(&dev_data_list_lock, flags);
list_add_tail(&dev_data->dev_data_list, &dev_data_list);
spin_unlock_irqrestore(&dev_data_list_lock, flags);
return dev_data;
}
static void free_dev_data(struct iommu_dev_data *dev_data)
{
unsigned long flags;
spin_lock_irqsave(&dev_data_list_lock, flags);
list_del(&dev_data->dev_data_list);
spin_unlock_irqrestore(&dev_data_list_lock, flags);
if (dev_data->group)
iommu_group_put(dev_data->group);
kfree(dev_data);
}
static struct iommu_dev_data *search_dev_data(u16 devid)
{
struct iommu_dev_data *dev_data;
unsigned long flags;
spin_lock_irqsave(&dev_data_list_lock, flags);
list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
if (dev_data->devid == devid)
goto out_unlock;
}
dev_data = NULL;
out_unlock:
spin_unlock_irqrestore(&dev_data_list_lock, flags);
return dev_data;
}
static struct iommu_dev_data *find_dev_data(u16 devid)
{
struct iommu_dev_data *dev_data;
dev_data = search_dev_data(devid);
if (dev_data == NULL)
dev_data = alloc_dev_data(devid);
return dev_data;
}
static inline u16 get_device_id(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
return calc_devid(pdev->bus->number, pdev->devfn);
}
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
return dev->archdata.iommu;
}
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
static const int caps[] = {
PCI_EXT_CAP_ID_ATS,
PCI_EXT_CAP_ID_PRI,
PCI_EXT_CAP_ID_PASID,
};
int i, pos;
for (i = 0; i < 3; ++i) {
pos = pci_find_ext_capability(pdev, caps[i]);
if (pos == 0)
return false;
}
return true;
}
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
struct iommu_dev_data *dev_data;
dev_data = get_dev_data(&pdev->dev);
return dev_data->errata & (1 << erratum) ? true : false;
}
/*
* In this function the list of preallocated protection domains is traversed to
* find the domain for a specific device
*/
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
struct dma_ops_domain *entry, *ret = NULL;
unsigned long flags;
u16 alias = amd_iommu_alias_table[devid];
if (list_empty(&iommu_pd_list))
return NULL;
spin_lock_irqsave(&iommu_pd_list_lock, flags);
list_for_each_entry(entry, &iommu_pd_list, list) {
if (entry->target_dev == devid ||
entry->target_dev == alias) {
ret = entry;
break;
}
}
spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
return ret;
}
/*
* This function checks if the driver got a valid device from the caller to
* avoid dereferencing invalid pointers.
*/
static bool check_device(struct device *dev)
{
u16 devid;
if (!dev || !dev->dma_mask)
return false;
/* No device or no PCI device */
if (dev->bus != &pci_bus_type)
return false;
devid = get_device_id(dev);
/* Out of our scope? */
if (devid > amd_iommu_last_bdf)
return false;
if (amd_iommu_rlookup_table[devid] == NULL)
return false;
return true;
}
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
{
pci_dev_put(*from);
*from = to;
}
static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
{
while (!bus->self) {
if (!pci_is_root_bus(bus))
bus = bus->parent;
else
return ERR_PTR(-ENODEV);
}
return bus;
}
#define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
{
struct pci_dev *dma_pdev = pdev;
/* Account for quirked devices */
swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
/*
* If it's a multifunction device that does not support our
* required ACS flags, add to the same group as function 0.
*/
if (dma_pdev->multifunction &&
!pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
swap_pci_ref(&dma_pdev,
pci_get_slot(dma_pdev->bus,
PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
0)));
/*
* Devices on the root bus go through the iommu. If that's not us,
* find the next upstream device and test ACS up to the root bus.
* Finding the next device may require skipping virtual buses.
*/
while (!pci_is_root_bus(dma_pdev->bus)) {
struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
if (IS_ERR(bus))
break;
if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
break;
swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
}
return dma_pdev;
}
static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
{
struct iommu_group *group = iommu_group_get(&pdev->dev);
int ret;
if (!group) {
group = iommu_group_alloc();
if (IS_ERR(group))
return PTR_ERR(group);
WARN_ON(&pdev->dev != dev);
}
ret = iommu_group_add_device(group, dev);
iommu_group_put(group);
return ret;
}
static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
struct device *dev)
{
if (!dev_data->group) {
struct iommu_group *group = iommu_group_alloc();
if (IS_ERR(group))
return PTR_ERR(group);
dev_data->group = group;
}
return iommu_group_add_device(dev_data->group, dev);
}
static int init_iommu_group(struct device *dev)
{
struct iommu_dev_data *dev_data;
struct iommu_group *group;
struct pci_dev *dma_pdev;
int ret;
group = iommu_group_get(dev);
if (group) {
iommu_group_put(group);
return 0;
}
dev_data = find_dev_data(get_device_id(dev));
if (!dev_data)
return -ENOMEM;
if (dev_data->alias_data) {
u16 alias;
struct pci_bus *bus;
if (dev_data->alias_data->group)
goto use_group;
/*
* If the alias device exists, it's effectively just a first
* level quirk for finding the DMA source.
*/
alias = amd_iommu_alias_table[dev_data->devid];
dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
if (dma_pdev) {
dma_pdev = get_isolation_root(dma_pdev);
goto use_pdev;
}
/*
* If the alias is virtual, try to find a parent device
* and test whether the IOMMU group is actualy rooted above
* the alias. Be careful to also test the parent device if
* we think the alias is the root of the group.
*/
bus = pci_find_bus(0, alias >> 8);
if (!bus)
goto use_group;
bus = find_hosted_bus(bus);
if (IS_ERR(bus) || !bus->self)
goto use_group;
dma_pdev = get_isolation_root(pci_dev_get(bus->self));
if (dma_pdev != bus->self || (dma_pdev->multifunction &&
!pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
goto use_pdev;
pci_dev_put(dma_pdev);
goto use_group;
}
dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
use_pdev:
ret = use_pdev_iommu_group(dma_pdev, dev);
pci_dev_put(dma_pdev);
return ret;
use_group:
return use_dev_data_iommu_group(dev_data->alias_data, dev);
}
static int iommu_init_device(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct iommu_dev_data *dev_data;
u16 alias;
int ret;
if (dev->archdata.iommu)
return 0;
dev_data = find_dev_data(get_device_id(dev));
if (!dev_data)
return -ENOMEM;
alias = amd_iommu_alias_table[dev_data->devid];
if (alias != dev_data->devid) {
struct iommu_dev_data *alias_data;
alias_data = find_dev_data(alias);
if (alias_data == NULL) {
pr_err("AMD-Vi: Warning: Unhandled device %s\n",
dev_name(dev));
free_dev_data(dev_data);
return -ENOTSUPP;
}
dev_data->alias_data = alias_data;
}
ret = init_iommu_group(dev);
if (ret)
return ret;
if (pci_iommuv2_capable(pdev)) {
struct amd_iommu *iommu;
iommu = amd_iommu_rlookup_table[dev_data->devid];
dev_data->iommu_v2 = iommu->is_iommu_v2;
}
dev->archdata.iommu = dev_data;
return 0;
}
static void iommu_ignore_device(struct device *dev)
{
u16 devid, alias;
devid = get_device_id(dev);
alias = amd_iommu_alias_table[devid];
memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
amd_iommu_rlookup_table[devid] = NULL;
amd_iommu_rlookup_table[alias] = NULL;
}
static void iommu_uninit_device(struct device *dev)
{
iommu_group_remove_device(dev);
/*
* Nothing to do here - we keep dev_data around for unplugged devices
* and reuse it when the device is re-plugged - not doing so would
* introduce a ton of races.
*/
}
void __init amd_iommu_uninit_devices(void)
{
struct iommu_dev_data *dev_data, *n;
struct pci_dev *pdev = NULL;
for_each_pci_dev(pdev) {
if (!check_device(&pdev->dev))
continue;
iommu_uninit_device(&pdev->dev);
}
/* Free all of our dev_data structures */
list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
free_dev_data(dev_data);
}
int __init amd_iommu_init_devices(void)
{
struct pci_dev *pdev = NULL;
int ret = 0;
for_each_pci_dev(pdev) {
if (!check_device(&pdev->dev))
continue;
ret = iommu_init_device(&pdev->dev);
if (ret == -ENOTSUPP)
iommu_ignore_device(&pdev->dev);
else if (ret)
goto out_free;
}
return 0;
out_free:
amd_iommu_uninit_devices();
return ret;
}
#ifdef CONFIG_AMD_IOMMU_STATS
/*
* Initialization code for statistics collection
*/
DECLARE_STATS_COUNTER(compl_wait);
DECLARE_STATS_COUNTER(cnt_map_single);
DECLARE_STATS_COUNTER(cnt_unmap_single);
DECLARE_STATS_COUNTER(cnt_map_sg);
DECLARE_STATS_COUNTER(cnt_unmap_sg);
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
DECLARE_STATS_COUNTER(cnt_free_coherent);
DECLARE_STATS_COUNTER(cross_page);
DECLARE_STATS_COUNTER(domain_flush_single);
DECLARE_STATS_COUNTER(domain_flush_all);
DECLARE_STATS_COUNTER(alloced_io_mem);
DECLARE_STATS_COUNTER(total_map_requests);
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);
static struct dentry *stats_dir;
static struct dentry *de_fflush;
static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
if (stats_dir == NULL)
return;
cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
&cnt->value);
}
static void amd_iommu_stats_init(void)
{
stats_dir = debugfs_create_dir("amd-iommu", NULL);
if (stats_dir == NULL)
return;
de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
&amd_iommu_unmap_flush);
amd_iommu_stats_add(&compl_wait);
amd_iommu_stats_add(&cnt_map_single);
amd_iommu_stats_add(&cnt_unmap_single);
amd_iommu_stats_add(&cnt_map_sg);
amd_iommu_stats_add(&cnt_unmap_sg);
amd_iommu_stats_add(&cnt_alloc_coherent);
amd_iommu_stats_add(&cnt_free_coherent);
amd_iommu_stats_add(&cross_page);
amd_iommu_stats_add(&domain_flush_single);
amd_iommu_stats_add(&domain_flush_all);
amd_iommu_stats_add(&alloced_io_mem);
amd_iommu_stats_add(&total_map_requests);
amd_iommu_stats_add(&complete_ppr);
amd_iommu_stats_add(&invalidate_iotlb);
amd_iommu_stats_add(&invalidate_iotlb_all);
amd_iommu_stats_add(&pri_requests);
}
#endif
/****************************************************************************
*
* Interrupt handling functions
*
****************************************************************************/
static void dump_dte_entry(u16 devid)
{
int i;
for (i = 0; i < 4; ++i)
pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
amd_iommu_dev_table[devid].data[i]);
}
static void dump_command(unsigned long phys_addr)
{
struct iommu_cmd *cmd = phys_to_virt(phys_addr);
int i;
for (i = 0; i < 4; ++i)
pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
{
int type, devid, domid, flags;
volatile u32 *event = __evt;
int count = 0;
u64 address;
retry:
type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
address = (u64)(((u64)event[3]) << 32) | event[2];
if (type == 0) {
/* Did we hit the erratum? */
if (++count == LOOP_TIMEOUT) {
pr_err("AMD-Vi: No event written to event log\n");
return;
}
udelay(1);
goto retry;
}
printk(KERN_ERR "AMD-Vi: Event logged [");
switch (type) {
case EVENT_TYPE_ILL_DEV:
printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
dump_dte_entry(devid);
break;
case EVENT_TYPE_IO_FAULT:
printk("IO_PAGE_FAULT device=%02x:%02x.%x "
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domid, address, flags);
break;
case EVENT_TYPE_DEV_TAB_ERR:
printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
case EVENT_TYPE_PAGE_TAB_ERR:
printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domid, address, flags);
break;
case EVENT_TYPE_ILL_CMD:
printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
dump_command(address);
break;
case EVENT_TYPE_CMD_HARD_ERR:
printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
"flags=0x%04x]\n", address, flags);
break;
case EVENT_TYPE_IOTLB_INV_TO:
printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
"address=0x%016llx]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address);
break;
case EVENT_TYPE_INV_DEV_REQ:
printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
default:
printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
}
memset(__evt, 0, 4 * sizeof(u32));
}
static void iommu_poll_events(struct amd_iommu *iommu)
{
u32 head, tail;
unsigned long flags;
spin_lock_irqsave(&iommu->lock, flags);
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
while (head != tail) {
iommu_print_event(iommu, iommu->evt_buf + head);
head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
}
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
{
struct amd_iommu_fault fault;
INC_STATS_COUNTER(pri_requests);
if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
return;
}
fault.address = raw[1];
fault.pasid = PPR_PASID(raw[0]);
fault.device_id = PPR_DEVID(raw[0]);
fault.tag = PPR_TAG(raw[0]);
fault.flags = PPR_FLAGS(raw[0]);
atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}
static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
unsigned long flags;
u32 head, tail;
if (iommu->ppr_log == NULL)
return;
/* enable ppr interrupts again */
writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
spin_lock_irqsave(&iommu->lock, flags);
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
while (head != tail) {
volatile u64 *raw;
u64 entry[2];
int i;
raw = (u64 *)(iommu->ppr_log + head);
/*
* Hardware bug: Interrupt may arrive before the entry is
* written to memory. If this happens we need to wait for the
* entry to arrive.
