2005-04-16 16:20:36 -06:00
|
|
|
/*
|
|
|
|
* linux/arch/i386/mm/fault.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/signal.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/mman.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/smp.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/tty.h>
|
|
|
|
#include <linux/vt_kern.h> /* For unblank_screen() */
|
|
|
|
#include <linux/highmem.h>
|
2007-05-02 11:27:04 -06:00
|
|
|
#include <linux/bootmem.h> /* for max_low_pfn */
|
2007-05-08 01:27:03 -06:00
|
|
|
#include <linux/vmalloc.h>
|
2005-04-16 16:20:36 -06:00
|
|
|
#include <linux/module.h>
|
2005-09-06 16:19:27 -06:00
|
|
|
#include <linux/kprobes.h>
|
2006-12-06 18:14:06 -07:00
|
|
|
#include <linux/uaccess.h>
|
2007-05-08 01:27:03 -06:00
|
|
|
#include <linux/kdebug.h>
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <asm/desc.h>
|
2006-09-26 02:52:39 -06:00
|
|
|
#include <asm/segment.h>
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
extern void die(const char *,struct pt_regs *,long);
|
|
|
|
|
2006-09-26 02:52:35 -06:00
|
|
|
static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
|
|
|
|
|
2006-06-26 01:25:25 -06:00
|
|
|
int register_page_fault_notifier(struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
vmalloc_sync_all();
|
|
|
|
return atomic_notifier_chain_register(¬ify_page_fault_chain, nb);
|
|
|
|
}
|
2006-09-26 02:52:35 -06:00
|
|
|
EXPORT_SYMBOL_GPL(register_page_fault_notifier);
|
2006-06-26 01:25:25 -06:00
|
|
|
|
|
|
|
int unregister_page_fault_notifier(struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb);
|
|
|
|
}
|
2006-09-26 02:52:35 -06:00
|
|
|
EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
|
2006-06-26 01:25:25 -06:00
|
|
|
|
2007-02-13 05:26:23 -07:00
|
|
|
static inline int notify_page_fault(struct pt_regs *regs, long err)
|
2006-06-26 01:25:25 -06:00
|
|
|
{
|
|
|
|
struct die_args args = {
|
|
|
|
.regs = regs,
|
2007-02-13 05:26:23 -07:00
|
|
|
.str = "page fault",
|
2006-06-26 01:25:25 -06:00
|
|
|
.err = err,
|
2007-02-13 05:26:23 -07:00
|
|
|
.trapnr = 14,
|
|
|
|
.signr = SIGSEGV
|
2006-06-26 01:25:25 -06:00
|
|
|
};
|
2007-02-13 05:26:23 -07:00
|
|
|
return atomic_notifier_call_chain(¬ify_page_fault_chain,
|
|
|
|
DIE_PAGE_FAULT, &args);
|
2006-06-26 01:25:25 -06:00
|
|
|
}
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
/*
|
|
|
|
* Return EIP plus the CS segment base. The segment limit is also
|
|
|
|
* adjusted, clamped to the kernel/user address space (whichever is
|
|
|
|
* appropriate), and returned in *eip_limit.
|
|
|
|
*
|
|
|
|
* The segment is checked, because it might have been changed by another
|
|
|
|
* task between the original faulting instruction and here.
|
|
|
|
*
|
|
|
|
* If CS is no longer a valid code segment, or if EIP is beyond the
|
|
|
|
* limit, or if it is a kernel address when CS is not a kernel segment,
|
|
|
|
* then the returned value will be greater than *eip_limit.
|
|
|
|
*
|
|
|
|
* This is slow, but is very rarely executed.
