kernel-fxtec-pro1x/drivers/ata/sata_sx4.c

1455 lines
38 KiB
C
Raw Normal View History

/*
* sata_sx4.c - Promise SATA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2004 Red Hat, Inc.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available under NDA.
*
*/
/*
Theory of operation
-------------------
The SX4 (PDC20621) chip features a single Host DMA (HDMA) copy
engine, DIMM memory, and four ATA engines (one per SATA port).
Data is copied to/from DIMM memory by the HDMA engine, before
handing off to one (or more) of the ATA engines. The ATA
engines operate solely on DIMM memory.
The SX4 behaves like a PATA chip, with no SATA controls or
knowledge whatsoever, leading to the presumption that
PATA<->SATA bridges exist on SX4 boards, external to the
PDC20621 chip itself.
The chip is quite capable, supporting an XOR engine and linked
hardware commands (permits a string to transactions to be
submitted and waited-on as a single unit), and an optional
microprocessor.
The limiting factor is largely software. This Linux driver was
written to multiplex the single HDMA engine to copy disk
transactions into a fixed DIMM memory space, from where an ATA
engine takes over. As a result, each WRITE looks like this:
submit HDMA packet to hardware
hardware copies data from system memory to DIMM
hardware raises interrupt
submit ATA packet to hardware
hardware executes ATA WRITE command, w/ data in DIMM
hardware raises interrupt
and each READ looks like this:
submit ATA packet to hardware
hardware executes ATA READ command, w/ data in DIMM
hardware raises interrupt
submit HDMA packet to hardware
hardware copies data from DIMM to system memory
hardware raises interrupt
This is a very slow, lock-step way of doing things that can
certainly be improved by motivated kernel hackers.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <linux/libata.h>
#include "sata_promise.h"
#define DRV_NAME "sata_sx4"
#define DRV_VERSION "0.12"
enum {
PDC_MMIO_BAR = 3,
PDC_DIMM_BAR = 4,
PDC_PRD_TBL = 0x44, /* Direct command DMA table addr */
PDC_PKT_SUBMIT = 0x40, /* Command packet pointer addr */
PDC_HDMA_PKT_SUBMIT = 0x100, /* Host DMA packet pointer addr */
PDC_INT_SEQMASK = 0x40, /* Mask of asserted SEQ INTs */
PDC_HDMA_CTLSTAT = 0x12C, /* Host DMA control / status */
PDC_CTLSTAT = 0x60, /* IDEn control / status */
PDC_20621_SEQCTL = 0x400,
PDC_20621_SEQMASK = 0x480,
PDC_20621_GENERAL_CTL = 0x484,
PDC_20621_PAGE_SIZE = (32 * 1024),
/* chosen, not constant, values; we design our own DIMM mem map */
PDC_20621_DIMM_WINDOW = 0x0C, /* page# for 32K DIMM window */
PDC_20621_DIMM_BASE = 0x00200000,
PDC_20621_DIMM_DATA = (64 * 1024),
PDC_DIMM_DATA_STEP = (256 * 1024),
PDC_DIMM_WINDOW_STEP = (8 * 1024),
PDC_DIMM_HOST_PRD = (6 * 1024),
PDC_DIMM_HOST_PKT = (128 * 0),
PDC_DIMM_HPKT_PRD = (128 * 1),
PDC_DIMM_ATA_PKT = (128 * 2),
PDC_DIMM_APKT_PRD = (128 * 3),
PDC_DIMM_HEADER_SZ = PDC_DIMM_APKT_PRD + 128,
PDC_PAGE_WINDOW = 0x40,
PDC_PAGE_DATA = PDC_PAGE_WINDOW +
(PDC_20621_DIMM_DATA / PDC_20621_PAGE_SIZE),
PDC_PAGE_SET = PDC_DIMM_DATA_STEP / PDC_20621_PAGE_SIZE,
PDC_CHIP0_OFS = 0xC0000, /* offset of chip #0 */
PDC_20621_ERR_MASK = (1<<19) | (1<<20) | (1<<21) | (1<<22) |
(1<<23),
board_20621 = 0, /* FastTrak S150 SX4 */
PDC_MASK_INT = (1 << 10), /* HDMA/ATA mask int */
PDC_RESET = (1 << 11), /* HDMA/ATA reset */
PDC_DMA_ENABLE = (1 << 7), /* DMA start/stop */
PDC_MAX_HDMA = 32,
PDC_HDMA_Q_MASK = (PDC_MAX_HDMA - 1),
PDC_DIMM0_SPD_DEV_ADDRESS = 0x50,
PDC_DIMM1_SPD_DEV_ADDRESS = 0x51,
PDC_I2C_CONTROL = 0x48,
PDC_I2C_ADDR_DATA = 0x4C,
PDC_DIMM0_CONTROL = 0x80,
PDC_DIMM1_CONTROL = 0x84,
PDC_SDRAM_CONTROL = 0x88,
PDC_I2C_WRITE = 0, /* master -> slave */
PDC_I2C_READ = (1 << 6), /* master <- slave */
PDC_I2C_START = (1 << 7), /* start I2C proto */
PDC_I2C_MASK_INT = (1 << 5), /* mask I2C interrupt */
PDC_I2C_COMPLETE = (1 << 16), /* I2C normal compl. */
PDC_I2C_NO_ACK = (1 << 20), /* slave no-ack addr */
PDC_DIMM_SPD_SUBADDRESS_START = 0x00,
PDC_DIMM_SPD_SUBADDRESS_END = 0x7F,
PDC_DIMM_SPD_ROW_NUM = 3,
PDC_DIMM_SPD_COLUMN_NUM = 4,
PDC_DIMM_SPD_MODULE_ROW = 5,
PDC_DIMM_SPD_TYPE = 11,
PDC_DIMM_SPD_FRESH_RATE = 12,
PDC_DIMM_SPD_BANK_NUM = 17,
PDC_DIMM_SPD_CAS_LATENCY = 18,
PDC_DIMM_SPD_ATTRIBUTE = 21,
PDC_DIMM_SPD_ROW_PRE_CHARGE = 27,
PDC_DIMM_SPD_ROW_ACTIVE_DELAY = 28,
PDC_DIMM_SPD_RAS_CAS_DELAY = 29,