*/
for (i = 0; i < LOOP_TIMEOUT; ++i) {
if (PPR_REQ_TYPE(raw[0]) != 0)
break;
udelay(1);
}
/* Avoid memcpy function-call overhead */
entry[0] = raw[0];
entry[1] = raw[1];
/*
* To detect the hardware bug we need to clear the entry
* back to zero.
*/
raw[0] = raw[1] = 0UL;
/* Update head pointer of hardware ring-buffer */
head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
/*
* Release iommu->lock because ppr-handling might need to
* re-acquire it
*/
spin_unlock_irqrestore(&iommu->lock, flags);
/* Handle PPR entry */
iommu_handle_ppr_entry(iommu, entry);
spin_lock_irqsave(&iommu->lock, flags);
/* Refresh ring-buffer information */
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
}
spin_unlock_irqrestore(&iommu->lock, flags);
}
irqreturn_t amd_iommu_int_thread(int irq, void *data)
{
struct amd_iommu *iommu;
for_each_iommu(iommu) {
iommu_poll_events(iommu);
iommu_poll_ppr_log(iommu);
}
return IRQ_HANDLED;
}
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
return IRQ_WAKE_THREAD;
}
/****************************************************************************
*
* IOMMU command queuing functions
*
****************************************************************************/
static int wait_on_sem(volatile u64 *sem)
{
int i = 0;
while (*sem == 0 && i < LOOP_TIMEOUT) {
udelay(1);
i += 1;
}
if (i == LOOP_TIMEOUT) {
pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
return -EIO;
}
return 0;
}
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
u32 tail)
{
u8 *target;
target = iommu->cmd_buf + tail;
tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
/* Copy command to buffer */
memcpy(target, cmd, sizeof(*cmd));
/* Tell the IOMMU about it */
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
}
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
{
WARN_ON(address & 0x7ULL);
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
cmd->data[1] = upper_32_bits(__pa(address));
cmd->data[2] = 1;
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
size_t size, u16 domid, int pde)
{
u64 pages;
int s;
pages = iommu_num_pages(address, size, PAGE_SIZE);
s = 0;
if (pages > 1) {
/*
* If we have to flush more than one page, flush all
* TLB entries for this domain
*/
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
s = 1;
}
address &= PAGE_MASK;
memset(cmd, 0, sizeof(*cmd));
cmd->data[1] |= domid;
cmd->data[2] = lower_32_bits(address);
cmd->data[3] = upper_32_bits(address);
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
if (s) /* size bit - we flush more than one 4kb page */
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
u64 address, size_t size)
{
u64 pages;
int s;
pages = iommu_num_pages(address, size, PAGE_SIZE);
s = 0;
if (pages > 1) {
/*
* If we have to flush more than one page, flush all
* TLB entries for this domain
*/
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
s = 1;
}
address &= PAGE_MASK;
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
cmd->data[0] |= (qdep & 0xff) << 24;
cmd->data[1] = devid;
cmd->data[2] = lower_32_bits(address);
cmd->data[3] = upper_32_bits(address);
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
if (s)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
u64 address, bool size)
{
memset(cmd, 0, sizeof(*cmd));
address &= ~(0xfffULL);
cmd->data[0] = pasid & PASID_MASK;
cmd->data[1] = domid;
cmd->data[2] = lower_32_bits(address);
cmd->data[3] = upper_32_bits(address);
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
if (size)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}
static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
int qdep, u64 address, bool size)
{
memset(cmd, 0, sizeof(*cmd));
address &= ~(0xfffULL);
cmd->data[0] = devid;
cmd->data[0] |= (pasid & 0xff) << 16;
cmd->data[0] |= (qdep & 0xff) << 24;
cmd->data[1] = devid;
cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
cmd->data[2] = lower_32_bits(address);
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
cmd->data[3] = upper_32_bits(address);
if (size)
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
int status, int tag, bool gn)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
if (gn) {
cmd->data[1] = pasid & PASID_MASK;
cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
}
cmd->data[3] = tag & 0x1ff;
cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}
static void build_inv_all(struct iommu_cmd *cmd)
{
memset(cmd, 0, sizeof(*cmd));
CMD_SET_TYPE(cmd, CMD_INV_ALL);
}
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_IRT);
}
/*
* Writes the command to the IOMMUs command buffer and informs the
* hardware about the new command.
*/
static int iommu_queue_command_sync(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
bool sync)
{
u32 left, tail, head, next_tail;
unsigned long flags;
WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
again:
spin_lock_irqsave(&iommu->lock, flags);
head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
left = (head - next_tail) % iommu->cmd_buf_size;
if (left <= 2) {
struct iommu_cmd sync_cmd;
volatile u64 sem = 0;
int ret;
build_completion_wait(&sync_cmd, (u64)&sem);
copy_cmd_to_buffer(iommu, &sync_cmd, tail);
spin_unlock_irqrestore(&iommu->lock, flags);
if ((ret = wait_on_sem(&sem)) != 0)
return ret;
goto again;
}
copy_cmd_to_buffer(iommu, cmd, tail);
/* We need to sync now to make sure all commands are processed */
iommu->need_sync = sync;
spin_unlock_irqrestore(&iommu->lock, flags);
return 0;
}
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
return iommu_queue_command_sync(iommu, cmd, true);
}
/*
* This function queues a completion wait command into the command
* buffer of an IOMMU
*/
static int iommu_completion_wait(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
volatile u64 sem = 0;
int ret;
if (!iommu->need_sync)
return 0;
build_completion_wait(&cmd, (u64)&sem);
ret = iommu_queue_command_sync(iommu, &cmd, false);
if (ret)
return ret;
return wait_on_sem(&sem);
}
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_dte(&cmd, devid);
return iommu_queue_command(iommu, &cmd);
}
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
u32 devid;
for (devid = 0; devid <= 0xffff; ++devid)
iommu_flush_dte(iommu, devid);
iommu_completion_wait(iommu);
}
/*
* This function uses heavy locking and may disable irqs for some time. But
* this is no issue because it is only called during resume.
*/
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
u32 dom_id;
for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
struct iommu_cmd cmd;
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
dom_id, 1);
iommu_queue_command(iommu, &cmd);
}
iommu_completion_wait(iommu);
}
static void iommu_flush_all(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
build_inv_all(&cmd);
iommu_queue_command(iommu, &cmd);
iommu_completion_wait(iommu);
}
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_irt(&cmd, devid);
iommu_queue_command(iommu, &cmd);
}
static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
u32 devid;
for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
}
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
if (iommu_feature(iommu, FEATURE_IA)) {
iommu_flush_all(iommu);
} else {
iommu_flush_dte_all(iommu);
iommu_flush_irt_all(iommu);
iommu_flush_tlb_all(iommu);
}
}
/*
* Command send function for flushing on-device TLB
*/
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
u64 address, size_t size)
{
struct amd_iommu *iommu;
struct iommu_cmd cmd;
int qdep;
qdep = dev_data->ats.qdep;
iommu = amd_iommu_rlookup_table[dev_data->devid];
build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
return iommu_queue_command(iommu, &cmd);
}
/*
* Command send function for invalidating a device table entry
*/
static int device_flush_dte(struct iommu_dev_data *dev_data)
{
struct amd_iommu *iommu;
int ret;
iommu = amd_iommu_rlookup_table[dev_data->devid];
ret = iommu_flush_dte(iommu, dev_data->devid);
if (ret)
return ret;
if (dev_data->ats.enabled)
ret = device_flush_iotlb(dev_data, 0, ~0UL);
return ret;
}
/*
* TLB invalidation function which is called from the mapping functions.
* It invalidates a single PTE if the range to flush is within a single
* page. Otherwise it flushes the whole TLB of the IOMMU.
*/
static void __domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size, int pde)
{
struct iommu_dev_data *dev_data;
struct iommu_cmd cmd;
int ret = 0, i;
build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
for (i = 0; i < amd_iommus_present; ++i) {
if (!domain->dev_iommu[i])
continue;
/*
* Devices of this domain are behind this IOMMU
* We need a TLB flush
*/
ret |= iommu_queue_command(amd_iommus[i], &cmd);
}
list_for_each_entry(dev_data, &domain->dev_list, list) {
if (!dev_data->ats.enabled)
continue;
ret |= device_flush_iotlb(dev_data, address, size);
}
WARN_ON(ret);
}
static void domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size)
{
__domain_flush_pages(domain, address, size, 0);
}
/* Flush the whole IO/TLB for a given protection domain */
static void domain_flush_tlb(struct protection_domain *domain)
{
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
}
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void domain_flush_tlb_pde(struct protection_domain *domain)
{
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
}
static void domain_flush_complete(struct protection_domain *domain)
{
int i;
for (i = 0; i < amd_iommus_present; ++i) {
if (!domain->dev_iommu[i])
continue;
/*
* Devices of this domain are behind this IOMMU
* We need to wait for completion of all commands.