|
|
|
|
*/
|
|
|
|
static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
|
|
|
unsigned long *eip_limit)
|
|
|
|
{
|
|
|
|
unsigned long eip = regs->eip;
|
|
|
|
unsigned seg = regs->xcs & 0xffff;
|
|
|
|
u32 seg_ar, seg_limit, base, *desc;
|
|
|
|
|
2006-06-23 03:04:29 -06:00
|
|
|
/* Unlikely, but must come before segment checks. */
|
|
|
|
if (unlikely(regs->eflags & VM_MASK)) {
|
|
|
|
base = seg << 4;
|
|
|
|
*eip_limit = base + 0xffff;
|
|
|
|
return base + (eip & 0xffff);
|
|
|
|
}
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
/* The standard kernel/user address space limit. */
|
2006-09-26 02:52:39 -06:00
|
|
|
*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
/* By far the most common cases. */
|
2006-09-26 02:52:39 -06:00
|
|
|
if (likely(SEGMENT_IS_FLAT_CODE(seg)))
|
2005-04-16 16:20:36 -06:00
|
|
|
return eip;
|
|
|
|
|
|
|
|
/* Check the segment exists, is within the current LDT/GDT size,
|
|
|
|
that kernel/user (ring 0..3) has the appropriate privilege,
|
|
|
|
that it's a code segment, and get the limit. */
|
|
|
|
__asm__ ("larl %3,%0; lsll %3,%1"
|
|
|
|
: "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
|
|
|
|
if ((~seg_ar & 0x9800) || eip > seg_limit) {
|
|
|
|
*eip_limit = 0;
|
|
|
|
return 1; /* So that returned eip > *eip_limit. */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the GDT/LDT descriptor base.
|
|
|
|
When you look for races in this code remember that
|
|
|
|
LDT and other horrors are only used in user space. */
|
|
|
|
if (seg & (1<<2)) {
|
|
|
|
/* Must lock the LDT while reading it. */
|
|
|
|
down(¤t->mm->context.sem);
|
|
|
|
desc = current->mm->context.ldt;
|
|
|
|
desc = (void *)desc + (seg & ~7);
|
|
|
|
} else {
|
|
|
|
/* Must disable preemption while reading the GDT. */
|
2005-10-30 15:59:34 -07:00
|
|
|
desc = (u32 *)get_cpu_gdt_table(get_cpu());
|
2005-04-16 16:20:36 -06:00
|
|
|
desc = (void *)desc + (seg & ~7);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decode the code segment base from the descriptor */
|
|
|
|
base = get_desc_base((unsigned long *)desc);
|
|
|
|
|
|
|
|
if (seg & (1<<2)) {
|
|
|
|
up(¤t->mm->context.sem);
|
|
|
|
} else
|
|
|
|
put_cpu();
|
|
|
|
|
|
|
|
/* Adjust EIP and segment limit, and clamp at the kernel limit.
|
|
|
|
It's legitimate for segments to wrap at 0xffffffff. */
|
|
|
|
seg_limit += base;
|
|
|
|
if (seg_limit < *eip_limit && seg_limit >= base)
|
|
|
|
*eip_limit = seg_limit;
|
|
|
|
return eip + base;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
|
|
|
* Check that here and ignore it.
|
|
|
|
*/
|
|
|
|
static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
|
|
|
|
{
|
|
|
|
unsigned long limit;
|
2006-12-06 18:14:06 -07:00
|
|
|
unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
|
2005-04-16 16:20:36 -06:00
|
|
|
int scan_more = 1;
|
|
|
|
int prefetch = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; scan_more && i < 15; i++) {
|
|
|
|
unsigned char opcode;
|
|
|
|
unsigned char instr_hi;
|
|
|
|
unsigned char instr_lo;
|
|
|
|
|
2006-12-06 18:14:06 -07:00
|
|
|
if (instr > (unsigned char *)limit)
|
2005-04-16 16:20:36 -06:00
|
|
|
break;
|
2006-12-06 18:14:06 -07:00
|
|
|
if (probe_kernel_address(instr, opcode))
|
2005-04-16 16:20:36 -06:00
|
|
|
break;
|
|
|
|
|
|
|
|
instr_hi = opcode & 0xf0;
|
|
|
|
instr_lo = opcode & 0x0f;
|
|
|
|
instr++;
|
|
|
|
|
|
|
|
switch (instr_hi) {
|
|
|
|
case 0x20:
|
|
|
|
case 0x30:
|
|
|
|
/* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
|
|
|
|
scan_more = ((instr_lo & 7) == 0x6);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x60:
|
|
|
|
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