PDC_DIMM_SPD_ACTIVE_PRECHARGE = 30,
PDC_DIMM_SPD_SYSTEM_FREQ = 126,
PDC_CTL_STATUS = 0x08,
PDC_DIMM_WINDOW_CTLR = 0x0C,
PDC_TIME_CONTROL = 0x3C,
PDC_TIME_PERIOD = 0x40,
PDC_TIME_COUNTER = 0x44,
PDC_GENERAL_CTLR = 0x484,
PCI_PLL_INIT = 0x8A531824,
PCI_X_TCOUNT = 0xEE1E5CFF,
/* PDC_TIME_CONTROL bits */
PDC_TIMER_BUZZER = (1 << 10),
PDC_TIMER_MODE_PERIODIC = 0, /* bits 9:8 == 00 */
PDC_TIMER_MODE_ONCE = (1 << 8), /* bits 9:8 == 01 */
PDC_TIMER_ENABLE = (1 << 7),
PDC_TIMER_MASK_INT = (1 << 5),
PDC_TIMER_SEQ_MASK = 0x1f, /* SEQ ID for timer */
PDC_TIMER_DEFAULT = PDC_TIMER_MODE_ONCE |
PDC_TIMER_ENABLE |
PDC_TIMER_MASK_INT,
};
struct pdc_port_priv {
u8 dimm_buf[(ATA_PRD_SZ * ATA_MAX_PRD) + 512];
u8 *pkt;
dma_addr_t pkt_dma;
};
struct pdc_host_priv {
unsigned int doing_hdma;
unsigned int hdma_prod;
unsigned int hdma_cons;
struct {
struct ata_queued_cmd *qc;
unsigned int seq;
unsigned long pkt_ofs;
} hdma[32];
};
static int pdc_sata_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
static void pdc_eng_timeout(struct ata_port *ap);
static void pdc_20621_phy_reset(struct ata_port *ap);
static int pdc_port_start(struct ata_port *ap);
static void pdc20621_qc_prep(struct ata_queued_cmd *qc);
static void pdc_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf);
static void pdc_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf);
static unsigned int pdc20621_dimm_init(struct ata_host *host);
static int pdc20621_detect_dimm(struct ata_host *host);
static unsigned int pdc20621_i2c_read(struct ata_host *host,
u32 device, u32 subaddr, u32 *pdata);
static int pdc20621_prog_dimm0(struct ata_host *host);
static unsigned int pdc20621_prog_dimm_global(struct ata_host *host);
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_host *host,
void *psource, u32 offset, u32 size);
#endif
static void pdc20621_put_to_dimm(struct ata_host *host,
void *psource, u32 offset, u32 size);
static void pdc20621_irq_clear(struct ata_port *ap);
static unsigned int pdc20621_qc_issue(struct ata_queued_cmd *qc);
static struct scsi_host_template pdc_sata_sht = {
ATA_BASE_SHT(DRV_NAME),
.sg_tablesize = LIBATA_MAX_PRD,
.dma_boundary = ATA_DMA_BOUNDARY,
};
libata: implement and use ops inheritance libata lets low level drivers build ata_port_operations table and register it with libata core layer. This allows low level drivers high level of flexibility but also burdens them with lots of boilerplate entries. This becomes worse for drivers which support related similar controllers which differ slightly. They share most of the operations except for a few. However, the driver still needs to list all operations for each variant. This results in large number of duplicate entries, which is not only inefficient but also error-prone as it becomes very difficult to tell what the actual differences are. This duplicate boilerplates all over the low level drivers also make updating the core layer exteremely difficult and error-prone. When compounded with multi-branched development model, it ends up accumulating inconsistencies over time. Some of those inconsistencies cause immediate problems and fixed. Others just remain there dormant making maintenance increasingly difficult. To rectify the problem, this patch implements ata_port_operations inheritance. To allow LLDs to easily re-use their own ops tables overriding only specific methods, this patch implements poor man's class inheritance. An ops table has ->inherits field which can be set to any ops table as long as it doesn't create a loop. When the host is started, the inheritance chain is followed and any operation which isn't specified is taken from the nearest ancestor which has it specified. This operation is called finalization and done only once per an ops table and the LLD doesn't have to do anything special about it other than making the ops table non-const such that libata can update it. libata provides four base ops tables lower drivers can inherit from - base, sata, pmp, sff and bmdma. To avoid overriding these ops accidentaly, these ops are declared const and LLDs should always inherit these instead of using them directly. After finalization, all the ops table are identical before and after the patch except for setting .irq_handler to ata_interrupt in drivers which didn't use to. The .irq_handler doesn't have any actual effect and the field will soon be removed by later patch. * sata_sx4 is still using old style EH and currently doesn't take advantage of ops inheritance. Signed-off-by: Tejun Heo <htejun@gmail.com>