*/
iommu_completion_wait(amd_iommus[i]);
}
}
/*
* This function flushes the DTEs for all devices in domain
*/
static void domain_flush_devices(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
list_for_each_entry(dev_data, &domain->dev_list, list)
device_flush_dte(dev_data);
}
/****************************************************************************
*
* The functions below are used the create the page table mappings for
* unity mapped regions.
*
****************************************************************************/
/*
* This function is used to add another level to an IO page table. Adding
* another level increases the size of the address space by 9 bits to a size up
* to 64 bits.
*/
static bool increase_address_space(struct protection_domain *domain,
gfp_t gfp)
{
u64 *pte;
if (domain->mode == PAGE_MODE_6_LEVEL)
/* address space already 64 bit large */
return false;
pte = (void *)get_zeroed_page(gfp);
if (!pte)
return false;
*pte = PM_LEVEL_PDE(domain->mode,
virt_to_phys(domain->pt_root));
domain->pt_root = pte;
domain->mode += 1;
domain->updated = true;
return true;
}
static u64 *alloc_pte(struct protection_domain *domain,
unsigned long address,
unsigned long page_size,
u64 **pte_page,
gfp_t gfp)
{
int level, end_lvl;
u64 *pte, *page;
BUG_ON(!is_power_of_2(page_size));
while (address > PM_LEVEL_SIZE(domain->mode))
increase_address_space(domain, gfp);
level = domain->mode - 1;
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
address = PAGE_SIZE_ALIGN(address, page_size);
end_lvl = PAGE_SIZE_LEVEL(page_size);
while (level > end_lvl) {
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(gfp);
if (!page)
return NULL;
*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
}
/* No level skipping support yet */
if (PM_PTE_LEVEL(*pte) != level)
return NULL;
level -= 1;
pte = IOMMU_PTE_PAGE(*pte);
if (pte_page && level == end_lvl)
*pte_page = pte;
pte = &pte[PM_LEVEL_INDEX(level, address)];
}
return pte;
}
/*
* This function checks if there is a PTE for a given dma address. If
* there is one, it returns the pointer to it.
*/
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
{
int level;
u64 *pte;
if (address > PM_LEVEL_SIZE(domain->mode))
return NULL;
level = domain->mode - 1;
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
while (level > 0) {
/* Not Present */
if (!IOMMU_PTE_PRESENT(*pte))
return NULL;
/* Large PTE */
if (PM_PTE_LEVEL(*pte) == 0x07) {
unsigned long pte_mask, __pte;
/*
* If we have a series of large PTEs, make
* sure to return a pointer to the first one.
*/
pte_mask = PTE_PAGE_SIZE(*pte);
pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
__pte = ((unsigned long)pte) & pte_mask;
return (u64 *)__pte;
}
/* No level skipping support yet */
if (PM_PTE_LEVEL(*pte) != level)
return NULL;
level -= 1;
/* Walk to the next level */
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[PM_LEVEL_INDEX(level, address)];
}
return pte;
}
/*
* Generic mapping functions. It maps a physical address into a DMA
* address space. It allocates the page table pages if necessary.
* In the future it can be extended to a generic mapping function
* supporting all features of AMD IOMMU page tables like level skipping
* and full 64 bit address spaces.
*/
static int iommu_map_page(struct protection_domain *dom,
unsigned long bus_addr,
unsigned long phys_addr,
int prot,
unsigned long page_size)
{
u64 __pte, *pte;
int i, count;
if (!(prot & IOMMU_PROT_MASK))
return -EINVAL;
bus_addr = PAGE_ALIGN(bus_addr);
phys_addr = PAGE_ALIGN(phys_addr);
count = PAGE_SIZE_PTE_COUNT(page_size);
pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
for (i = 0; i < count; ++i)
if (IOMMU_PTE_PRESENT(pte[i]))
return -EBUSY;
if (page_size > PAGE_SIZE) {
__pte = PAGE_SIZE_PTE(phys_addr, page_size);
__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
} else
__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
if (prot & IOMMU_PROT_IR)
__pte |= IOMMU_PTE_IR;
if (prot & IOMMU_PROT_IW)
__pte |= IOMMU_PTE_IW;
for (i = 0; i < count; ++i)
pte[i] = __pte;
update_domain(dom);
return 0;
}
static unsigned long iommu_unmap_page(struct protection_domain *dom,
unsigned long bus_addr,
unsigned long page_size)
{
unsigned long long unmap_size, unmapped;
u64 *pte;
BUG_ON(!is_power_of_2(page_size));
unmapped = 0;
while (unmapped < page_size) {
pte = fetch_pte(dom, bus_addr);
if (!pte) {
/*
* No PTE for this address
* move forward in 4kb steps
*/
unmap_size = PAGE_SIZE;
} else if (PM_PTE_LEVEL(*pte) == 0) {
/* 4kb PTE found for this address */
unmap_size = PAGE_SIZE;
*pte = 0ULL;
} else {
int count, i;
/* Large PTE found which maps this address */
unmap_size = PTE_PAGE_SIZE(*pte);
count = PAGE_SIZE_PTE_COUNT(unmap_size);
for (i = 0; i < count; i++)
pte[i] = 0ULL;
}
bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
unmapped += unmap_size;
}
BUG_ON(!is_power_of_2(unmapped));
return unmapped;
}
/*
* This function checks if a specific unity mapping entry is needed for
* this specific IOMMU.
*/
static int iommu_for_unity_map(struct amd_iommu *iommu,
struct unity_map_entry *entry)
{
u16 bdf, i;
for (i = entry->devid_start; i <= entry->devid_end; ++i) {
bdf = amd_iommu_alias_table[i];
if (amd_iommu_rlookup_table[bdf] == iommu)
return 1;
}
return 0;
}
/*
* This function actually applies the mapping to the page table of the
* dma_ops domain.
*/
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e)
{
u64 addr;
int ret;
for (addr = e->address_start; addr < e->address_end;
addr += PAGE_SIZE) {
ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
PAGE_SIZE);
if (ret)
return ret;
/*
* if unity mapping is in aperture range mark the page
* as allocated in the aperture
*/
if (addr < dma_dom->aperture_size)
__set_bit(addr >> PAGE_SHIFT,
dma_dom->aperture[0]->bitmap);
}
return 0;
}
/*
* Init the unity mappings for a specific IOMMU in the system
*
* Basically iterates over all unity mapping entries and applies them to
* the default domain DMA of that IOMMU if necessary.
*/
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
struct unity_map_entry *entry;
int ret;
list_for_each_entry(entry, &amd_iommu_unity_map, list) {
if (!iommu_for_unity_map(iommu, entry))
continue;
ret = dma_ops_unity_map(iommu->default_dom, entry);
if (ret)
return ret;
}
return 0;
}
/*
* Inits the unity mappings required for a specific device
*/
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
u16 devid)
{
struct unity_map_entry *e;
int ret;
list_for_each_entry(e, &amd_iommu_unity_map, list) {
if (!(devid >= e->devid_start && devid <= e->devid_end))
continue;
ret = dma_ops_unity_map(dma_dom, e);
if (ret)
return ret;
}
return 0;
}
/****************************************************************************
*
* The next functions belong to the address allocator for the dma_ops
* interface functions. They work like the allocators in the other IOMMU
* drivers. Its basically a bitmap which marks the allocated pages in
* the aperture. Maybe it could be enhanced in the future to a more
* efficient allocator.
*
****************************************************************************/
/*
* The address allocator core functions.
*
* called with domain->lock held
*/
/*
* Used to reserve address ranges in the aperture (e.g. for exclusion
* ranges.
*/
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages)
{
unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
if (start_page + pages > last_page)
pages = last_page - start_page;
for (i = start_page; i < start_page + pages; ++i) {
int index = i / APERTURE_RANGE_PAGES;
int page = i % APERTURE_RANGE_PAGES;
__set_bit(page, dom->aperture[index]->bitmap);
}
}
/*
* This function is used to add a new aperture range to an existing
* aperture in case of dma_ops domain allocation or address allocation
* failure.
*/
static int alloc_new_range(struct dma_ops_domain *dma_dom,
bool populate, gfp_t gfp)
{
int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
struct amd_iommu *iommu;
unsigned long i, old_size;
#ifdef CONFIG_IOMMU_STRESS
populate = false;
#endif
if (index >= APERTURE_MAX_RANGES)
return -ENOMEM;
dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
if (!dma_dom->aperture[index])
return -ENOMEM;
dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
if (!dma_dom->aperture[index]->bitmap)
goto out_free;
dma_dom->aperture[index]->offset = dma_dom->aperture_size;
if (populate) {
unsigned long address = dma_dom->aperture_size;
int i, num_ptes = APERTURE_RANGE_PAGES / 512;
u64 *pte, *pte_page;
for (i = 0; i < num_ptes; ++i) {
pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
&pte_page, gfp);
if (!pte)
goto out_free;
dma_dom->aperture[index]->pte_pages[i] = pte_page;
address += APERTURE_RANGE_SIZE / 64;
}
}
old_size = dma_dom->aperture_size;
dma_dom->aperture_size += APERTURE_RANGE_SIZE;
/* Reserve address range used for MSI messages */
if (old_size < MSI_ADDR_BASE_LO &&
dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
unsigned long spage;
int pages;
pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
dma_ops_reserve_addresses(dma_dom, spage, pages);
}
/* Initialize the exclusion range if necessary */
for_each_iommu(iommu) {
if (iommu->exclusion_start &&
iommu->exclusion_start >= dma_dom->aperture[index]->offset
&& iommu->exclusion_start < dma_dom->aperture_size) {
unsigned long startpage;
int pages = iommu_num_pages(iommu->exclusion_start,
iommu->exclusion_length,
PAGE_SIZE);
startpage = iommu->exclusion_start >> PAGE_SHIFT;
dma_ops_reserve_addresses(dma_dom, startpage, pages);
}
}
/*
* Check for areas already mapped as present in the new aperture
* range and mark those pages as reserved in the allocator. Such
* mappings may already exist as a result of requested unity
* mappings for devices.