|
|
|
scan_more = (instr_lo & 0xC) == 0x4;
|
|
|
|
break;
|
|
|
|
case 0xF0:
|
|
|
|
/* 0xF0, 0xF2, and 0xF3 are valid prefixes */
|
|
|
|
scan_more = !instr_lo || (instr_lo>>1) == 1;
|
|
|
|
break;
|
|
|
|
case 0x00:
|
|
|
|
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
|
|
|
scan_more = 0;
|
2006-12-06 18:14:06 -07:00
|
|
|
if (instr > (unsigned char *)limit)
|
2005-04-16 16:20:36 -06:00
|
|
|
break;
|
2006-12-06 18:14:06 -07:00
|
|
|
if (probe_kernel_address(instr, opcode))
|
2005-04-16 16:20:36 -06:00
|
|
|
break;
|
|
|
|
prefetch = (instr_lo == 0xF) &&
|
|
|
|
(opcode == 0x0D || opcode == 0x18);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
scan_more = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return prefetch;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
|
|
|
unsigned long error_code)
|
|
|
|
{
|
|
|
|
if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
|
|
|
|
boot_cpu_data.x86 >= 6)) {
|
|
|
|
/* Catch an obscure case of prefetch inside an NX page. */
|
|
|
|
if (nx_enabled && (error_code & 16))
|
|
|
|
return 0;
|
|
|
|
return __is_prefetch(regs, addr);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-09-03 16:56:26 -06:00
|
|
|
static noinline void force_sig_info_fault(int si_signo, int si_code,
|
|
|
|
unsigned long address, struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
siginfo_t info;
|
|
|
|
|
|
|
|
info.si_signo = si_signo;
|
|
|
|
info.si_errno = 0;
|
|
|
|
info.si_code = si_code;
|
|
|
|
info.si_addr = (void __user *)address;
|
|
|
|
force_sig_info(si_signo, &info, tsk);
|
|
|
|
}
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
fastcall void do_invalid_op(struct pt_regs *, unsigned long);
|
|
|
|
|
2006-03-23 03:59:45 -07:00
|
|
|
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
|
|
|
{
|
|
|
|
unsigned index = pgd_index(address);
|
|
|
|
pgd_t *pgd_k;
|
|
|
|
pud_t *pud, *pud_k;
|
|
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
|
|
|
|
pgd += index;
|
|
|
|
pgd_k = init_mm.pgd + index;
|
|
|
|
|
|
|
|
if (!pgd_present(*pgd_k))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* set_pgd(pgd, *pgd_k); here would be useless on PAE
|
|
|
|
* and redundant with the set_pmd() on non-PAE. As would
|
|
|
|
* set_pud.
|
|
|
|
*/
|
|
|
|
|
|
|
|
pud = pud_offset(pgd, address);
|
|
|
|
pud_k = pud_offset(pgd_k, address);
|
|
|
|
if (!pud_present(*pud_k))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
|
|
if (!pmd_present(*pmd_k))
|
|
|
|
return NULL;
|
|
|
|
if (!pmd_present(*pmd))
|
|
|
|
set_pmd(pmd, *pmd_k);
|
|
|
|
else
|
|
|
|
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
|
|
|
|
return pmd_k;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle a fault on the vmalloc or module mapping area
|
|
|
|
*
|
|
|
|
* This assumes no large pages in there.
|
|
|
|
*/
|
|
|
|
static inline int vmalloc_fault(unsigned long address)
|
|
|
|
{
|
|
|
|
unsigned long pgd_paddr;
|
|
|
|
pmd_t *pmd_k;
|
|
|
|
pte_t *pte_k;
|
|
|
|
/*
|
|
|
|
* Synchronize this task's top level page-table
|
|
|
|
* with the 'reference' page table.
|
|
|
|
*
|
|
|
|
* Do _not_ use "current" here. We might be inside
|
|
|
|
* an interrupt in the middle of a task switch..
|
|
|
|
*/
|
|
|
|
pgd_paddr = read_cr3();
|
|
|
|
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
|
|
|
|
if (!pmd_k)
|
|
|
|
return -1;
|
|
|
|
pte_k = pte_offset_kernel(pmd_k, address);
|
|
|
|
if (!pte_present(*pte_k))
|
|
|
|
return -1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
/*
|
|
|
|
* This routine handles page faults. It determines the address,
|
|
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
|
|
* routines.
