kernel-fxtec-pro1x/drivers/usb/gadget/f_eem.c

599 lines
15 KiB
C
Raw Normal View History

/*
* f_eem.c -- USB CDC Ethernet (EEM) link function driver
*
* Copyright (C) 2003-2005,2008 David Brownell
* Copyright (C) 2008 Nokia Corporation
* Copyright (C) 2009 EF Johnson Technologies
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/etherdevice.h>
#include <linux/crc32.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include "u_ether.h"
#define EEM_HLEN 2
/*
* This function is a "CDC Ethernet Emulation Model" (CDC EEM)
* Ethernet link.
*/
struct f_eem {
struct gether port;
u8 ctrl_id;
};
static inline struct f_eem *func_to_eem(struct usb_function *f)
{
return container_of(f, struct f_eem, port.func);
}
/*-------------------------------------------------------------------------*/
/* interface descriptor: */
static struct usb_interface_descriptor eem_intf __initdata = {
.bLength = sizeof eem_intf,
.bDescriptorType = USB_DT_INTERFACE,
/* .bInterfaceNumber = DYNAMIC */
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_COMM,
.bInterfaceSubClass = USB_CDC_SUBCLASS_EEM,
.bInterfaceProtocol = USB_CDC_PROTO_EEM,
/* .iInterface = DYNAMIC */
};
/* full speed support: */
static struct usb_endpoint_descriptor eem_fs_in_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_endpoint_descriptor eem_fs_out_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_descriptor_header *eem_fs_function[] __initdata = {
/* CDC EEM control descriptors */
(struct usb_descriptor_header *) &eem_intf,
(struct usb_descriptor_header *) &eem_fs_in_desc,
(struct usb_descriptor_header *) &eem_fs_out_desc,
NULL,
};
/* high speed support: */
static struct usb_endpoint_descriptor eem_hs_in_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_endpoint_descriptor eem_hs_out_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_descriptor_header *eem_hs_function[] __initdata = {
/* CDC EEM control descriptors */
(struct usb_descriptor_header *) &eem_intf,
(struct usb_descriptor_header *) &eem_hs_in_desc,
(struct usb_descriptor_header *) &eem_hs_out_desc,
NULL,
};
/* super speed support: */
static struct usb_endpoint_descriptor eem_ss_in_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_endpoint_descriptor eem_ss_out_desc __initdata = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor eem_ss_bulk_comp_desc __initdata = {
.bLength = sizeof eem_ss_bulk_comp_desc,
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
/* the following 2 values can be tweaked if necessary */
/* .bMaxBurst = 0, */
/* .bmAttributes = 0, */
};
static struct usb_descriptor_header *eem_ss_function[] __initdata = {
/* CDC EEM control descriptors */
(struct usb_descriptor_header *) &eem_intf,
(struct usb_descriptor_header *) &eem_ss_in_desc,
(struct usb_descriptor_header *) &eem_ss_bulk_comp_desc,
(struct usb_descriptor_header *) &eem_ss_out_desc,
(struct usb_descriptor_header *) &eem_ss_bulk_comp_desc,
NULL,
};
/* string descriptors: */
static struct usb_string eem_string_defs[] = {
[0].s = "CDC Ethernet Emulation Model (EEM)",
{ } /* end of list */
};
static struct usb_gadget_strings eem_string_table = {
.language = 0x0409, /* en-us */
.strings = eem_string_defs,
};
static struct usb_gadget_strings *eem_strings[] = {
&eem_string_table,
NULL,
};
/*-------------------------------------------------------------------------*/
static int eem_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl)
{
struct usb_composite_dev *cdev = f->config->cdev;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
DBG(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
/* device either stalls (value < 0) or reports success */
return value;
}
static int eem_set_alt(struct usb_function *f, unsigned intf, unsigned alt)
{
struct f_eem *eem = func_to_eem(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct net_device *net;
/* we know alt == 0, so this is an activation or a reset */
if (alt != 0)