*/
for (i = dma_dom->aperture[index]->offset;
i < dma_dom->aperture_size;
i += PAGE_SIZE) {
u64 *pte = fetch_pte(&dma_dom->domain, i);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
continue;
dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
}
update_domain(&dma_dom->domain);
return 0;
out_free:
update_domain(&dma_dom->domain);
free_page((unsigned long)dma_dom->aperture[index]->bitmap);
kfree(dma_dom->aperture[index]);
dma_dom->aperture[index] = NULL;
return -ENOMEM;
}
static unsigned long dma_ops_area_alloc(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages,
unsigned long align_mask,
u64 dma_mask,
unsigned long start)
{
unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
int i = start >> APERTURE_RANGE_SHIFT;
unsigned long boundary_size;
unsigned long address = -1;
unsigned long limit;
next_bit >>= PAGE_SHIFT;
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
PAGE_SIZE) >> PAGE_SHIFT;
for (;i < max_index; ++i) {
unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
if (dom->aperture[i]->offset >= dma_mask)
break;
limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
dma_mask >> PAGE_SHIFT);
address = iommu_area_alloc(dom->aperture[i]->bitmap,
limit, next_bit, pages, 0,
boundary_size, align_mask);
if (address != -1) {
address = dom->aperture[i]->offset +
(address << PAGE_SHIFT);
dom->next_address = address + (pages << PAGE_SHIFT);
break;
}
next_bit = 0;
}
return address;
}
static unsigned long dma_ops_alloc_addresses(struct device *dev,
struct dma_ops_domain *dom,
unsigned int pages,
unsigned long align_mask,
u64 dma_mask)
{
unsigned long address;
#ifdef CONFIG_IOMMU_STRESS
dom->next_address = 0;
dom->need_flush = true;
#endif
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
dma_mask, dom->next_address);
if (address == -1) {
dom->next_address = 0;
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
dma_mask, 0);
dom->need_flush = true;
}
if (unlikely(address == -1))
address = DMA_ERROR_CODE;
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
return address;
}
/*
* The address free function.
*
* called with domain->lock held
*/
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
unsigned long address,
unsigned int pages)
{
unsigned i = address >> APERTURE_RANGE_SHIFT;
struct aperture_range *range = dom->aperture[i];
BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
#ifdef CONFIG_IOMMU_STRESS
if (i < 4)
return;
#endif
if (address >= dom->next_address)
dom->need_flush = true;
address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
bitmap_clear(range->bitmap, address, pages);
}
/****************************************************************************
*
* The next functions belong to the domain allocation. A domain is
* allocated for every IOMMU as the default domain. If device isolation
* is enabled, every device get its own domain. The most important thing
* about domains is the page table mapping the DMA address space they
* contain.
*
****************************************************************************/
/*
* This function adds a protection domain to the global protection domain list
*/
static void add_domain_to_list(struct protection_domain *domain)
{
unsigned long flags;
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
list_add(&domain->list, &amd_iommu_pd_list);
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}
/*
* This function removes a protection domain to the global
* protection domain list
*/
static void del_domain_from_list(struct protection_domain *domain)
{
unsigned long flags;
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
list_del(&domain->list);
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}
static u16 domain_id_alloc(void)
{
unsigned long flags;
int id;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
BUG_ON(id == 0);
if (id > 0 && id < MAX_DOMAIN_ID)
__set_bit(id, amd_iommu_pd_alloc_bitmap);
else
id = 0;
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return id;
}
static void domain_id_free(int id)
{
unsigned long flags;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
if (id > 0 && id < MAX_DOMAIN_ID)
__clear_bit(id, amd_iommu_pd_alloc_bitmap);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
static void free_pagetable(struct protection_domain *domain)
{
int i, j;
u64 *p1, *p2, *p3;
p1 = domain->pt_root;
if (!p1)
return;
for (i = 0; i < 512; ++i) {
if (!IOMMU_PTE_PRESENT(p1[i]))
continue;
p2 = IOMMU_PTE_PAGE(p1[i]);
for (j = 0; j < 512; ++j) {
if (!IOMMU_PTE_PRESENT(p2[j]))
continue;
p3 = IOMMU_PTE_PAGE(p2[j]);
free_page((unsigned long)p3);
}
free_page((unsigned long)p2);
}
free_page((unsigned long)p1);
domain->pt_root = NULL;
}
static void free_gcr3_tbl_level1(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = __va(tbl[i] & PAGE_MASK);
free_page((unsigned long)ptr);
}
}
static void free_gcr3_tbl_level2(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = __va(tbl[i] & PAGE_MASK);
free_gcr3_tbl_level1(ptr);
}
}
static void free_gcr3_table(struct protection_domain *domain)
{
if (domain->glx == 2)
free_gcr3_tbl_level2(domain->gcr3_tbl);
else if (domain->glx == 1)
free_gcr3_tbl_level1(domain->gcr3_tbl);
else if (domain->glx != 0)
BUG();
free_page((unsigned long)domain->gcr3_tbl);
}
/*
* Free a domain, only used if something went wrong in the
* allocation path and we need to free an already allocated page table
*/
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
int i;
if (!dom)
return;
del_domain_from_list(&dom->domain);
free_pagetable(&dom->domain);
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
if (!dom->aperture[i])
continue;
free_page((unsigned long)dom->aperture[i]->bitmap);
kfree(dom->aperture[i]);
}
kfree(dom);
}
/*
* Allocates a new protection domain usable for the dma_ops functions.
* It also initializes the page table and the address allocator data
* structures required for the dma_ops interface
*/
static struct dma_ops_domain *dma_ops_domain_alloc(void)
{
struct dma_ops_domain *dma_dom;
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
if (!dma_dom)
return NULL;
spin_lock_init(&dma_dom->domain.lock);
dma_dom->domain.id = domain_id_alloc();
if (dma_dom->domain.id == 0)
goto free_dma_dom;
INIT_LIST_HEAD(&dma_dom->domain.dev_list);
dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
dma_dom->domain.flags = PD_DMA_OPS_MASK;
dma_dom->domain.priv = dma_dom;
if (!dma_dom->domain.pt_root)
goto free_dma_dom;
dma_dom->need_flush = false;
dma_dom->target_dev = 0xffff;
add_domain_to_list(&dma_dom->domain);
if (alloc_new_range(dma_dom, true, GFP_KERNEL))
goto free_dma_dom;
/*
* mark the first page as allocated so we never return 0 as
* a valid dma-address. So we can use 0 as error value
*/
dma_dom->aperture[0]->bitmap[0] = 1;
dma_dom->next_address = 0;
return dma_dom;
free_dma_dom:
dma_ops_domain_free(dma_dom);
return NULL;
}
/*
* little helper function to check whether a given protection domain is a
* dma_ops domain
*/
static bool dma_ops_domain(struct protection_domain *domain)
{
return domain->flags & PD_DMA_OPS_MASK;
}
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
{
u64 pte_root = 0;
u64 flags = 0;
if (domain->mode != PAGE_MODE_NONE)
pte_root = virt_to_phys(domain->pt_root);
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
<< DEV_ENTRY_MODE_SHIFT;
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
flags = amd_iommu_dev_table[devid].data[1];
if (ats)
flags |= DTE_FLAG_IOTLB;
if (domain->flags & PD_IOMMUV2_MASK) {
u64 gcr3 = __pa(domain->gcr3_tbl);
u64 glx = domain->glx;
u64 tmp;
pte_root |= DTE_FLAG_GV;
pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
/* First mask out possible old values for GCR3 table */
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
flags &= ~tmp;
tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
flags &= ~tmp;
/* Encode GCR3 table into DTE */
tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
pte_root |= tmp;
tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
flags |= tmp;
tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
flags |= tmp;
}
flags &= ~(0xffffUL);
flags |= domain->id;
amd_iommu_dev_table[devid].data[1] = flags;
amd_iommu_dev_table[devid].data[0] = pte_root;
}
static void clear_dte_entry(u16 devid)
{
/* remove entry from the device table seen by the hardware */
amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
amd_iommu_dev_table[devid].data[1] = 0;
amd_iommu_apply_erratum_63(devid);
}
static void do_attach(struct iommu_dev_data *dev_data,
struct protection_domain *domain)
{
struct amd_iommu *iommu;
bool ats;
iommu = amd_iommu_rlookup_table[dev_data->devid];
ats = dev_data->ats.enabled;
/* Update data structures */
dev_data->domain = domain;
list_add(&dev_data->list, &domain->dev_list);
set_dte_entry(dev_data->devid, domain, ats);
/* Do reference counting */
domain->dev_iommu[iommu->index] += 1;
domain->dev_cnt += 1;
/* Flush the DTE entry */
device_flush_dte(dev_data);
}
static void do_detach(struct iommu_dev_data *dev_data)
{
struct amd_iommu *iommu;
iommu = amd_iommu_rlookup_table[dev_data->devid];
/* decrease reference counters */
dev_data->domain->dev_iommu[iommu->index] -= 1;
dev_data->domain->dev_cnt -= 1;
/* Update data structures */
dev_data->domain = NULL;
list_del(&dev_data->list);
clear_dte_entry(dev_data->devid);
/* Flush the DTE entry */
device_flush_dte(dev_data);
}
/*
* If a device is not yet associated with a domain, this function does
* assigns it visible for the hardware
*/
static int __attach_device(struct iommu_dev_data *dev_data,
struct protection_domain *domain)
{
int ret;
/* lock domain */
spin_lock(&domain->lock);
if (dev_data->alias_data != NULL) {
struct iommu_dev_data *alias_data = dev_data->alias_data;
/* Some sanity checks */
ret = -EBUSY;
if (alias_data->domain != NULL &&
alias_data->domain != domain)
goto out_unlock;
if (dev_data->domain != NULL &&
dev_data->domain != domain)
goto out_unlock;
/* Do real assignment */
if (alias_data->domain == NULL)
do_attach(alias_data, domain);
atomic_inc(&alias_data->bind);
}
if (dev_data->domain == NULL)
do_attach(dev_data, domain);
atomic_inc(&dev_data->bind);
ret = 0;
out_unlock:
/* ready */
spin_unlock(&domain->lock);
return ret;
}
static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
pci_disable_ats(pdev);
pci_disable_pri(pdev);
pci_disable_pasid(pdev);
}
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
u16 control;
int pos;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
if (!pos)
return -EINVAL;
pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
control |= PCI_PRI_CTRL_RESET;
pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
return 0;
}
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
bool reset_enable;
int reqs, ret;
/* FIXME: Hardcode number of outstanding requests for now */
reqs = 32;
if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
reqs = 1;
reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
/* Only allow access to user-accessible pages */
ret = pci_enable_pasid(pdev, 0);
if (ret)
goto out_err;
/* First reset the PRI state of the device */
ret = pci_reset_pri(pdev);
if (ret)
goto out_err;
/* Enable PRI */
ret = pci_enable_pri(pdev, reqs);
if (ret)
goto out_err;
if (reset_enable) {
ret = pri_reset_while_enabled(pdev);
if (ret)
goto out_err;
}
ret = pci_enable_ats(pdev, PAGE_SHIFT);
if (ret)
goto out_err;
return 0;
out_err:
pci_disable_pri(pdev);
pci_disable_pasid(pdev);
return ret;
}
/* FIXME: Move this to PCI code */
#define PCI_PRI_TLP_OFF (1 << 15)
static bool pci_pri_tlp_required(struct pci_dev *pdev)
{
u16 status;
int pos;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
if (!pos)
return false;
pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
return (status & PCI_PRI_TLP_OFF) ? true : false;
}
/*
* If a device is not yet associated with a domain, this function
* assigns it visible for the hardware
*/
static int attach_device(struct device *dev,
struct protection_domain *domain)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct iommu_dev_data *dev_data;
unsigned long flags;
int ret;
dev_data = get_dev_data(dev);
if (domain->flags & PD_IOMMUV2_MASK) {
if (!dev_data->iommu_v2 || !dev_data->passthrough)
return -EINVAL;
if (pdev_iommuv2_enable(pdev) != 0)
return -EINVAL;
dev_data->ats.enabled = true;
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
dev_data->pri_tlp = pci_pri_tlp_required(pdev);
} else if (amd_iommu_iotlb_sup &&
pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
dev_data->ats.enabled = true;
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
}
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ret = __attach_device(dev_data, domain);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
/*
* We might boot into a crash-kernel here. The crashed kernel
* left the caches in the IOMMU dirty. So we have to flush
* here to evict all dirty stuff.
