kernel-fxtec-pro1x/include/linux/proc_fs.h

284 lines
8.4 KiB
C
Raw Normal View History

#ifndef _LINUX_PROC_FS_H
#define _LINUX_PROC_FS_H
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/spinlock.h>
#include <linux/magic.h>
#include <asm/atomic.h>
struct net;
2007-07-16 00:39:00 -06:00
struct completion;
/*
* The proc filesystem constants/structures
*/
/*
* Offset of the first process in the /proc root directory..
*/
#define FIRST_PROCESS_ENTRY 256
/*
* We always define these enumerators
*/
enum {
PROC_ROOT_INO = 1,
};
/*
* This is not completely implemented yet. The idea is to
* create an in-memory tree (like the actual /proc filesystem
* tree) of these proc_dir_entries, so that we can dynamically
* add new files to /proc.
*
* The "next" pointer creates a linked list of one /proc directory,
* while parent/subdir create the directory structure (every
* /proc file has a parent, but "subdir" is NULL for all
* non-directory entries).
*
* "get_info" is called at "read", while "owner" is used to protect module
* from unloading while proc_dir_entry is in use
*/
typedef int (read_proc_t)(char *page, char **start, off_t off,
int count, int *eof, void *data);
typedef int (write_proc_t)(struct file *file, const char __user *buffer,
unsigned long count, void *data);
typedef int (get_info_t)(char *, char **, off_t, int);
struct proc_dir_entry {
unsigned int low_ino;
unsigned short namelen;
const char *name;
mode_t mode;
nlink_t nlink;
uid_t uid;
gid_t gid;
loff_t size;
const struct inode_operations *proc_iops;
2007-07-16 00:39:00 -06:00
/*
* NULL ->proc_fops means "PDE is going away RSN" or
* "PDE is just created". In either case, e.g. ->read_proc won't be
* called because it's too late or too early, respectively.
*
* If you're allocating ->proc_fops dynamically, save a pointer
* somewhere.
*/
const struct file_operations *proc_fops;
get_info_t *get_info;
struct module *owner;
struct proc_dir_entry *next, *parent, *subdir;
void *data;
read_proc_t *read_proc;
write_proc_t *write_proc;
atomic_t count; /* use count */
int deleted; /* delete flag */
2007-07-16 00:39:00 -06:00
int pde_users; /* number of callers into module in progress */
spinlock_t pde_unload_lock; /* proc_fops checks and pde_users bumps */
struct completion *pde_unload_completion;
};
struct kcore_list {
struct kcore_list *next;
unsigned long addr;
size_t size;
};
struct vmcore {
struct list_head list;
unsigned long long paddr;
unsigned long long size;
loff_t offset;
};
#ifdef CONFIG_PROC_FS
extern struct proc_dir_entry proc_root;
extern struct proc_dir_entry *proc_root_fs;
extern struct proc_dir_entry *proc_bus;
extern struct proc_dir_entry *proc_root_driver;
extern struct proc_dir_entry *proc_root_kcore;
extern spinlock_t proc_subdir_lock;
extern void proc_root_init(void);
extern void proc_misc_init(void);
struct mm_struct;
void proc_flush_task(struct task_struct *task);
struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *);
int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir);
unsigned long task_vsize(struct mm_struct *);
int task_statm(struct mm_struct *, int *, int *, int *, int *);
char *task_mem(struct mm_struct *, char *);
smaps: add clear_refs file to clear reference Adds /proc/pid/clear_refs. When any non-zero number is written to this file, pte_mkold() and ClearPageReferenced() is called for each pte and its corresponding page, respectively, in that task's VMAs. This file is only writable by the user who owns the task. It is now possible to measure _approximately_ how much memory a task is using by clearing the reference bits with echo 1 > /proc/pid/clear_refs and checking the reference count for each VMA from the /proc/pid/smaps output at a measured time interval. For example, to observe the approximate change in memory footprint for a task, write a script that clears the references (echo 1 > /proc/pid/clear_refs), sleeps, and then greps for Pgs_Referenced and extracts the size in kB. Add the sizes for each VMA together for the total referenced footprint. Moments later, repeat the process and observe the difference. For example, using an efficient Mozilla: accumulated time referenced memory ---------------- ----------------- 0 s 408 kB 1 s 408 kB 2 s 556 kB 3 s 1028 kB 4 s 872 kB 5 s 1956 kB 6 s 416 kB 7 s 1560 kB 8 s 2336 kB 9 s 1044 kB 10 s 416 kB This is a valuable tool to get an approximate measurement of the memory footprint for a task. Cc: Hugh Dickins <hugh@veritas.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: David Rientjes <rientjes@google.com> [akpm@linux-foundation.org: build fixes] [mpm@selenic.com: rename for_each_pmd] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 15:49:24 -06:00
void clear_refs_smap(struct mm_struct *mm);
struct proc_dir_entry *de_get(struct proc_dir_entry *de);
void de_put(struct proc_dir_entry *de);
extern struct proc_dir_entry *create_proc_entry(const char *name, mode_t mode,
struct proc_dir_entry *parent);
extern void remove_proc_entry(const char *name, struct proc_dir_entry *parent);
extern struct vfsmount *proc_mnt;
extern int proc_fill_super(struct super_block *,void *,int);
extern struct inode *proc_get_inode(struct super_block *, unsigned int, struct proc_dir_entry *);
/*
* These are generic /proc routines that use the internal
* "struct proc_dir_entry" tree to traverse the filesystem.