goto fail;
if (intf == eem->ctrl_id) {
if (eem->port.in_ep->driver_data) {
DBG(cdev, "reset eem\n");
gether_disconnect(&eem->port);
}
if (!eem->port.in_ep->desc || !eem->port.out_ep->desc) {
DBG(cdev, "init eem\n");
if (config_ep_by_speed(cdev->gadget, f,
eem->port.in_ep) ||
config_ep_by_speed(cdev->gadget, f,
eem->port.out_ep)) {
eem->port.in_ep->desc = NULL;
eem->port.out_ep->desc = NULL;
goto fail;
}
}
/* zlps should not occur because zero-length EEM packets
* will be inserted in those cases where they would occur
*/
eem->port.is_zlp_ok = 1;
eem->port.cdc_filter = DEFAULT_FILTER;
DBG(cdev, "activate eem\n");
net = gether_connect(&eem->port);
if (IS_ERR(net))
return PTR_ERR(net);
} else
goto fail;
return 0;
fail:
return -EINVAL;
}
static void eem_disable(struct usb_function *f)
{
struct f_eem *eem = func_to_eem(f);
struct usb_composite_dev *cdev = f->config->cdev;
DBG(cdev, "eem deactivated\n");
if (eem->port.in_ep->driver_data)
gether_disconnect(&eem->port);
}
/*-------------------------------------------------------------------------*/
/* EEM function driver setup/binding */
static int __init
eem_bind(struct usb_configuration *c, struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct f_eem *eem = func_to_eem(f);
int status;
struct usb_ep *ep;
/* allocate instance-specific interface IDs */
status = usb_interface_id(c, f);
if (status < 0)
goto fail;
eem->ctrl_id = status;
eem_intf.bInterfaceNumber = status;
status = -ENODEV;
/* allocate instance-specific endpoints */
ep = usb_ep_autoconfig(cdev->gadget, &eem_fs_in_desc);
if (!ep)
goto fail;
eem->port.in_ep = ep;
ep->driver_data = cdev; /* claim */
ep = usb_ep_autoconfig(cdev->gadget, &eem_fs_out_desc);
if (!ep)
goto fail;
eem->port.out_ep = ep;
ep->driver_data = cdev; /* claim */
status = -ENOMEM;
/* copy descriptors, and track endpoint copies */
f->descriptors = usb_copy_descriptors(eem_fs_function);
if (!f->descriptors)
goto fail;
/* support all relevant hardware speeds... we expect that when
* hardware is dual speed, all bulk-capable endpoints work at
* both speeds
*/
if (gadget_is_dualspeed(c->cdev->gadget)) {
eem_hs_in_desc.bEndpointAddress =
eem_fs_in_desc.bEndpointAddress;
eem_hs_out_desc.bEndpointAddress =
eem_fs_out_desc.bEndpointAddress;
/* copy descriptors, and track endpoint copies */
f->hs_descriptors = usb_copy_descriptors(eem_hs_function);
if (!f->hs_descriptors)
goto fail;
}
if (gadget_is_superspeed(c->cdev->gadget)) {
eem_ss_in_desc.bEndpointAddress =
eem_fs_in_desc.bEndpointAddress;
eem_ss_out_desc.bEndpointAddress =
eem_fs_out_desc.bEndpointAddress;
/* copy descriptors, and track endpoint copies */
f->ss_descriptors = usb_copy_descriptors(eem_ss_function);
if (!f->ss_descriptors)
goto fail;
}
DBG(cdev, "CDC Ethernet (EEM): %s speed IN/%s OUT/%s\n",
gadget_is_superspeed(c->cdev->gadget) ? "super" :
gadget_is_dualspeed(c->cdev->gadget) ? "dual" : "full",
eem->port.in_ep->name, eem->port.out_ep->name);
return 0;
fail:
if (f->descriptors)
usb_free_descriptors(f->descriptors);
if (f->hs_descriptors)
usb_free_descriptors(f->hs_descriptors);
/* we might as well release our claims on endpoints */
if (eem->port.out_ep->desc)
eem->port.out_ep->driver_data = NULL;
if (eem->port.in_ep->desc)
eem->port.in_ep->driver_data = NULL;
ERROR(cdev, "%s: can't bind, err %d\n", f->name, status);
return status;
}
static void
eem_unbind(struct usb_configuration *c, struct usb_function *f)
{
struct f_eem *eem = func_to_eem(f);
DBG(c->cdev, "eem unbind\n");
if (gadget_is_superspeed(c->cdev->gadget))
usb_free_descriptors(f->ss_descriptors);
if (gadget_is_dualspeed(c->cdev->gadget))
usb_free_descriptors(f->hs_descriptors);
usb_free_descriptors(f->descriptors);
kfree(eem);
}
static void eem_cmd_complete(struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb = (struct sk_buff *)req->context;
dev_kfree_skb_any(skb);
}
/*
* Add the EEM header and ethernet checksum.