*/
domain_flush_tlb_pde(domain);
return ret;
}
/*
* Removes a device from a protection domain (unlocked)
*/
static void __detach_device(struct iommu_dev_data *dev_data)
{
struct protection_domain *domain;
unsigned long flags;
BUG_ON(!dev_data->domain);
domain = dev_data->domain;
spin_lock_irqsave(&domain->lock, flags);
if (dev_data->alias_data != NULL) {
struct iommu_dev_data *alias_data = dev_data->alias_data;
if (atomic_dec_and_test(&alias_data->bind))
do_detach(alias_data);
}
if (atomic_dec_and_test(&dev_data->bind))
do_detach(dev_data);
spin_unlock_irqrestore(&domain->lock, flags);
/*
* If we run in passthrough mode the device must be assigned to the
* passthrough domain if it is detached from any other domain.
* Make sure we can deassign from the pt_domain itself.
*/
if (dev_data->passthrough &&
(dev_data->domain == NULL && domain != pt_domain))
__attach_device(dev_data, pt_domain);
}
/*
* Removes a device from a protection domain (with devtable_lock held)
*/
static void detach_device(struct device *dev)
{
struct protection_domain *domain;
struct iommu_dev_data *dev_data;
unsigned long flags;
dev_data = get_dev_data(dev);
domain = dev_data->domain;
/* lock device table */
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
__detach_device(dev_data);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
if (domain->flags & PD_IOMMUV2_MASK)
pdev_iommuv2_disable(to_pci_dev(dev));
else if (dev_data->ats.enabled)
pci_disable_ats(to_pci_dev(dev));
dev_data->ats.enabled = false;
}
/*
* Find out the protection domain structure for a given PCI device. This
* will give us the pointer to the page table root for example.
*/
static struct protection_domain *domain_for_device(struct device *dev)
{
struct iommu_dev_data *dev_data;
struct protection_domain *dom = NULL;
unsigned long flags;
dev_data = get_dev_data(dev);
if (dev_data->domain)
return dev_data->domain;
if (dev_data->alias_data != NULL) {
struct iommu_dev_data *alias_data = dev_data->alias_data;
read_lock_irqsave(&amd_iommu_devtable_lock, flags);
if (alias_data->domain != NULL) {
__attach_device(dev_data, alias_data->domain);
dom = alias_data->domain;
}
read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
return dom;
}
static int device_change_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct dma_ops_domain *dma_domain;
struct protection_domain *domain;
struct iommu_dev_data *dev_data;
struct device *dev = data;
struct amd_iommu *iommu;
unsigned long flags;
u16 devid;
if (!check_device(dev))
return 0;
devid = get_device_id(dev);
iommu = amd_iommu_rlookup_table[devid];
dev_data = get_dev_data(dev);
switch (action) {
case BUS_NOTIFY_UNBOUND_DRIVER:
domain = domain_for_device(dev);
if (!domain)
goto out;
if (dev_data->passthrough)
break;
detach_device(dev);
break;
case BUS_NOTIFY_ADD_DEVICE:
iommu_init_device(dev);
/*
* dev_data is still NULL and
* got initialized in iommu_init_device
*/
dev_data = get_dev_data(dev);
if (iommu_pass_through || dev_data->iommu_v2) {
dev_data->passthrough = true;
attach_device(dev, pt_domain);
break;
}
domain = domain_for_device(dev);
/* allocate a protection domain if a device is added */
dma_domain = find_protection_domain(devid);
if (dma_domain)
goto out;
dma_domain = dma_ops_domain_alloc();
if (!dma_domain)
goto out;
dma_domain->target_dev = devid;
spin_lock_irqsave(&iommu_pd_list_lock, flags);
list_add_tail(&dma_domain->list, &iommu_pd_list);
spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
dev_data = get_dev_data(dev);
dev->archdata.dma_ops = &amd_iommu_dma_ops;
break;
case BUS_NOTIFY_DEL_DEVICE:
iommu_uninit_device(dev);
default:
goto out;
}
iommu_completion_wait(iommu);
out:
return 0;
}
static struct notifier_block device_nb = {
.notifier_call = device_change_notifier,
};
void amd_iommu_init_notifier(void)
{
bus_register_notifier(&pci_bus_type, &device_nb);
}
/*****************************************************************************
*
* The next functions belong to the dma_ops mapping/unmapping code.
*
*****************************************************************************/
/*
* In the dma_ops path we only have the struct device. This function
* finds the corresponding IOMMU, the protection domain and the
* requestor id for a given device.
* If the device is not yet associated with a domain this is also done
* in this function.
*/
static struct protection_domain *get_domain(struct device *dev)
{
struct protection_domain *domain;
struct dma_ops_domain *dma_dom;
u16 devid = get_device_id(dev);
if (!check_device(dev))
return ERR_PTR(-EINVAL);
domain = domain_for_device(dev);
if (domain != NULL && !dma_ops_domain(domain))
return ERR_PTR(-EBUSY);
if (domain != NULL)
return domain;
/* Device not bound yet - bind it */
dma_dom = find_protection_domain(devid);
if (!dma_dom)
dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
attach_device(dev, &dma_dom->domain);
DUMP_printk("Using protection domain %d for device %s\n",
dma_dom->domain.id, dev_name(dev));
return &dma_dom->domain;
}
static void update_device_table(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
list_for_each_entry(dev_data, &domain->dev_list, list)
set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
}
static void update_domain(struct protection_domain *domain)
{
if (!domain->updated)
return;
update_device_table(domain);
domain_flush_devices(domain);
domain_flush_tlb_pde(domain);
domain->updated = false;
}
/*
* This function fetches the PTE for a given address in the aperture
*/
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
unsigned long address)
{
struct aperture_range *aperture;
u64 *pte, *pte_page;
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
if (!aperture)
return NULL;
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
if (!pte) {
pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
GFP_ATOMIC);
aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
} else
pte += PM_LEVEL_INDEX(0, address);
update_domain(&dom->domain);
return pte;
}
/*
* This is the generic map function. It maps one 4kb page at paddr to
* the given address in the DMA address space for the domain.
*/
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
unsigned long address,
phys_addr_t paddr,
int direction)
{
u64 *pte, __pte;
WARN_ON(address > dom->aperture_size);
paddr &= PAGE_MASK;
pte = dma_ops_get_pte(dom, address);
if (!pte)
return DMA_ERROR_CODE;
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
if (direction == DMA_TO_DEVICE)
__pte |= IOMMU_PTE_IR;
else if (direction == DMA_FROM_DEVICE)
__pte |= IOMMU_PTE_IW;
else if (direction == DMA_BIDIRECTIONAL)
__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
WARN_ON(*pte);
*pte = __pte;
return (dma_addr_t)address;
}
/*
* The generic unmapping function for on page in the DMA address space.
*/
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
unsigned long address)
{
struct aperture_range *aperture;
u64 *pte;
if (address >= dom->aperture_size)
return;
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
if (!aperture)
return;
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
if (!pte)
return;
pte += PM_LEVEL_INDEX(0, address);
WARN_ON(!*pte);
*pte = 0ULL;
}
/*
* This function contains common code for mapping of a physically
* contiguous memory region into DMA address space. It is used by all
* mapping functions provided with this IOMMU driver.
* Must be called with the domain lock held.
*/
static dma_addr_t __map_single(struct device *dev,
struct dma_ops_domain *dma_dom,
phys_addr_t paddr,
size_t size,
int dir,
bool align,
u64 dma_mask)
{
dma_addr_t offset = paddr & ~PAGE_MASK;
dma_addr_t address, start, ret;
unsigned int pages;
unsigned long align_mask = 0;
int i;
pages = iommu_num_pages(paddr, size, PAGE_SIZE);
paddr &= PAGE_MASK;
INC_STATS_COUNTER(total_map_requests);
if (pages > 1)
INC_STATS_COUNTER(cross_page);
if (align)
align_mask = (1UL << get_order(size)) - 1;
retry:
address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
dma_mask);
if (unlikely(address == DMA_ERROR_CODE)) {
/*
* setting next_address here will let the address
* allocator only scan the new allocated range in the
* first run. This is a small optimization.
*/
dma_dom->next_address = dma_dom->aperture_size;
if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
goto out;
/*
* aperture was successfully enlarged by 128 MB, try
* allocation again
*/
goto retry;
}
start = address;
for (i = 0; i < pages; ++i) {
ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
if (ret == DMA_ERROR_CODE)
goto out_unmap;
paddr += PAGE_SIZE;
start += PAGE_SIZE;
}
address += offset;
ADD_STATS_COUNTER(alloced_io_mem, size);
if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
domain_flush_tlb(&dma_dom->domain);
dma_dom->need_flush = false;
} else if (unlikely(amd_iommu_np_cache))
domain_flush_pages(&dma_dom->domain, address, size);
out:
return address;
out_unmap:
for (--i; i >= 0; --i) {
start -= PAGE_SIZE;
dma_ops_domain_unmap(dma_dom, start);
}
dma_ops_free_addresses(dma_dom, address, pages);
return DMA_ERROR_CODE;
}
/*
* Does the reverse of the __map_single function. Must be called with
* the domain lock held too
*/
static void __unmap_single(struct dma_ops_domain *dma_dom,
dma_addr_t dma_addr,
size_t size,
int dir)
{
dma_addr_t flush_addr;
dma_addr_t i, start;
unsigned int pages;
if ((dma_addr == DMA_ERROR_CODE) ||
(dma_addr + size > dma_dom->aperture_size))
return;
flush_addr = dma_addr;
pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
dma_addr &= PAGE_MASK;
start = dma_addr;
for (i = 0; i < pages; ++i) {
dma_ops_domain_unmap(dma_dom, start);
start += PAGE_SIZE;
}
SUB_STATS_COUNTER(alloced_io_mem, size);
dma_ops_free_addresses(dma_dom, dma_addr, pages);
if (amd_iommu_unmap_flush || dma_dom->need_flush) {
domain_flush_pages(&dma_dom->domain, flush_addr, size);
dma_dom->need_flush = false;
}
}
/*
* The exported map_single function for dma_ops.