*
* The /proc root directory has extended versions to take care
* of the /proc/<pid> subdirectories.
*/
extern int proc_readdir(struct file *, void *, filldir_t);
extern struct dentry *proc_lookup(struct inode *, struct dentry *, struct nameidata *);
extern const struct file_operations proc_kcore_operations;
extern const struct file_operations proc_kmsg_operations;
extern const struct file_operations ppc_htab_operations;
/*
* proc_tty.c
*/
struct tty_driver;
extern void proc_tty_init(void);
extern void proc_tty_register_driver(struct tty_driver *driver);
extern void proc_tty_unregister_driver(struct tty_driver *driver);
/*
* proc_devtree.c
*/
#ifdef CONFIG_PROC_DEVICETREE
struct device_node;
struct property;
extern void proc_device_tree_init(void);
extern void proc_device_tree_add_node(struct device_node *, struct proc_dir_entry *);
extern void proc_device_tree_add_prop(struct proc_dir_entry *pde, struct property *prop);
extern void proc_device_tree_remove_prop(struct proc_dir_entry *pde,
struct property *prop);
extern void proc_device_tree_update_prop(struct proc_dir_entry *pde,
struct property *newprop,
struct property *oldprop);
#endif /* CONFIG_PROC_DEVICETREE */
extern struct proc_dir_entry *proc_symlink(const char *,
struct proc_dir_entry *, const char *);
extern struct proc_dir_entry *proc_mkdir(const char *,struct proc_dir_entry *);
extern struct proc_dir_entry *proc_mkdir_mode(const char *name, mode_t mode,
struct proc_dir_entry *parent);
static inline struct proc_dir_entry *create_proc_read_entry(const char *name,
mode_t mode, struct proc_dir_entry *base,
read_proc_t *read_proc, void * data)
{
struct proc_dir_entry *res=create_proc_entry(name,mode,base);
if (res) {
res->read_proc=read_proc;
res->data=data;
}
return res;
}
static inline struct proc_dir_entry *create_proc_info_entry(const char *name,
mode_t mode, struct proc_dir_entry *base, get_info_t *get_info)
{
struct proc_dir_entry *res=create_proc_entry(name,mode,base);
if (res) res->get_info=get_info;
return res;
}
extern struct proc_dir_entry *proc_net_create(struct net *net,
const char *name, mode_t mode, get_info_t *get_info);
extern struct proc_dir_entry *proc_net_fops_create(struct net *net,
const char *name, mode_t mode, const struct file_operations *fops);
extern void proc_net_remove(struct net *net, const char *name);
#else
#define proc_root_driver NULL
#define proc_bus NULL
#define proc_net_fops_create(net, name, mode, fops) ({ (void)(mode), NULL; })
#define proc_net_create(net, name, mode, info) ({ (void)(mode), NULL; })
static inline void proc_net_remove(struct net *net, const char *name) {}
static inline void proc_flush_task(struct task_struct *task) { }
static inline struct proc_dir_entry *create_proc_entry(const char *name,
mode_t mode, struct proc_dir_entry *parent) { return NULL; }
#define remove_proc_entry(name, parent) do {} while (0)
static inline struct proc_dir_entry *proc_symlink(const char *name,
struct proc_dir_entry *parent,const char *dest) {return NULL;}
static inline struct proc_dir_entry *proc_mkdir(const char *name,
struct proc_dir_entry *parent) {return NULL;}
static inline struct proc_dir_entry *create_proc_read_entry(const char *name,
mode_t mode, struct proc_dir_entry *base,
read_proc_t *read_proc, void * data) { return NULL; }
static inline struct proc_dir_entry *create_proc_info_entry(const char *name,
mode_t mode, struct proc_dir_entry *base, get_info_t *get_info)
{ return NULL; }
struct tty_driver;
static inline void proc_tty_register_driver(struct tty_driver *driver) {};
static inline void proc_tty_unregister_driver(struct tty_driver *driver) {};
extern struct proc_dir_entry proc_root;
#endif /* CONFIG_PROC_FS */
#if !defined(CONFIG_PROC_KCORE)
static inline void kclist_add(struct kcore_list *new, void *addr, size_t size)
{
}
#else
extern void kclist_add(struct kcore_list *, void *, size_t);
#endif
union proc_op {
int (*proc_get_link)(struct inode *, struct dentry **, struct vfsmount **);
int (*proc_read)(struct task_struct *task, char *page);
};
struct proc_inode {
struct pid *pid;
int fd;
union proc_op op;
struct proc_dir_entry *pde;
struct inode vfs_inode;
};
static inline struct proc_inode *PROC_I(const struct inode *inode)
{
return container_of(inode, struct proc_inode, vfs_inode);
}
static inline struct proc_dir_entry *PDE(const struct inode *inode)
{
return PROC_I(inode)->pde;
}
static inline struct net *PDE_NET(struct proc_dir_entry *pde)
{
return pde->parent->data;
}
struct net *get_proc_net(const struct inode *inode);
struct proc_maps_private {
struct pid *pid;
struct task_struct *task;
#ifdef CONFIG_MMU
struct vm_area_struct *tail_vma;
#endif
};
#endif /* _LINUX_PROC_FS_H */