|
|
|
|
*
|
|
|
|
* error_code:
|
|
|
|
* bit 0 == 0 means no page found, 1 means protection fault
|
|
|
|
* bit 1 == 0 means read, 1 means write
|
|
|
|
* bit 2 == 0 means kernel, 1 means user-mode
|
2006-03-23 03:59:45 -07:00
|
|
|
* bit 3 == 1 means use of reserved bit detected
|
|
|
|
* bit 4 == 1 means fault was an instruction fetch
|
2005-04-16 16:20:36 -06:00
|
|
|
*/
|
2005-09-06 16:19:27 -06:00
|
|
|
fastcall void __kprobes do_page_fault(struct pt_regs *regs,
|
|
|
|
unsigned long error_code)
|
2005-04-16 16:20:36 -06:00
|
|
|
{
|
|
|
|
struct task_struct *tsk;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
struct vm_area_struct * vma;
|
|
|
|
unsigned long address;
|
2005-09-03 16:56:26 -06:00
|
|
|
int write, si_code;
|
2007-07-19 02:47:05 -06:00
|
|
|
int fault;
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
/* get the address */
|
2005-09-03 16:56:36 -06:00
|
|
|
address = read_cr2();
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
tsk = current;
|
|
|
|
|
2005-09-03 16:56:26 -06:00
|
|
|
si_code = SEGV_MAPERR;
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We fault-in kernel-space virtual memory on-demand. The
|
|
|
|
* 'reference' page table is init_mm.pgd.
|
|
|
|
*
|
|
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
|
|
* be in an interrupt or a critical region, and should
|
|
|
|
* only copy the information from the master page table,
|
|
|
|
* nothing more.
|
|
|
|
*
|
|
|
|
* This verifies that the fault happens in kernel space
|
|
|
|
* (error_code & 4) == 0, and that the fault was not a
|
2006-03-23 03:59:45 -07:00
|
|
|
* protection error (error_code & 9) == 0.
|
2005-04-16 16:20:36 -06:00
|
|
|
*/
|
2006-03-23 03:59:45 -07:00
|
|
|
if (unlikely(address >= TASK_SIZE)) {
|
|
|
|
if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
|
|
|
|
return;
|
2007-02-13 05:26:23 -07:00
|
|
|
if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
|
2006-03-23 03:59:45 -07:00
|
|
|
return;
|
|
|
|
/*
|
2005-04-16 16:20:36 -06:00
|
|
|
* Don't take the mm semaphore here. If we fixup a prefetch
|
|
|
|
* fault we could otherwise deadlock.
|
|
|
|
*/
|
|
|
|
goto bad_area_nosemaphore;
|
2006-03-23 03:59:45 -07:00
|
|
|
}
|
|
|
|
|
2007-02-13 05:26:23 -07:00
|
|
|
if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
|
2006-03-23 03:59:45 -07:00
|
|
|
return;
|
|
|
|
|
|
|
|
/* It's safe to allow irq's after cr2 has been saved and the vmalloc
|
|
|
|
fault has been handled. */
|
|
|
|
if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
|
|
|
|
local_irq_enable();
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
mm = tsk->mm;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we're in an interrupt, have no user context or are running in an
|
|
|
|
* atomic region then we must not take the fault..
|
|
|
|
*/
|
|
|
|
if (in_atomic() || !mm)
|
|
|
|
goto bad_area_nosemaphore;
|
|
|
|
|
|
|
|
/* When running in the kernel we expect faults to occur only to
|
|
|
|
* addresses in user space. All other faults represent errors in the
|
|
|
|
* kernel and should generate an OOPS. Unfortunatly, in the case of an
|
2006-06-30 10:27:16 -06:00
|
|
|
* erroneous fault occurring in a code path which already holds mmap_sem
|
2005-04-16 16:20:36 -06:00
|
|
|
* we will deadlock attempting to validate the fault against the
|
|
|
|
* address space. Luckily the kernel only validly references user
|
|
|
|
* space from well defined areas of code, which are listed in the
|
|
|
|
* exceptions table.
|
|
|
|
*
|
|
|
|
* As the vast majority of faults will be valid we will only perform
|
|
|
|
* the source reference check when there is a possibilty of a deadlock.
|
|
|
|
* Attempt to lock the address space, if we cannot we then validate the
|
|
|
|
* source. If this is invalid we can skip the address space check,
|
|
|
|
* thus avoiding the deadlock.