2008-03-24 21:22:49 -06:00
/* TODO: inherit from base port_ops after converting to new EH */
static struct ata_port_operations pdc_20621_ops = {
.sff_tf_load = pdc_tf_load_mmio,
.sff_tf_read = ata_sff_tf_read,
.sff_check_status = ata_sff_check_status,
.sff_exec_command = pdc_exec_command_mmio,
.sff_dev_select = ata_sff_dev_select,
.phy_reset = pdc_20621_phy_reset,
.qc_prep = pdc20621_qc_prep,
.qc_issue = pdc20621_qc_issue,
.qc_fill_rtf = ata_sff_qc_fill_rtf,
.sff_data_xfer = ata_sff_data_xfer,
.eng_timeout = pdc_eng_timeout,
.sff_irq_clear = pdc20621_irq_clear,
.sff_irq_on = ata_sff_irq_on,
.port_start = pdc_port_start,
};
static const struct ata_port_info pdc_port_info[] = {
/* board_20621 */
{
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_SRST | ATA_FLAG_MMIO |
ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA6,
.port_ops = &pdc_20621_ops,
},
};
static const struct pci_device_id pdc_sata_pci_tbl[] = {
{ PCI_VDEVICE(PROMISE, 0x6622), board_20621 },
{ } /* terminate list */
};
static struct pci_driver pdc_sata_pci_driver = {
.name = DRV_NAME,
.id_table = pdc_sata_pci_tbl,
.probe = pdc_sata_init_one,
.remove = ata_pci_remove_one,
};
static int pdc_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct pdc_port_priv *pp;
int rc;
rc = ata_port_start(ap);
if (rc)
return rc;
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
pp->pkt = dmam_alloc_coherent(dev, 128, &pp->pkt_dma, GFP_KERNEL);
if (!pp->pkt)
return -ENOMEM;
ap->private_data = pp;
return 0;
}
static void pdc_20621_phy_reset(struct ata_port *ap)
{
VPRINTK("ENTER\n");
ap->cbl = ATA_CBL_SATA;
ata_port_probe(ap);
ata_bus_reset(ap);
}
static inline void pdc20621_ata_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_APKT_PRD >> 2;
__le32 *buf32 = (__le32 *) buf;
/* output ATA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
VPRINTK("ATA sg addr 0x%x, %d\n", addr, addr);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("ATA PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline void pdc20621_host_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_HPKT_PRD >> 2;
__le32 *buf32 = (__le32 *) buf;
/* output Host DMA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("HOST PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline unsigned int pdc20621_ata_pkt(struct ata_taskfile *tf,
unsigned int devno, u8 *buf,
unsigned int portno)
{
unsigned int i, dw;
__le32 *buf32 = (__le32 *) buf;
u8 dev_reg;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
i = PDC_DIMM_ATA_PKT;
/*
* Set up ATA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
buf[i++] = PDC_PKT_READ;
else if (tf->protocol == ATA_PROT_NODATA)
buf[i++] = PDC_PKT_NODATA;
else
buf[i++] = 0;
buf[i++] = 0; /* reserved */
buf[i++] = portno + 1; /* seq. id */
buf[i++] = 0xff; /* delay seq. id */
/* dimm dma S/G, and next-pkt */
dw = i >> 2;
if (tf->protocol == ATA_PROT_NODATA)
buf32[dw] = 0;
else
buf32[dw] = cpu_to_le32(dimm_sg);
buf32[dw + 1] = 0;
i += 8;
if (devno == 0)
dev_reg = ATA_DEVICE_OBS;
else
dev_reg = ATA_DEVICE_OBS | ATA_DEV1;
/* select device */
buf[i++] = (1 << 5) | PDC_PKT_CLEAR_BSY | ATA_REG_DEVICE;
buf[i++] = dev_reg;
/* device control register */
buf[i++] = (1 << 5) | PDC_REG_DEVCTL;
buf[i++] = tf->ctl;
return i;
}
static inline void pdc20621_host_pkt(struct ata_taskfile *tf, u8 *buf,
unsigned int portno)
{
unsigned int dw;
u32 tmp;
__le32 *buf32 = (__le32 *) buf;
unsigned int host_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PRD;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
VPRINTK("host_sg == 0x%x, %d\n", host_sg, host_sg);
dw = PDC_DIMM_HOST_PKT >> 2;
/*
* Set up Host DMA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
tmp = PDC_PKT_READ;
else
tmp = 0;
tmp |= ((portno + 1 + 4) << 16); /* seq. id */
tmp |= (0xff << 24); /* delay seq. id */
buf32[dw + 0] = cpu_to_le32(tmp);
buf32[dw + 1] = cpu_to_le32(host_sg);
buf32[dw + 2] = cpu_to_le32(dimm_sg);
buf32[dw + 3] = 0;
VPRINTK("HOST PKT @ %x == (0x%x 0x%x 0x%x 0x%x)\n",
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PKT,
buf32[dw + 0],
buf32[dw + 1],
buf32[dw + 2],
buf32[dw + 3]);
}
static void pdc20621_dma_prep(struct ata_queued_cmd *qc)
{
struct scatterlist *sg;