* We currently do not attempt to put multiple ethernet frames
* into a single USB transfer
*/
static struct sk_buff *eem_wrap(struct gether *port, struct sk_buff *skb)
{
struct sk_buff *skb2 = NULL;
struct usb_ep *in = port->in_ep;
int padlen = 0;
u16 len = skb->len;
if (!skb_cloned(skb)) {
int headroom = skb_headroom(skb);
int tailroom = skb_tailroom(skb);
/* When (len + EEM_HLEN + ETH_FCS_LEN) % in->maxpacket) is 0,
* stick two bytes of zero-length EEM packet on the end.
*/
if (((len + EEM_HLEN + ETH_FCS_LEN) % in->maxpacket) == 0)
padlen += 2;
if ((tailroom >= (ETH_FCS_LEN + padlen)) &&
(headroom >= EEM_HLEN))
goto done;
}
skb2 = skb_copy_expand(skb, EEM_HLEN, ETH_FCS_LEN + padlen, GFP_ATOMIC);
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return skb;
done:
/* use the "no CRC" option */
put_unaligned_be32(0xdeadbeef, skb_put(skb, 4));
/* EEM packet header format:
* b0..13: length of ethernet frame
* b14: bmCRC (0 == sentinel CRC)
* b15: bmType (0 == data)
*/
len = skb->len;
put_unaligned_le16(len & 0x3FFF, skb_push(skb, 2));
/* add a zero-length EEM packet, if needed */
if (padlen)
put_unaligned_le16(0, skb_put(skb, 2));
return skb;
}
/*
* Remove the EEM header. Note that there can be many EEM packets in a single
* USB transfer, so we need to break them out and handle them independently.
*/
static int eem_unwrap(struct gether *port,
struct sk_buff *skb,
struct sk_buff_head *list)
{
struct usb_composite_dev *cdev = port->func.config->cdev;
int status = 0;
do {
struct sk_buff *skb2;
u16 header;
u16 len = 0;
if (skb->len < EEM_HLEN) {
status = -EINVAL;
DBG(cdev, "invalid EEM header\n");
goto error;
}
/* remove the EEM header */
header = get_unaligned_le16(skb->data);
skb_pull(skb, EEM_HLEN);
/* EEM packet header format:
* b0..14: EEM type dependent (data or command)
* b15: bmType (0 == data, 1 == command)
*/
if (header & BIT(15)) {
struct usb_request *req = cdev->req;
u16 bmEEMCmd;
/* EEM command packet format:
* b0..10: bmEEMCmdParam
* b11..13: bmEEMCmd
* b14: reserved (must be zero)
* b15: bmType (1 == command)
*/
if (header & BIT(14))
continue;
bmEEMCmd = (header >> 11) & 0x7;
switch (bmEEMCmd) {
case 0: /* echo */
len = header & 0x7FF;
if (skb->len < len) {
status = -EOVERFLOW;
goto error;
}
skb2 = skb_clone(skb, GFP_ATOMIC);
if (unlikely(!skb2)) {
DBG(cdev, "EEM echo response error\n");
goto next;
}
skb_trim(skb2, len);
put_unaligned_le16(BIT(15) | BIT(11) | len,
skb_push(skb2, 2));
skb_copy_bits(skb2, 0, req->buf, skb2->len);
req->length = skb2->len;
req->complete = eem_cmd_complete;
req->zero = 1;
req->context = skb2;
if (usb_ep_queue(port->in_ep, req, GFP_ATOMIC))