|
|
|
|
*/
|
|
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
|
|
if ((error_code & 4) == 0 &&
|
|
|
|
!search_exception_tables(regs->eip))
|
|
|
|
goto bad_area_nosemaphore;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
vma = find_vma(mm, address);
|
|
|
|
if (!vma)
|
|
|
|
goto bad_area;
|
|
|
|
if (vma->vm_start <= address)
|
|
|
|
goto good_area;
|
|
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
|
|
goto bad_area;
|
|
|
|
if (error_code & 4) {
|
|
|
|
/*
|
2006-06-23 03:04:23 -06:00
|
|
|
* Accessing the stack below %esp is always a bug.
|
|
|
|
* The large cushion allows instructions like enter
|
|
|
|
* and pusha to work. ("enter $65535,$31" pushes
|
|
|
|
* 32 pointers and then decrements %esp by 65535.)
|
2005-04-16 16:20:36 -06:00
|
|
|
*/
|
2006-06-23 03:04:23 -06:00
|
|
|
if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
|
2005-04-16 16:20:36 -06:00
|
|
|
goto bad_area;
|
|
|
|
}
|
|
|
|
if (expand_stack(vma, address))
|
|
|
|
goto bad_area;
|
|
|
|
/*
|
|
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
|
|
* we can handle it..
|
|
|
|
*/
|
|
|
|
good_area:
|
2005-09-03 16:56:26 -06:00
|
|
|
si_code = SEGV_ACCERR;
|
2005-04-16 16:20:36 -06:00
|
|
|
write = 0;
|
|
|
|
switch (error_code & 3) {
|
|
|
|
default: /* 3: write, present */
|
2006-09-26 02:52:39 -06:00
|
|
|
/* fall through */
|
2005-04-16 16:20:36 -06:00
|
|
|
case 2: /* write, not present */
|
|
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
|
|
goto bad_area;
|
|
|
|
write++;
|
|
|
|
break;
|
|
|
|
case 1: /* read, present */
|
|
|
|
goto bad_area;
|
|
|
|
case 0: /* read, not present */
|
[PATCH] make PROT_WRITE imply PROT_READ
Make PROT_WRITE imply PROT_READ for a number of architectures which don't
support write only in hardware.
While looking at this, I noticed that some architectures which do not
support write only mappings already take the exact same approach. For
example, in arch/alpha/mm/fault.c:
"
if (cause < 0) {
if (!(vma->vm_flags & VM_EXEC))
goto bad_area;
} else if (!cause) {
/* Allow reads even for write-only mappings */
if (!(vma->vm_flags & (VM_READ | VM_WRITE)))
goto bad_area;
} else {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
}
"
Thus, this patch brings other architectures which do not support write only
mappings in-line and consistent with the rest. I've verified the patch on
ia64, x86_64 and x86.
Additional discussion:
Several architectures, including x86, can not support write-only mappings.
The pte for x86 reserves a single bit for protection and its two states are
read only or read/write. Thus, write only is not supported in h/w.
Currently, if i 'mmap' a page write-only, the first read attempt on that page
creates a page fault and will SEGV. That check is enforced in
arch/blah/mm/fault.c. However, if i first write that page it will fault in
and the pte will be set to read/write. Thus, any subsequent reads to the page
will succeed. It is this inconsistency in behavior that this patch is
attempting to address. Furthermore, if the page is swapped out, and then
brought back the first read will also cause a SEGV. Thus, any arbitrary read
on a page can potentially result in a SEGV.
According to the SuSv3 spec, "if the application requests only PROT_WRITE, the
implementation may also allow read access." Also as mentioned, some
archtectures, such as alpha, shown above already take the approach that i am
suggesting.
The counter-argument to this raised by Arjan, is that the kernel is enforcing
the write only mapping the best it can given the h/w limitations. This is
true, however Alan Cox, and myself would argue that the inconsitency in
behavior, that is applications can sometimes work/sometimes fails is highly
undesireable. If you read through the thread, i think people, came to an
agreement on the last patch i posted, as nobody has objected to it...