struct ata_port *ap = qc->ap;
struct pdc_port_priv *pp = ap->private_data;
void __iomem *mmio = ap->host->iomap[PDC_MMIO_BAR];
void __iomem *dimm_mmio = ap->host->iomap[PDC_DIMM_BAR];
unsigned int portno = ap->port_no;
unsigned int i, si, idx, total_len = 0, sgt_len;
__le32 *buf = (__le32 *) &pp->dimm_buf[PDC_DIMM_HEADER_SZ];
WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
VPRINTK("ata%u: ENTER\n", ap->print_id);
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Build S/G table
*/
idx = 0;
for_each_sg(qc->sg, sg, qc->n_elem, si) {
buf[idx++] = cpu_to_le32(sg_dma_address(sg));
buf[idx++] = cpu_to_le32(sg_dma_len(sg));
total_len += sg_dma_len(sg);
}
buf[idx - 1] |= cpu_to_le32(ATA_PRD_EOT);
sgt_len = idx * 4;
/*
* Build ATA, host DMA packets
*/
pdc20621_host_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
pdc20621_host_pkt(&qc->tf, &pp->dimm_buf[0], portno);
pdc20621_ata_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
if (qc->tf.flags & ATA_TFLAG_LBA48)
i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
else
i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
/* copy three S/G tables and two packets to DIMM MMIO window */
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
&pp->dimm_buf, PDC_DIMM_HEADER_SZ);
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP) +
PDC_DIMM_HOST_PRD,
&pp->dimm_buf[PDC_DIMM_HEADER_SZ], sgt_len);
/* force host FIFO dump */
writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
readl(dimm_mmio); /* MMIO PCI posting flush */
VPRINTK("ata pkt buf ofs %u, prd size %u, mmio copied\n", i, sgt_len);
}
static void pdc20621_nodata_prep(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct pdc_port_priv *pp = ap->private_data;
void __iomem *mmio = ap->host->iomap[PDC_MMIO_BAR];
void __iomem *dimm_mmio = ap->host->iomap[PDC_DIMM_BAR];
unsigned int portno = ap->port_no;
unsigned int i;
VPRINTK("ata%u: ENTER\n", ap->print_id);
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
if (qc->tf.flags & ATA_TFLAG_LBA48)
i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
else
i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
/* copy three S/G tables and two packets to DIMM MMIO window */
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
&pp->dimm_buf, PDC_DIMM_HEADER_SZ);
/* force host FIFO dump */
writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
readl(dimm_mmio); /* MMIO PCI posting flush */
VPRINTK("ata pkt buf ofs %u, mmio copied\n", i);
}
static void pdc20621_qc_prep(struct ata_queued_cmd *qc)
{
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
pdc20621_dma_prep(qc);
break;
case ATA_PROT_NODATA:
pdc20621_nodata_prep(qc);
break;
default:
break;
}
}
static void __pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct ata_host *host = ap->host;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(pkt_ofs, mmio + PDC_HDMA_PKT_SUBMIT);
readl(mmio + PDC_HDMA_PKT_SUBMIT); /* flush */
}
static void pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host->private_data;
unsigned int idx = pp->hdma_prod & PDC_HDMA_Q_MASK;
if (!pp->doing_hdma) {
__pdc20621_push_hdma(qc, seq, pkt_ofs);
pp->doing_hdma = 1;
return;
}
pp->hdma[idx].qc = qc;
pp->hdma[idx].seq = seq;
pp->hdma[idx].pkt_ofs = pkt_ofs;
pp->hdma_prod++;
}
static void pdc20621_pop_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host->private_data;
unsigned int idx = pp->hdma_cons & PDC_HDMA_Q_MASK;
/* if nothing on queue, we're done */
if (pp->hdma_prod == pp->hdma_cons) {
pp->doing_hdma = 0;
return;
}
__pdc20621_push_hdma(pp->hdma[idx].qc, pp->hdma[idx].seq,
pp->hdma[idx].pkt_ofs);
pp->hdma_cons++;
}
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_dump_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int port_no = ap->port_no;
void __iomem *dimm_mmio = ap->host->iomap[PDC_DIMM_BAR];
dimm_mmio += (port_no * PDC_DIMM_WINDOW_STEP);
dimm_mmio += PDC_DIMM_HOST_PKT;
printk(KERN_ERR "HDMA[0] == 0x%08X\n", readl(dimm_mmio));
printk(KERN_ERR "HDMA[1] == 0x%08X\n", readl(dimm_mmio + 4));
printk(KERN_ERR "HDMA[2] == 0x%08X\n", readl(dimm_mmio + 8));
printk(KERN_ERR "HDMA[3] == 0x%08X\n", readl(dimm_mmio + 12));
}
#else
static inline void pdc20621_dump_hdma(struct ata_queued_cmd *qc) { }
#endif /* ATA_VERBOSE_DEBUG */
static void pdc20621_packet_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_host *host = ap->host;