DBG(cdev, "echo response queue fail\n");
break;
case 1: /* echo response */
case 2: /* suspend hint */
case 3: /* response hint */
case 4: /* response complete hint */
case 5: /* tickle */
default: /* reserved */
continue;
}
} else {
u32 crc, crc2;
struct sk_buff *skb3;
/* check for zero-length EEM packet */
if (header == 0)
continue;
/* EEM data packet format:
* b0..13: length of ethernet frame
* b14: bmCRC (0 == sentinel, 1 == calculated)
* b15: bmType (0 == data)
*/
len = header & 0x3FFF;
if ((skb->len < len)
|| (len < (ETH_HLEN + ETH_FCS_LEN))) {
status = -EINVAL;
goto error;
}
/* validate CRC */
if (header & BIT(14)) {
crc = get_unaligned_le32(skb->data + len
- ETH_FCS_LEN);
crc2 = ~crc32_le(~0,
skb->data, len - ETH_FCS_LEN);
} else {
crc = get_unaligned_be32(skb->data + len
- ETH_FCS_LEN);
crc2 = 0xdeadbeef;
}
if (crc != crc2) {
DBG(cdev, "invalid EEM CRC\n");
goto next;
}
skb2 = skb_clone(skb, GFP_ATOMIC);
if (unlikely(!skb2)) {
DBG(cdev, "unable to unframe EEM packet\n");
continue;
}
skb_trim(skb2, len - ETH_FCS_LEN);
skb3 = skb_copy_expand(skb2,
NET_IP_ALIGN,
0,
GFP_ATOMIC);
if (unlikely(!skb3)) {
DBG(cdev, "unable to realign EEM packet\n");
dev_kfree_skb_any(skb2);
continue;
}
dev_kfree_skb_any(skb2);
skb_queue_tail(list, skb3);
}
next:
skb_pull(skb, len);
} while (skb->len);
error:
dev_kfree_skb_any(skb);
return status;
}
/**
* eem_bind_config - add CDC Ethernet (EEM) network link to a configuration
* @c: the configuration to support the network link
* Context: single threaded during gadget setup
*
* Returns zero on success, else negative errno.
*
* Caller must have called @gether_setup(). Caller is also responsible
* for calling @gether_cleanup() before module unload.
*/
int __init eem_bind_config(struct usb_configuration *c)
{
struct f_eem *eem;
int status;
/* maybe allocate device-global string IDs */
if (eem_string_defs[0].id == 0) {
/* control interface label */
status = usb_string_id(c->cdev);
if (status < 0)
return status;
eem_string_defs[0].id = status;
eem_intf.iInterface = status;
}
/* allocate and initialize one new instance */
eem = kzalloc(sizeof *eem, GFP_KERNEL);
if (!eem)
return -ENOMEM;
eem->port.cdc_filter = DEFAULT_FILTER;
eem->port.func.name = "cdc_eem";
eem->port.func.strings = eem_strings;
/* descriptors are per-instance copies */
eem->port.func.bind = eem_bind;
eem->port.func.unbind = eem_unbind;
eem->port.func.set_alt = eem_set_alt;
eem->port.func.setup = eem_setup;
eem->port.func.disable = eem_disable;
eem->port.wrap = eem_wrap;
eem->port.unwrap = eem_unwrap;
eem->port.header_len = EEM_HLEN;
status = usb_add_function(c, &eem->port.func);
if (status)
kfree(eem);
return status;
}