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Andi Kleen <ak@muc.de>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Ian Molton <spyro@f2s.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 02:58:58 -06:00
|
|
|
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
2005-04-16 16:20:36 -06:00
|
|
|
goto bad_area;
|
|
|
|
}
|
|
|
|
|
|
|
|
survive:
|
|
|
|
/*
|
|
|
|
* If for any reason at all we couldn't handle the fault,
|
|
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
|
|
* the fault.
|
|
|
|
*/
|
2007-07-19 02:47:05 -06:00
|
|
|
fault = handle_mm_fault(mm, vma, address, write);
|
|
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
|
|
if (fault & VM_FAULT_OOM)
|
2005-04-16 16:20:36 -06:00
|
|
|
goto out_of_memory;
|
2007-07-19 02:47:05 -06:00
|
|
|
else if (fault & VM_FAULT_SIGBUS)
|
|
|
|
goto do_sigbus;
|
|
|
|
BUG();
|
2005-04-16 16:20:36 -06:00
|
|
|
}
|
2007-07-19 02:47:05 -06:00
|
|
|
if (fault & VM_FAULT_MAJOR)
|
|
|
|
tsk->maj_flt++;
|
|
|
|
else
|
|
|
|
tsk->min_flt++;
|
2005-04-16 16:20:36 -06:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Did it hit the DOS screen memory VA from vm86 mode?
|
|
|
|
*/
|
|
|
|
if (regs->eflags & VM_MASK) {
|
|
|
|
unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
|
|
|
|
if (bit < 32)
|
|
|
|
tsk->thread.screen_bitmap |= 1 << bit;
|
|
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Something tried to access memory that isn't in our memory map..
|
|
|
|
* Fix it, but check if it's kernel or user first..
|
|
|
|
*/
|
|
|
|
bad_area:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
|
|
|
|
bad_area_nosemaphore:
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
|
|
if (error_code & 4) {
|
2007-06-06 21:34:04 -06:00
|
|
|
/*
|
|
|
|
* It's possible to have interrupts off here.
|
|
|
|
*/
|
|
|
|
local_irq_enable();
|
|
|
|
|
2005-04-16 16:20:36 -06:00
|
|
|
/*
|
|
|
|
* Valid to do another page fault here because this one came
|
|
|
|
* from user space.
|
|
|
|
*/
|
|
|
|
if (is_prefetch(regs, address, error_code))
|
|
|
|
return;
|
|
|
|
|
|
|
|
tsk->thread.cr2 = address;
|
|
|
|
/* Kernel addresses are always protection faults */
|
|
|
|
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
|
|
|
|
tsk->thread.trap_no = 14;
|
2005-09-03 16:56:26 -06:00
|
|
|
force_sig_info_fault(SIGSEGV, si_code, address, tsk);
|
2005-04-16 16:20:36 -06:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
|
|
/*
|
|
|
|
* Pentium F0 0F C7 C8 bug workaround.
|
|
|
|
*/
|
|
|
|
if (boot_cpu_data.f00f_bug) {
|
|
|
|
unsigned long nr;
|
|
|
|
|
|
|
|
nr = (address - idt_descr.address) >> 3;
|
|
|
|
|
|
|
|
if (nr == 6) {
|
|
|
|
do_invalid_op(regs, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
no_context:
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
|
|
if (fixup_exception(regs))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Valid to do another page fault here, because if this fault
|
|
|
|
* had been triggered by is_prefetch fixup_exception would have
|
|
|
|
* handled it.
|
|
|
|
*/
|
|
|
|
if (is_prefetch(regs, address, error_code))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
|
|
* terminate things with extreme prejudice.
|
|
|
|
*/
|
|
|
|
|
|
|
|
bust_spinlocks(1);
|
|
|
|
|
2006-03-23 04:00:57 -07:00
|
|
|
if (oops_may_print()) {
|
2007-05-02 11:27:04 -06:00
|
|
|
__typeof__(pte_val(__pte(0))) page;
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_PAE
|
2006-03-23 04:00:57 -07:00
|
|
|
if (error_code & 16) {
|
|
|
|
pte_t *pte = lookup_address(address);
|
|
|
|
|
|
|
|
if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
|
|
|
|
printk(KERN_CRIT "kernel tried to execute "
|
|
|
|
"NX-protected page - exploit attempt? "
|
|
|
|
"(uid: %d)\n", current->uid);
|
|
|
|
}
|
2007-05-02 11:27:04 -06:00
|
|
|
#endif
|
2006-03-23 04:00:57 -07:00
|
|
|
if (address < PAGE_SIZE)
|
|
|
|
printk(KERN_ALERT "BUG: unable to handle kernel NULL "
|
|
|
|
"pointer dereference");
|
|
|
|
else
|
|
|
|
printk(KERN_ALERT "BUG: unable to handle kernel paging"
|
|
|
|
" request");
|
|
|
|
printk(" at virtual address %08lx\n",address);
|
|
|
|
printk(KERN_ALERT " printing eip:\n");
|
|
|
|
printk("%08lx\n", regs->eip);
|
2007-05-02 11:27:04 -06:00
|
|
|
|
|
|
|
page = read_cr3();
|
|
|
|
page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
printk(KERN_ALERT "*pdpt = %016Lx\n", page);
|
|
|
|
if ((page >> PAGE_SHIFT) < max_low_pfn
|
|
|
|
&& page & _PAGE_PRESENT) {
|
|
|
|
page &= PAGE_MASK;
|
|
|
|
page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
|
|
|
|
& (PTRS_PER_PMD - 1)];
|
|
|
|
printk(KERN_ALERT "*pde = %016Lx\n", page);
|
|
|
|
page &= ~_PAGE_NX;
|
|
|
|
}
|
|
|
|
#else
|
2006-03-23 04:00:57 -07:00
|
|
|
printk(KERN_ALERT "*pde = %08lx\n", page);
|
2005-04-16 16:20:36 -06:00
|
|
|
#endif
|
2007-05-02 11:27:04 -06:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We must not directly access the pte in the highpte
|
|
|
|
* case if the page table is located in highmem.