*/
static dma_addr_t map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
unsigned long flags;
struct protection_domain *domain;
dma_addr_t addr;
u64 dma_mask;
phys_addr_t paddr = page_to_phys(page) + offset;
INC_STATS_COUNTER(cnt_map_single);
domain = get_domain(dev);
if (PTR_ERR(domain) == -EINVAL)
return (dma_addr_t)paddr;
else if (IS_ERR(domain))
return DMA_ERROR_CODE;
dma_mask = *dev->dma_mask;
spin_lock_irqsave(&domain->lock, flags);
addr = __map_single(dev, domain->priv, paddr, size, dir, false,
dma_mask);
if (addr == DMA_ERROR_CODE)
goto out;
domain_flush_complete(domain);
out:
spin_unlock_irqrestore(&domain->lock, flags);
return addr;
}
/*
* The exported unmap_single function for dma_ops.
*/
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
unsigned long flags;
struct protection_domain *domain;
INC_STATS_COUNTER(cnt_unmap_single);
domain = get_domain(dev);
if (IS_ERR(domain))
return;
spin_lock_irqsave(&domain->lock, flags);
__unmap_single(domain->priv, dma_addr, size, dir);
domain_flush_complete(domain);
spin_unlock_irqrestore(&domain->lock, flags);
}
/*
* This is a special map_sg function which is used if we should map a
* device which is not handled by an AMD IOMMU in the system.
*/
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
int nelems, int dir)
{
struct scatterlist *s;
int i;
for_each_sg(sglist, s, nelems, i) {
s->dma_address = (dma_addr_t)sg_phys(s);
s->dma_length = s->length;
}
return nelems;
}
/*
* The exported map_sg function for dma_ops (handles scatter-gather
* lists).
*/
static int map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
unsigned long flags;
struct protection_domain *domain;
int i;
struct scatterlist *s;
phys_addr_t paddr;
int mapped_elems = 0;
u64 dma_mask;
INC_STATS_COUNTER(cnt_map_sg);
domain = get_domain(dev);
if (PTR_ERR(domain) == -EINVAL)
return map_sg_no_iommu(dev, sglist, nelems, dir);
else if (IS_ERR(domain))
return 0;
dma_mask = *dev->dma_mask;
spin_lock_irqsave(&domain->lock, flags);
for_each_sg(sglist, s, nelems, i) {
paddr = sg_phys(s);
s->dma_address = __map_single(dev, domain->priv,
paddr, s->length, dir, false,
dma_mask);
if (s->dma_address) {
s->dma_length = s->length;
mapped_elems++;
} else
goto unmap;
}
domain_flush_complete(domain);
out:
spin_unlock_irqrestore(&domain->lock, flags);
return mapped_elems;
unmap:
for_each_sg(sglist, s, mapped_elems, i) {
if (s->dma_address)
__unmap_single(domain->priv, s->dma_address,
s->dma_length, dir);
s->dma_address = s->dma_length = 0;
}
mapped_elems = 0;
goto out;
}
/*
* The exported map_sg function for dma_ops (handles scatter-gather
* lists).
*/
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
unsigned long flags;
struct protection_domain *domain;
struct scatterlist *s;
int i;
INC_STATS_COUNTER(cnt_unmap_sg);
domain = get_domain(dev);
if (IS_ERR(domain))
return;
spin_lock_irqsave(&domain->lock, flags);
for_each_sg(sglist, s, nelems, i) {
__unmap_single(domain->priv, s->dma_address,
s->dma_length, dir);
s->dma_address = s->dma_length = 0;
}
domain_flush_complete(domain);
spin_unlock_irqrestore(&domain->lock, flags);
}
/*
* The exported alloc_coherent function for dma_ops.
*/
static void *alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addr, gfp_t flag,
struct dma_attrs *attrs)
{
unsigned long flags;
void *virt_addr;
struct protection_domain *domain;
phys_addr_t paddr;
u64 dma_mask = dev->coherent_dma_mask;
INC_STATS_COUNTER(cnt_alloc_coherent);
domain = get_domain(dev);
if (PTR_ERR(domain) == -EINVAL) {
virt_addr = (void *)__get_free_pages(flag, get_order(size));
*dma_addr = __pa(virt_addr);
return virt_addr;
} else if (IS_ERR(domain))
return NULL;
dma_mask = dev->coherent_dma_mask;
flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
flag |= __GFP_ZERO;
virt_addr = (void *)__get_free_pages(flag, get_order(size));
if (!virt_addr)
return NULL;
paddr = virt_to_phys(virt_addr);
if (!dma_mask)
dma_mask = *dev->dma_mask;
spin_lock_irqsave(&domain->lock, flags);
*dma_addr = __map_single(dev, domain->priv, paddr,
size, DMA_BIDIRECTIONAL, true, dma_mask);
if (*dma_addr == DMA_ERROR_CODE) {
spin_unlock_irqrestore(&domain->lock, flags);
goto out_free;
}
domain_flush_complete(domain);
spin_unlock_irqrestore(&domain->lock, flags);
return virt_addr;
out_free:
free_pages((unsigned long)virt_addr, get_order(size));
return NULL;
}
/*
* The exported free_coherent function for dma_ops.
*/
static void free_coherent(struct device *dev, size_t size,
void *virt_addr, dma_addr_t dma_addr,
struct dma_attrs *attrs)
{
unsigned long flags;
struct protection_domain *domain;
INC_STATS_COUNTER(cnt_free_coherent);
domain = get_domain(dev);
if (IS_ERR(domain))
goto free_mem;
spin_lock_irqsave(&domain->lock, flags);
__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
domain_flush_complete(domain);
spin_unlock_irqrestore(&domain->lock, flags);
free_mem:
free_pages((unsigned long)virt_addr, get_order(size));
}
/*
* This function is called by the DMA layer to find out if we can handle a
* particular device. It is part of the dma_ops.
*/
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
return check_device(dev);
}
/*
* The function for pre-allocating protection domains.
*
* If the driver core informs the DMA layer if a driver grabs a device
* we don't need to preallocate the protection domains anymore.
* For now we have to.
*/
static void __init prealloc_protection_domains(void)
{
struct iommu_dev_data *dev_data;
struct dma_ops_domain *dma_dom;
struct pci_dev *dev = NULL;
u16 devid;
for_each_pci_dev(dev) {
/* Do we handle this device? */
if (!check_device(&dev->dev))
continue;
dev_data = get_dev_data(&dev->dev);
if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
/* Make sure passthrough domain is allocated */
alloc_passthrough_domain();
dev_data->passthrough = true;
attach_device(&dev->dev, pt_domain);
pr_info("AMD-Vi: Using passthrough domain for device %s\n",
dev_name(&dev->dev));
}
/* Is there already any domain for it? */
if (domain_for_device(&dev->dev))
continue;
devid = get_device_id(&dev->dev);
dma_dom = dma_ops_domain_alloc();
if (!dma_dom)
continue;
init_unity_mappings_for_device(dma_dom, devid);
dma_dom->target_dev = devid;
attach_device(&dev->dev, &dma_dom->domain);
list_add_tail(&dma_dom->list, &iommu_pd_list);
}
}
static struct dma_map_ops amd_iommu_dma_ops = {
.alloc = alloc_coherent,
.free = free_coherent,
.map_page = map_page,
.unmap_page = unmap_page,
.map_sg = map_sg,
.unmap_sg = unmap_sg,
.dma_supported = amd_iommu_dma_supported,
};
static unsigned device_dma_ops_init(void)
{
struct iommu_dev_data *dev_data;
struct pci_dev *pdev = NULL;
unsigned unhandled = 0;
for_each_pci_dev(pdev) {
if (!check_device(&pdev->dev)) {
iommu_ignore_device(&pdev->dev);
unhandled += 1;
continue;
}
dev_data = get_dev_data(&pdev->dev);
if (!dev_data->passthrough)
pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
else
pdev->dev.archdata.dma_ops = &nommu_dma_ops;
}
return unhandled;
}
/*
* The function which clues the AMD IOMMU driver into dma_ops.
*/
void __init amd_iommu_init_api(void)
{
bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
}
int __init amd_iommu_init_dma_ops(void)
{
struct amd_iommu *iommu;
int ret, unhandled;
/*
* first allocate a default protection domain for every IOMMU we
* found in the system. Devices not assigned to any other
* protection domain will be assigned to the default one.
*/
for_each_iommu(iommu) {
iommu->default_dom = dma_ops_domain_alloc();
if (iommu->default_dom == NULL)
return -ENOMEM;
iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
ret = iommu_init_unity_mappings(iommu);
if (ret)
goto free_domains;
}
/*
* Pre-allocate the protection domains for each device.
*/
prealloc_protection_domains();
iommu_detected = 1;
x86: Handle HW IOMMU initialization failure gracefully If HW IOMMU initialization fails (Intel VT-d often does this, typically due to BIOS bugs), we fall back to nommu. It doesn't work for the majority since nowadays we have more than 4GB memory so we must use swiotlb instead of nommu. The problem is that it's too late to initialize swiotlb when HW IOMMU initialization fails. We need to allocate swiotlb memory earlier from bootmem allocator. Chris explained the issue in detail: http://marc.info/?l=linux-kernel&m=125657444317079&w=2 The current x86 IOMMU initialization sequence is too complicated and handling the above issue makes it more hacky. This patch changes x86 IOMMU initialization sequence to handle the above issue cleanly. The new x86 IOMMU initialization sequence are: 1. we initialize the swiotlb (and setting swiotlb to 1) in the case of (max_pfn > MAX_DMA32_PFN && !no_iommu). dma_ops is set to swiotlb_dma_ops or nommu_dma_ops. if swiotlb usage is forced by the boot option, we finish here. 2. we call the detection functions of all the IOMMUs 3. the detection function sets x86_init.iommu.iommu_init to the IOMMU initialization function (so we can avoid calling the initialization functions of all the IOMMUs needlessly). 4. if the IOMMU initialization function doesn't need to swiotlb then sets swiotlb to zero (e.g. the initialization is sucessful). 5. if we find that swiotlb is set to zero, we free swiotlb resource. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: chrisw@sous-sol.org Cc: dwmw2@infradead.org Cc: joerg.roedel@amd.com Cc: muli@il.ibm.com LKML-Reference: <1257849980-22640-10-git-send-email-fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-10 03:46:20 -07:00
swiotlb = 0;
/* Make the driver finally visible to the drivers */
unhandled = device_dma_ops_init();
if (unhandled && max_pfn > MAX_DMA32_PFN) {
/* There are unhandled devices - initialize swiotlb for them */
swiotlb = 1;
}
amd_iommu_stats_init();
if (amd_iommu_unmap_flush)
pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
else
pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
return 0;
free_domains:
for_each_iommu(iommu) {
dma_ops_domain_free(iommu->default_dom);
}
return ret;
}
/*****************************************************************************
*
* The following functions belong to the exported interface of AMD IOMMU
*
* This interface allows access to lower level functions of the IOMMU
* like protection domain handling and assignement of devices to domains
* which is not possible with the dma_ops interface.