unsigned int port_no = ap->port_no;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 seq = (u8) (port_no + 1);
unsigned int port_ofs;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
VPRINTK("ata%u: ENTER\n", ap->print_id);
wmb(); /* flush PRD, pkt writes */
port_ofs = PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
/* if writing, we (1) DMA to DIMM, then (2) do ATA command */
if (rw && qc->tf.protocol == ATA_PROT_DMA) {
seq += 4;
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq, port_ofs + PDC_DIMM_HOST_PKT);
VPRINTK("queued ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_HOST_PKT,
port_ofs + PDC_DIMM_HOST_PKT,
seq);
} else {
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(port_ofs + PDC_DIMM_ATA_PKT,
ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl(ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
VPRINTK("submitted ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_ATA_PKT,
port_ofs + PDC_DIMM_ATA_PKT,
seq);
}
}
static unsigned int pdc20621_qc_issue(struct ata_queued_cmd *qc)
{
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_NODATA:
pdc20621_packet_start(qc);
return 0;
case ATAPI_PROT_DMA:
BUG();
break;
default:
break;
}
return ata_sff_qc_issue(qc);
}
static inline unsigned int pdc20621_host_intr(struct ata_port *ap,
struct ata_queued_cmd *qc,
unsigned int doing_hdma,
void __iomem *mmio)
{
unsigned int port_no = ap->port_no;
unsigned int port_ofs =
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
u8 status;
unsigned int handled = 0;
VPRINTK("ENTER\n");
if ((qc->tf.protocol == ATA_PROT_DMA) && /* read */
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
/* step two - DMA from DIMM to host */
if (doing_hdma) {
VPRINTK("ata%u: read hdma, 0x%x 0x%x\n", ap->print_id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* get drive status; clear intr; complete txn */
qc->err_mask |= ac_err_mask(ata_wait_idle(ap));
ata_qc_complete(qc);
pdc20621_pop_hdma(qc);
}
/* step one - exec ATA command */
else {
u8 seq = (u8) (port_no + 1 + 4);
VPRINTK("ata%u: read ata, 0x%x 0x%x\n", ap->print_id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit hdma pkt */
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq,
port_ofs + PDC_DIMM_HOST_PKT);
}
handled = 1;
} else if (qc->tf.protocol == ATA_PROT_DMA) { /* write */
/* step one - DMA from host to DIMM */
if (doing_hdma) {
u8 seq = (u8) (port_no + 1);
VPRINTK("ata%u: write hdma, 0x%x 0x%x\n", ap->print_id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit ata pkt */
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4));
writel(port_ofs + PDC_DIMM_ATA_PKT,
ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl(ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
}
/* step two - execute ATA command */
else {
VPRINTK("ata%u: write ata, 0x%x 0x%x\n", ap->print_id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* get drive status; clear intr; complete txn */
qc->err_mask |= ac_err_mask(ata_wait_idle(ap));
ata_qc_complete(qc);
pdc20621_pop_hdma(qc);
}
handled = 1;
/* command completion, but no data xfer */
} else if (qc->tf.protocol == ATA_PROT_NODATA) {
status = ata_sff_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
DPRINTK("BUS_NODATA (drv_stat 0x%X)\n", status);
qc->err_mask |= ac_err_mask(status);
ata_qc_complete(qc);
handled = 1;
} else {
ap->stats.idle_irq++;
}
return handled;
}
static void pdc20621_irq_clear(struct ata_port *ap)
{
struct ata_host *host = ap->host;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
mmio += PDC_CHIP0_OFS;
readl(mmio + PDC_20621_SEQMASK);
}
static irqreturn_t pdc20621_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct ata_port *ap;
u32 mask = 0;
unsigned int i, tmp, port_no;
unsigned int handled = 0;
void __iomem *mmio_base;
VPRINTK("ENTER\n");
if (!host || !host->iomap[PDC_MMIO_BAR]) {
VPRINTK("QUICK EXIT\n");
return IRQ_NONE;
}
mmio_base = host->iomap[PDC_MMIO_BAR];
/* reading should also clear interrupts */
mmio_base += PDC_CHIP0_OFS;
mask = readl(mmio_base + PDC_20621_SEQMASK);
VPRINTK("mask == 0x%x\n", mask);
if (mask == 0xffffffff) {
VPRINTK("QUICK EXIT 2\n");
return IRQ_NONE;
}
mask &= 0xffff; /* only 16 tags possible */
if (!mask) {
VPRINTK("QUICK EXIT 3\n");
return IRQ_NONE;
}
spin_lock(&host->lock);
for (i = 1; i < 9; i++) {
port_no = i - 1;
if (port_no > 3)
port_no -= 4;
if (port_no >= host->n_ports)