*
*****************************************************************************/
static void cleanup_domain(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data, *next;
unsigned long flags;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
__detach_device(dev_data);
atomic_set(&dev_data->bind, 0);
}
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
static void protection_domain_free(struct protection_domain *domain)
{
if (!domain)
return;
del_domain_from_list(domain);
if (domain->id)
domain_id_free(domain->id);
kfree(domain);
}
static struct protection_domain *protection_domain_alloc(void)
{
struct protection_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return NULL;
spin_lock_init(&domain->lock);
mutex_init(&domain->api_lock);
domain->id = domain_id_alloc();
if (!domain->id)
goto out_err;
INIT_LIST_HEAD(&domain->dev_list);
add_domain_to_list(domain);
return domain;
out_err:
kfree(domain);
return NULL;
}
static int __init alloc_passthrough_domain(void)
{
if (pt_domain != NULL)
return 0;
/* allocate passthrough domain */
pt_domain = protection_domain_alloc();
if (!pt_domain)
return -ENOMEM;
pt_domain->mode = PAGE_MODE_NONE;
return 0;
}
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
struct protection_domain *domain;
domain = protection_domain_alloc();
if (!domain)
goto out_free;
domain->mode = PAGE_MODE_3_LEVEL;
domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
if (!domain->pt_root)
goto out_free;
domain->iommu_domain = dom;
dom->priv = domain;
dom->geometry.aperture_start = 0;
dom->geometry.aperture_end = ~0ULL;
dom->geometry.force_aperture = true;
return 0;
out_free:
protection_domain_free(domain);
return -ENOMEM;
}
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
struct protection_domain *domain = dom->priv;
if (!domain)
return;
if (domain->dev_cnt > 0)
cleanup_domain(domain);
BUG_ON(domain->dev_cnt != 0);
if (domain->mode != PAGE_MODE_NONE)
free_pagetable(domain);
if (domain->flags & PD_IOMMUV2_MASK)
free_gcr3_table(domain);
protection_domain_free(domain);
dom->priv = NULL;
}
static void amd_iommu_detach_device(struct iommu_domain *dom,
struct device *dev)
{
struct iommu_dev_data *dev_data = dev->archdata.iommu;
struct amd_iommu *iommu;
u16 devid;
if (!check_device(dev))
return;
devid = get_device_id(dev);
if (dev_data->domain != NULL)
detach_device(dev);
iommu = amd_iommu_rlookup_table[devid];
if (!iommu)
return;
iommu_completion_wait(iommu);
}
static int amd_iommu_attach_device(struct iommu_domain *dom,
struct device *dev)
{
struct protection_domain *domain = dom->priv;
struct iommu_dev_data *dev_data;
struct amd_iommu *iommu;
int ret;
if (!check_device(dev))
return -EINVAL;
dev_data = dev->archdata.iommu;
iommu = amd_iommu_rlookup_table[dev_data->devid];
if (!iommu)
return -EINVAL;
if (dev_data->domain)
detach_device(dev);
ret = attach_device(dev, domain);
iommu_completion_wait(iommu);
return ret;
}
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
phys_addr_t paddr, size_t page_size, int iommu_prot)
{
struct protection_domain *domain = dom->priv;
int prot = 0;
int ret;
if (domain->mode == PAGE_MODE_NONE)
return -EINVAL;
if (iommu_prot & IOMMU_READ)
prot |= IOMMU_PROT_IR;
if (iommu_prot & IOMMU_WRITE)
prot |= IOMMU_PROT_IW;
mutex_lock(&domain->api_lock);
ret = iommu_map_page(domain, iova, paddr, prot, page_size);
mutex_unlock(&domain->api_lock);
return ret;
}
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
size_t page_size)
{
struct protection_domain *domain = dom->priv;
size_t unmap_size;
if (domain->mode == PAGE_MODE_NONE)
return -EINVAL;
mutex_lock(&domain->api_lock);
unmap_size = iommu_unmap_page(domain, iova, page_size);
mutex_unlock(&domain->api_lock);
domain_flush_tlb_pde(domain);
return unmap_size;
}
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
unsigned long iova)
{
struct protection_domain *domain = dom->priv;
unsigned long offset_mask;
phys_addr_t paddr;
u64 *pte, __pte;
if (domain->mode == PAGE_MODE_NONE)
return iova;
pte = fetch_pte(domain, iova);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
return 0;
if (PM_PTE_LEVEL(*pte) == 0)
offset_mask = PAGE_SIZE - 1;
else
offset_mask = PTE_PAGE_SIZE(*pte) - 1;
__pte = *pte & PM_ADDR_MASK;
paddr = (__pte & ~offset_mask) | (iova & offset_mask);
return paddr;
}
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
unsigned long cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
return 1;
case IOMMU_CAP_INTR_REMAP:
return irq_remapping_enabled;
}
return 0;
}
static struct iommu_ops amd_iommu_ops = {
.domain_init = amd_iommu_domain_init,
.domain_destroy = amd_iommu_domain_destroy,
.attach_dev = amd_iommu_attach_device,
.detach_dev = amd_iommu_detach_device,
.map = amd_iommu_map,
.unmap = amd_iommu_unmap,
.iova_to_phys = amd_iommu_iova_to_phys,
.domain_has_cap = amd_iommu_domain_has_cap,
.pgsize_bitmap = AMD_IOMMU_PGSIZES,
};
/*****************************************************************************
*
* The next functions do a basic initialization of IOMMU for pass through
* mode
*
* In passthrough mode the IOMMU is initialized and enabled but not used for
* DMA-API translation.
*
*****************************************************************************/
int __init amd_iommu_init_passthrough(void)
{
struct iommu_dev_data *dev_data;
struct pci_dev *dev = NULL;
struct amd_iommu *iommu;
u16 devid;
int ret;
ret = alloc_passthrough_domain();
if (ret)
return ret;
for_each_pci_dev(dev) {
if (!check_device(&dev->dev))
continue;
dev_data = get_dev_data(&dev->dev);
dev_data->passthrough = true;
devid = get_device_id(&dev->dev);
iommu = amd_iommu_rlookup_table[devid];
if (!iommu)
continue;
attach_device(&dev->dev, pt_domain);
}
amd_iommu_stats_init();
pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
return 0;
}
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
struct protection_domain *domain = dom->priv;
unsigned long flags;
spin_lock_irqsave(&domain->lock, flags);
/* Update data structure */
domain->mode = PAGE_MODE_NONE;
domain->updated = true;
/* Make changes visible to IOMMUs */
update_domain(domain);
/* Page-table is not visible to IOMMU anymore, so free it */
free_pagetable(domain);
spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
struct protection_domain *domain = dom->priv;
unsigned long flags;
int levels, ret;
if (pasids <= 0 || pasids > (PASID_MASK + 1))
return -EINVAL;
/* Number of GCR3 table levels required */
for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
levels += 1;
if (levels > amd_iommu_max_glx_val)
return -EINVAL;
spin_lock_irqsave(&domain->lock, flags);
/*
* Save us all sanity checks whether devices already in the
* domain support IOMMUv2. Just force that the domain has no
* devices attached when it is switched into IOMMUv2 mode.
*/
ret = -EBUSY;
if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
goto out;
ret = -ENOMEM;
domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
if (domain->gcr3_tbl == NULL)
goto out;
domain->glx = levels;
domain->flags |= PD_IOMMUV2_MASK;
domain->updated = true;
update_domain(domain);
ret = 0;
out:
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
static int __flush_pasid(struct protection_domain *domain, int pasid,
u64 address, bool size)
{
struct iommu_dev_data *dev_data;
struct iommu_cmd cmd;
int i, ret;
if (!(domain->flags & PD_IOMMUV2_MASK))
return -EINVAL;
build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
/*
* IOMMU TLB needs to be flushed before Device TLB to
* prevent device TLB refill from IOMMU TLB
*/
for (i = 0; i < amd_iommus_present; ++i) {
if (domain->dev_iommu[i] == 0)
continue;
ret = iommu_queue_command(amd_iommus[i], &cmd);
if (ret != 0)
goto out;
}
/* Wait until IOMMU TLB flushes are complete */
domain_flush_complete(domain);
/* Now flush device TLBs */
list_for_each_entry(dev_data, &domain->dev_list, list) {
struct amd_iommu *iommu;
int qdep;
BUG_ON(!dev_data->ats.enabled);
qdep = dev_data->ats.qdep;
iommu = amd_iommu_rlookup_table[dev_data->devid];
build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
qdep, address, size);
ret = iommu_queue_command(iommu, &cmd);
if (ret != 0)
goto out;
}
/* Wait until all device TLBs are flushed */
domain_flush_complete(domain);
ret = 0;
out:
return ret;
}
static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
u64 address)
{
INC_STATS_COUNTER(invalidate_iotlb);
return __flush_pasid(domain, pasid, address, false);
}
int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
u64 address)
{
struct protection_domain *domain = dom->priv;
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __amd_iommu_flush_page(domain, pasid, address);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);
static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
INC_STATS_COUNTER(invalidate_iotlb_all);
return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
true);
}
int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
struct protection_domain *domain = dom->priv;
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __amd_iommu_flush_tlb(domain, pasid);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
int index;
u64 *pte;
while (true) {
index = (pasid >> (9 * level)) & 0x1ff;
pte = &root[index];
if (level == 0)
break;
if (!(*pte & GCR3_VALID)) {
if (!alloc)
return NULL;
root = (void *)get_zeroed_page(GFP_ATOMIC);
if (root == NULL)
return NULL;
*pte = __pa(root) | GCR3_VALID;
}
root = __va(*pte & PAGE_MASK);
level -= 1;
}
return pte;
}
static int __set_gcr3(struct protection_domain *domain, int pasid,
unsigned long cr3)
{
u64 *pte;
if (domain->mode != PAGE_MODE_NONE)
return -EINVAL;
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
if (pte == NULL)
return -ENOMEM;
*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
return __amd_iommu_flush_tlb(domain, pasid);
}
static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
u64 *pte;
if (domain->mode != PAGE_MODE_NONE)
return -EINVAL;
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
if (pte == NULL)
return 0;
*pte = 0;
return __amd_iommu_flush_tlb(domain, pasid);
}
int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
unsigned long cr3)
{
struct protection_domain *domain = dom->priv;
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __set_gcr3(domain, pasid, cr3);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
struct protection_domain *domain = dom->priv;
unsigned long flags;
int ret;
spin_lock_irqsave(&domain->lock, flags);
ret = __clear_gcr3(domain, pasid);
spin_unlock_irqrestore(&domain->lock, flags);