ap = NULL;
else
ap = host->ports[port_no];
tmp = mask & (1 << i);
VPRINTK("seq %u, port_no %u, ap %p, tmp %x\n", i, port_no, ap, tmp);
if (tmp && ap &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
handled += pdc20621_host_intr(ap, qc, (i > 4),
mmio_base);
}
}
spin_unlock(&host->lock);
VPRINTK("mask == 0x%x\n", mask);
VPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static void pdc_eng_timeout(struct ata_port *ap)
{
u8 drv_stat;
struct ata_host *host = ap->host;
struct ata_queued_cmd *qc;
unsigned long flags;
DPRINTK("ENTER\n");
spin_lock_irqsave(&host->lock, flags);
qc = ata_qc_from_tag(ap, ap->link.active_tag);
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
case ATA_PROT_NODATA:
ata_port_printk(ap, KERN_ERR, "command timeout\n");
qc->err_mask |= __ac_err_mask(ata_wait_idle(ap));
break;
default:
drv_stat = ata_sff_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
ata_port_printk(ap, KERN_ERR,
"unknown timeout, cmd 0x%x stat 0x%x\n",
qc->tf.command, drv_stat);
qc->err_mask |= ac_err_mask(drv_stat);
break;
}
spin_unlock_irqrestore(&host->lock, flags);
ata_eh_qc_complete(qc);
DPRINTK("EXIT\n");
}
static void pdc_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
WARN_ON(tf->protocol == ATA_PROT_DMA ||
tf->protocol == ATA_PROT_NODATA);
ata_sff_tf_load(ap, tf);
}
static void pdc_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
WARN_ON(tf->protocol == ATA_PROT_DMA ||
tf->protocol == ATA_PROT_NODATA);
ata_sff_exec_command(ap, tf);
}
static void pdc_sata_setup_port(struct ata_ioports *port, void __iomem *base)
{
port->cmd_addr = base;
port->data_addr = base;
port->feature_addr =
port->error_addr = base + 0x4;
port->nsect_addr = base + 0x8;
port->lbal_addr = base + 0xc;
port->lbam_addr = base + 0x10;
port->lbah_addr = base + 0x14;
port->device_addr = base + 0x18;
port->command_addr =
port->status_addr = base + 0x1c;
port->altstatus_addr =
port->ctl_addr = base + 0x38;
}
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_host *host, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
void __iomem *dimm_mmio = host->iomap[PDC_DIMM_BAR];
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long) (window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_fromio((char *) psource, (char *) (dimm_mmio + offset / 4),
dist);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
window_size / 4);
psource += window_size;
size -= window_size;
idx++;
}
if (size) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
size / 4);
}
}
#endif
static void pdc20621_put_to_dimm(struct ata_host *host, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
void __iomem *dimm_mmio = host->iomap[PDC_DIMM_BAR];
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long)(s32)(window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_toio(dimm_mmio + offset / 4, psource, dist);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio(dimm_mmio, psource, window_size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += window_size;
size -= window_size;
idx++;
}
if (size) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio(dimm_mmio, psource, size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
}
}
static unsigned int pdc20621_i2c_read(struct ata_host *host, u32 device,
u32 subaddr, u32 *pdata)
{
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
u32 i2creg = 0;
u32 status;
u32 count = 0;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
i2creg |= device << 24;
i2creg |= subaddr << 16;
/* Set the device and subaddress */
writel(i2creg, mmio + PDC_I2C_ADDR_DATA);
readl(mmio + PDC_I2C_ADDR_DATA);
/* Write Control to perform read operation, mask int */
writel(PDC_I2C_READ | PDC_I2C_START | PDC_I2C_MASK_INT,
mmio + PDC_I2C_CONTROL);
for (count = 0; count <= 1000; count ++) {
status = readl(mmio + PDC_I2C_CONTROL);
if (status & PDC_I2C_COMPLETE) {
status = readl(mmio + PDC_I2C_ADDR_DATA);
break;
} else if (count == 1000)
return 0;
}
*pdata = (status >> 8) & 0x000000ff;
return 1;
}
static int pdc20621_detect_dimm(struct ata_host *host)
{
u32 data = 0;
if (pdc20621_i2c_read(host, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_SYSTEM_FREQ, &data)) {
if (data == 100)
return 100;
} else
return 0;
if (pdc20621_i2c_read(host, PDC_DIMM0_SPD_DEV_ADDRESS, 9, &data)) {
if (data <= 0x75)
return 133;
} else
return 0;
return 0;
}
static int pdc20621_prog_dimm0(struct ata_host *host)
{
u32 spd0[50];
u32 data = 0;
int size, i;
u8 bdimmsize;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
static const struct {
unsigned int reg;
unsigned int ofs;
} pdc_i2c_read_data [] = {
{ PDC_DIMM_SPD_TYPE, 11 },
{ PDC_DIMM_SPD_FRESH_RATE, 12 },
{ PDC_DIMM_SPD_COLUMN_NUM, 4 },
{ PDC_DIMM_SPD_ATTRIBUTE, 21 },
{ PDC_DIMM_SPD_ROW_NUM, 3 },
{ PDC_DIMM_SPD_BANK_NUM, 17 },
{ PDC_DIMM_SPD_MODULE_ROW, 5 },
{ PDC_DIMM_SPD_ROW_PRE_CHARGE, 27 },
{ PDC_DIMM_SPD_ROW_ACTIVE_DELAY, 28 },
{ PDC_DIMM_SPD_RAS_CAS_DELAY, 29 },
{ PDC_DIMM_SPD_ACTIVE_PRECHARGE, 30 },
{ PDC_DIMM_SPD_CAS_LATENCY, 18 },
};
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
for (i = 0; i < ARRAY_SIZE(pdc_i2c_read_data); i++)
pdc20621_i2c_read(host, PDC_DIMM0_SPD_DEV_ADDRESS,
pdc_i2c_read_data[i].reg,
&spd0[pdc_i2c_read_data[i].ofs]);
data |= (spd0[4] - 8) | ((spd0[21] != 0) << 3) | ((spd0[3]-11) << 4);
data |= ((spd0[17] / 4) << 6) | ((spd0[5] / 2) << 7) |
((((spd0[27] + 9) / 10) - 1) << 8) ;
data |= (((((spd0[29] > spd0[28])
? spd0[29] : spd0[28]) + 9) / 10) - 1) << 10;
data |= ((spd0[30] - spd0[29] + 9) / 10 - 2) << 12;
if (spd0[18] & 0x08)
data |= ((0x03) << 14);
else if (spd0[18] & 0x04)
data |= ((0x02) << 14);
else if (spd0[18] & 0x01)
data |= ((0x01) << 14);
else
data |= (0 << 14);
/*
Calculate the size of bDIMMSize (power of 2) and
merge the DIMM size by program start/end address.
*/
bdimmsize = spd0[4] + (spd0[5] / 2) + spd0[3] + (spd0[17] / 2) + 3;
size = (1 << bdimmsize) >> 20; /* size = xxx(MB) */
data |= (((size / 16) - 1) << 16);
data |= (0 << 23);
data |= 8;
writel(data, mmio + PDC_DIMM0_CONTROL);
readl(mmio + PDC_DIMM0_CONTROL);
return size;
}
static unsigned int pdc20621_prog_dimm_global(struct ata_host *host)
{
u32 data, spd0;
int error, i;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
Set To Default : DIMM Module Global Control Register (0x022259F1)
DIMM Arbitration Disable (bit 20)
DIMM Data/Control Output Driving Selection (bit12 - bit15)
Refresh Enable (bit 17)
*/
data = 0x022259F1;
writel(data, mmio + PDC_SDRAM_CONTROL);
readl(mmio + PDC_SDRAM_CONTROL);
/* Turn on for ECC */
pdc20621_i2c_read(host, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
data |= (0x01 << 16);
writel(data, mmio + PDC_SDRAM_CONTROL);
readl(mmio + PDC_SDRAM_CONTROL);
printk(KERN_ERR "Local DIMM ECC Enabled\n");
}
/* DIMM Initialization Select/Enable (bit 18/19) */
data &= (~(1<<18));
data |= (1<<19);
writel(data, mmio + PDC_SDRAM_CONTROL);
error = 1;
for (i = 1; i <= 10; i++) { /* polling ~5 secs */
data = readl(mmio + PDC_SDRAM_CONTROL);
if (!(data & (1<<19))) {
error = 0;
break;
}
msleep(i*100);
}
return error;
}
static unsigned int pdc20621_dimm_init(struct ata_host *host)
{
int speed, size, length;
u32 addr, spd0, pci_status;
u32 tmp = 0;
u32 time_period = 0;
u32 tcount = 0;
u32 ticks = 0;
u32 clock = 0;
u32 fparam = 0;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/* Initialize PLL based upon PCI Bus Frequency */
/* Initialize Time Period Register */
writel(0xffffffff, mmio + PDC_TIME_PERIOD);
time_period = readl(mmio + PDC_TIME_PERIOD);
VPRINTK("Time Period Register (0x40): 0x%x\n", time_period);
/* Enable timer */
writel(PDC_TIMER_DEFAULT, mmio + PDC_TIME_CONTROL);
readl(mmio + PDC_TIME_CONTROL);
/* Wait 3 seconds */
msleep(3000);
/*
When timer is enabled, counter is decreased every internal
clock cycle.
*/
tcount = readl(mmio + PDC_TIME_COUNTER);
VPRINTK("Time Counter Register (0x44): 0x%x\n", tcount);
/*
If SX4 is on PCI-X bus, after 3 seconds, the timer counter
register should be >= (0xffffffff - 3x10^8).
*/
if (tcount >= PCI_X_TCOUNT) {
ticks = (time_period - tcount);
VPRINTK("Num counters 0x%x (%d)\n", ticks, ticks);
clock = (ticks / 300000);
VPRINTK("10 * Internal clk = 0x%x (%d)\n", clock, clock);
clock = (clock * 33);
VPRINTK("10 * Internal clk * 33 = 0x%x (%d)\n", clock, clock);
/* PLL F Param (bit 22:16) */
fparam = (1400000 / clock) - 2;
VPRINTK("PLL F Param: 0x%x (%d)\n", fparam, fparam);
/* OD param = 0x2 (bit 31:30), R param = 0x5 (bit 29:25) */
pci_status = (0x8a001824 | (fparam << 16));
} else
pci_status = PCI_PLL_INIT;
/* Initialize PLL. */
VPRINTK("pci_status: 0x%x\n", pci_status);
writel(pci_status, mmio + PDC_CTL_STATUS);
readl(mmio + PDC_CTL_STATUS);
/*
Read SPD of DIMM by I2C interface,
and program the DIMM Module Controller.