return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
int status, int tag)
{
struct iommu_dev_data *dev_data;
struct amd_iommu *iommu;
struct iommu_cmd cmd;
INC_STATS_COUNTER(complete_ppr);
dev_data = get_dev_data(&pdev->dev);
iommu = amd_iommu_rlookup_table[dev_data->devid];
build_complete_ppr(&cmd, dev_data->devid, pasid, status,
tag, dev_data->pri_tlp);
return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
struct protection_domain *domain;
domain = get_domain(&pdev->dev);
if (IS_ERR(domain))
return NULL;
/* Only return IOMMUv2 domains */
if (!(domain->flags & PD_IOMMUV2_MASK))
return NULL;
return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
struct iommu_dev_data *dev_data;
if (!amd_iommu_v2_supported())
return;
dev_data = get_dev_data(&pdev->dev);
dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
int amd_iommu_device_info(struct pci_dev *pdev,
struct amd_iommu_device_info *info)
{
int max_pasids;
int pos;
if (pdev == NULL || info == NULL)
return -EINVAL;
if (!amd_iommu_v2_supported())
return -EINVAL;
memset(info, 0, sizeof(*info));
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
if (pos)
info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
if (pos)
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
if (pos) {
int features;
max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
max_pasids = min(max_pasids, (1 << 20));
info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
features = pci_pasid_features(pdev);
if (features & PCI_PASID_CAP_EXEC)
info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
if (features & PCI_PASID_CAP_PRIV)
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
}
return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
#ifdef CONFIG_IRQ_REMAP
/*****************************************************************************
*
* Interrupt Remapping Implementation
*
*****************************************************************************/
union irte {
u32 val;
struct {
u32 valid : 1,
no_fault : 1,
int_type : 3,
rq_eoi : 1,
dm : 1,
rsvd_1 : 1,
destination : 8,
vector : 8,
rsvd_2 : 8;
} fields;
};
#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
#define DTE_IRQ_TABLE_LEN (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE 1ULL
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
u64 dte;
dte = amd_iommu_dev_table[devid].data[2];
dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
dte |= virt_to_phys(table->table);
dte |= DTE_IRQ_REMAP_INTCTL;
dte |= DTE_IRQ_TABLE_LEN;
dte |= DTE_IRQ_REMAP_ENABLE;
amd_iommu_dev_table[devid].data[2] = dte;
}
#define IRTE_ALLOCATED (~1U)
static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
struct irq_remap_table *table = NULL;
struct amd_iommu *iommu;
unsigned long flags;
u16 alias;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
iommu = amd_iommu_rlookup_table[devid];
if (!iommu)
goto out_unlock;
table = irq_lookup_table[devid];
if (table)
goto out;
alias = amd_iommu_alias_table[devid];
table = irq_lookup_table[alias];
if (table) {
irq_lookup_table[devid] = table;
set_dte_irq_entry(devid, table);
iommu_flush_dte(iommu, devid);
goto out;
}
/* Nothing there yet, allocate new irq remapping table */
table = kzalloc(sizeof(*table), GFP_ATOMIC);
if (!table)
goto out;
if (ioapic)
/* Keep the first 32 indexes free for IOAPIC interrupts */
table->min_index = 32;
table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
if (!table->table) {
kfree(table);
table = NULL;
goto out;
}
memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
if (ioapic) {
int i;
for (i = 0; i < 32; ++i)
table->table[i] = IRTE_ALLOCATED;
}
irq_lookup_table[devid] = table;
set_dte_irq_entry(devid, table);
iommu_flush_dte(iommu, devid);
if (devid != alias) {
irq_lookup_table[alias] = table;
set_dte_irq_entry(devid, table);
iommu_flush_dte(iommu, alias);
}
out:
iommu_completion_wait(iommu);
out_unlock:
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
return table;
}
static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
struct irq_remap_table *table;
unsigned long flags;
int index, c;
table = get_irq_table(devid, false);
if (!table)
return -ENODEV;
spin_lock_irqsave(&table->lock, flags);
/* Scan table for free entries */
for (c = 0, index = table->min_index;
index < MAX_IRQS_PER_TABLE;
++index) {
if (table->table[index] == 0)
c += 1;
else
c = 0;
if (c == count) {
struct irq_2_iommu *irte_info;
for (; c != 0; --c)
table->table[index - c + 1] = IRTE_ALLOCATED;
index -= count - 1;
cfg->remapped = 1;
irte_info = &cfg->irq_2_iommu;
irte_info->sub_handle = devid;
irte_info->irte_index = index;
goto out;
}
}
index = -ENOSPC;
out:
spin_unlock_irqrestore(&table->lock, flags);
return index;
}
static int get_irte(u16 devid, int index, union irte *irte)
{
struct irq_remap_table *table;
unsigned long flags;
table = get_irq_table(devid, false);
if (!table)
return -ENOMEM;
spin_lock_irqsave(&table->lock, flags);
irte->val = table->table[index];
spin_unlock_irqrestore(&table->lock, flags);
return 0;
}
static int modify_irte(u16 devid, int index, union irte irte)
{
struct irq_remap_table *table;
struct amd_iommu *iommu;
unsigned long flags;
iommu = amd_iommu_rlookup_table[devid];
if (iommu == NULL)
return -EINVAL;
table = get_irq_table(devid, false);
if (!table)
return -ENOMEM;
spin_lock_irqsave(&table->lock, flags);
table->table[index] = irte.val;
spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
return 0;
}
static void free_irte(u16 devid, int index)
{
struct irq_remap_table *table;
struct amd_iommu *iommu;
unsigned long flags;
iommu = amd_iommu_rlookup_table[devid];
if (iommu == NULL)
return;
table = get_irq_table(devid, false);
if (!table)
return;
spin_lock_irqsave(&table->lock, flags);
table->table[index] = 0;
spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
}
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
unsigned int destination, int vector,
struct io_apic_irq_attr *attr)
{
struct irq_remap_table *table;
struct irq_2_iommu *irte_info;
struct irq_cfg *cfg;
union irte irte;
int ioapic_id;
int index;
int devid;
int ret;
cfg = irq_get_chip_data(irq);
if (!cfg)
return -EINVAL;
irte_info = &cfg->irq_2_iommu;
ioapic_id = mpc_ioapic_id(attr->ioapic);
devid = get_ioapic_devid(ioapic_id);
if (devid < 0)
return devid;
table = get_irq_table(devid, true);
if (table == NULL)
return -ENOMEM;
index = attr->ioapic_pin;
/* Setup IRQ remapping info */
cfg->remapped = 1;
irte_info->sub_handle = devid;
irte_info->irte_index = index;
/* Setup IRTE for IOMMU */
irte.val = 0;
irte.fields.vector = vector;
irte.fields.int_type = apic->irq_delivery_mode;
irte.fields.destination = destination;
irte.fields.dm = apic->irq_dest_mode;
irte.fields.valid = 1;
ret = modify_irte(devid, index, irte);
if (ret)
return ret;
/* Setup IOAPIC entry */
memset(entry, 0, sizeof(*entry));
entry->vector = index;
entry->mask = 0;
entry->trigger = attr->trigger;
entry->polarity = attr->polarity;
/*
* Mask level triggered irqs.
*/
if (attr->trigger)
entry->mask = 1;
return 0;
}
static int set_affinity(struct irq_data *data, const struct cpumask *mask,
bool force)
{
struct irq_2_iommu *irte_info;
unsigned int dest, irq;
struct irq_cfg *cfg;
union irte irte;
int err;
if (!config_enabled(CONFIG_SMP))
return -1;
cfg = data->chip_data;
irq = data->irq;
irte_info = &cfg->irq_2_iommu;
if (!cpumask_intersects(mask, cpu_online_mask))
return -EINVAL;
if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
return -EBUSY;
if (assign_irq_vector(irq, cfg, mask))
return -EBUSY;
err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
if (err) {
if (assign_irq_vector(irq, cfg, data->affinity))
pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
return err;
}
irte.fields.vector = cfg->vector;
irte.fields.destination = dest;
modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
if (cfg->move_in_progress)
send_cleanup_vector(cfg);
cpumask_copy(data->affinity, mask);
return 0;
}
static int free_irq(int irq)
{
struct irq_2_iommu *irte_info;
struct irq_cfg *cfg;
cfg = irq_get_chip_data(irq);
if (!cfg)
return -EINVAL;
irte_info = &cfg->irq_2_iommu;
free_irte(irte_info->sub_handle, irte_info->irte_index);
return 0;
}
static void compose_msi_msg(struct pci_dev *pdev,
unsigned int irq, unsigned int dest,
struct msi_msg *msg, u8 hpet_id)
{
struct irq_2_iommu *irte_info;
struct irq_cfg *cfg;
union irte irte;
cfg = irq_get_chip_data(irq);
if (!cfg)
return;
irte_info = &cfg->irq_2_iommu;
irte.val = 0;
irte.fields.vector = cfg->vector;
irte.fields.int_type = apic->irq_delivery_mode;
irte.fields.destination = dest;
irte.fields.dm = apic->irq_dest_mode;
irte.fields.valid = 1;
modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
msg->address_hi = MSI_ADDR_BASE_HI;
msg->address_lo = MSI_ADDR_BASE_LO;
msg->data = irte_info->irte_index;
}
static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
struct irq_cfg *cfg;
int index;
u16 devid;
if (!pdev)
return -EINVAL;
cfg = irq_get_chip_data(irq);
if (!cfg)
return -EINVAL;
devid = get_device_id(&pdev->dev);
index = alloc_irq_index(cfg, devid, nvec);
return index < 0 ? MAX_IRQS_PER_TABLE : index;
}
static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
int index, int offset)
{
struct irq_2_iommu *irte_info;
struct irq_cfg *cfg;
u16 devid;
if (!pdev)
return -EINVAL;
cfg = irq_get_chip_data(irq);
if (!cfg)
return -EINVAL;
if (index >= MAX_IRQS_PER_TABLE)
return 0;
devid = get_device_id(&pdev->dev);
irte_info = &cfg->irq_2_iommu;
cfg->remapped = 1;
irte_info->sub_handle = devid;
irte_info->irte_index = index + offset;
return 0;
}
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
struct irq_2_iommu *irte_info;
struct irq_cfg *cfg;
int index, devid;
cfg = irq_get_chip_data(irq);
if (!cfg)
return -EINVAL;
irte_info = &cfg->irq_2_iommu;
devid = get_hpet_devid(id);
if (devid < 0)
return devid;
index = alloc_irq_index(cfg, devid, 1);
if (index < 0)
return index;
cfg->remapped = 1;
irte_info->sub_handle = devid;
irte_info->irte_index = index;
return 0;
}
struct irq_remap_ops amd_iommu_irq_ops = {
.supported = amd_iommu_supported,
.prepare = amd_iommu_prepare,
.enable = amd_iommu_enable,
.disable = amd_iommu_disable,
.reenable = amd_iommu_reenable,
.enable_faulting = amd_iommu_enable_faulting,
.setup_ioapic_entry = setup_ioapic_entry,
.set_affinity = set_affinity,
.free_irq = free_irq,
.compose_msi_msg = compose_msi_msg,
.msi_alloc_irq = msi_alloc_irq,
.msi_setup_irq = msi_setup_irq,
.setup_hpet_msi = setup_hpet_msi,
};
#endif