*/
if (!(speed = pdc20621_detect_dimm(host))) {
printk(KERN_ERR "Detect Local DIMM Fail\n");
return 1; /* DIMM error */
}
VPRINTK("Local DIMM Speed = %d\n", speed);
/* Programming DIMM0 Module Control Register (index_CID0:80h) */
size = pdc20621_prog_dimm0(host);
VPRINTK("Local DIMM Size = %dMB\n", size);
/* Programming DIMM Module Global Control Register (index_CID0:88h) */
if (pdc20621_prog_dimm_global(host)) {
printk(KERN_ERR "Programming DIMM Module Global Control Register Fail\n");
return 1;
}
#ifdef ATA_VERBOSE_DEBUG
{
u8 test_parttern1[40] =
{0x55,0xAA,'P','r','o','m','i','s','e',' ',
'N','o','t',' ','Y','e','t',' ',
'D','e','f','i','n','e','d',' ',
'1','.','1','0',
'9','8','0','3','1','6','1','2',0,0};
u8 test_parttern2[40] = {0};
pdc20621_put_to_dimm(host, test_parttern2, 0x10040, 40);
pdc20621_put_to_dimm(host, test_parttern2, 0x40, 40);
pdc20621_put_to_dimm(host, test_parttern1, 0x10040, 40);
pdc20621_get_from_dimm(host, test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_get_from_dimm(host, test_parttern2, 0x10040,
40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_put_to_dimm(host, test_parttern1, 0x40, 40);
pdc20621_get_from_dimm(host, test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
}
#endif
/* ECC initiliazation. */
pdc20621_i2c_read(host, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
VPRINTK("Start ECC initialization\n");
addr = 0;
length = size * 1024 * 1024;
while (addr < length) {
pdc20621_put_to_dimm(host, (void *) &tmp, addr,
sizeof(u32));
addr += sizeof(u32);
}
VPRINTK("Finish ECC initialization\n");
}
return 0;
}
static void pdc_20621_init(struct ata_host *host)
{
u32 tmp;
void __iomem *mmio = host->iomap[PDC_MMIO_BAR];
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Select page 0x40 for our 32k DIMM window
*/
tmp = readl(mmio + PDC_20621_DIMM_WINDOW) & 0xffff0000;
tmp |= PDC_PAGE_WINDOW; /* page 40h; arbitrarily selected */
writel(tmp, mmio + PDC_20621_DIMM_WINDOW);
/*
* Reset Host DMA
*/
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp |= PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
udelay(10);
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp &= ~PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
}
static int pdc_sata_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static int printed_version;
const struct ata_port_info *ppi[] =
{ &pdc_port_info[ent->driver_data], NULL };
struct ata_host *host;
struct pdc_host_priv *hpriv;
int i, rc;
if (!printed_version++)
dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
/* allocate host */
host = ata_host_alloc_pinfo(&pdev->dev, ppi, 4);
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
if (!host || !hpriv)
return -ENOMEM;
host->private_data = hpriv;
/* acquire resources and fill host */
rc = pcim_enable_device(pdev);
if (rc)
return rc;
rc = pcim_iomap_regions(pdev, (1 << PDC_MMIO_BAR) | (1 << PDC_DIMM_BAR),
DRV_NAME);
if (rc == -EBUSY)
pcim_pin_device(pdev);
if (rc)
return rc;
host->iomap = pcim_iomap_table(pdev);
for (i = 0; i < 4; i++) {
struct ata_port *ap = host->ports[i];
void __iomem *base = host->iomap[PDC_MMIO_BAR] + PDC_CHIP0_OFS;
unsigned int offset = 0x200 + i * 0x80;
pdc_sata_setup_port(&ap->ioaddr, base + offset);
ata_port_pbar_desc(ap, PDC_MMIO_BAR, -1, "mmio");
ata_port_pbar_desc(ap, PDC_DIMM_BAR, -1, "dimm");
ata_port_pbar_desc(ap, PDC_MMIO_BAR, offset, "port");
}
/* configure and activate */
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
return rc;
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
return rc;
if (pdc20621_dimm_init(host))
return -ENOMEM;
pdc_20621_init(host);
pci_set_master(pdev);
return ata_host_activate(host, pdev->irq, pdc20621_interrupt,
IRQF_SHARED, &pdc_sata_sht);
}
static int __init pdc_sata_init(void)
{
return pci_register_driver(&pdc_sata_pci_driver);
}
static void __exit pdc_sata_exit(void)
{
pci_unregister_driver(&pdc_sata_pci_driver);
}
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Promise SATA low-level driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pdc_sata_pci_tbl);
MODULE_VERSION(DRV_VERSION);
module_init(pdc_sata_init);
module_exit(pdc_sata_exit);