|
|
|
|
* And let's rather not kmap-atomic the pte, just in case
|
|
|
|
* it's allocated already.
|
|
|
|
*/
|
|
|
|
if ((page >> PAGE_SHIFT) < max_low_pfn
|
|
|
|
&& (page & _PAGE_PRESENT)) {
|
|
|
|
page &= PAGE_MASK;
|
|
|
|
page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
|
|
|
|
& (PTRS_PER_PTE - 1)];
|
|
|
|
printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-06-25 15:58:27 -06:00
|
|
|
tsk->thread.cr2 = address;
|
|
|
|
tsk->thread.trap_no = 14;
|
|
|
|
tsk->thread.error_code = error_code;
|
2005-04-16 16:20:36 -06:00
|
|
|
die("Oops", regs, error_code);
|
|
|
|
bust_spinlocks(0);
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We ran out of memory, or some other thing happened to us that made
|
|
|
|
* us unable to handle the page fault gracefully.
|
|
|
|
*/
|
|
|
|
out_of_memory:
|
|
|
|
up_read(&mm->mmap_sem);
|
2006-09-29 03:00:07 -06:00
|
|
|
if (is_init(tsk)) {
|
2005-04-16 16:20:36 -06:00
|
|
|
yield();
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
goto survive;
|
|
|
|
}
|
|
|
|
printk("VM: killing process %s\n", tsk->comm);
|
|
|
|
if (error_code & 4)
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
goto no_context;
|
|
|
|
|
|
|
|
do_sigbus:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
|
|
if (!(error_code & 4))
|
|
|
|
goto no_context;
|
|
|
|
|
|
|
|
/* User space => ok to do another page fault */
|
|
|
|
if (is_prefetch(regs, address, error_code))
|
|
|
|
return;
|
|
|
|
|
|
|
|
tsk->thread.cr2 = address;
|
|
|
|
tsk->thread.error_code = error_code;
|
|
|
|
tsk->thread.trap_no = 14;
|
2005-09-03 16:56:26 -06:00
|
|
|
force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
|
2006-03-23 03:59:45 -07:00
|
|
|
}
|
2005-04-16 16:20:36 -06:00
|
|
|
|
2006-03-23 03:59:45 -07:00
|
|
|
void vmalloc_sync_all(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Note that races in the updates of insync and start aren't
|
|
|
|
* problematic: insync can only get set bits added, and updates to
|
|
|
|
* start are only improving performance (without affecting correctness
|
|
|
|
* if undone).
|
|
|
|
*/
|
|
|
|
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
|
|
|
|
static unsigned long start = TASK_SIZE;
|
|
|
|
unsigned long address;
|
2005-04-16 16:20:36 -06:00
|
|
|
|
[PATCH] i386: PARAVIRT: Allow paravirt backend to choose kernel PMD sharing
Normally when running in PAE mode, the 4th PMD maps the kernel address space,
which can be shared among all processes (since they all need the same kernel
mappings).
Xen, however, does not allow guests to have the kernel pmd shared between page
tables, so parameterize pgtable.c to allow both modes of operation.
There are several side-effects of this. One is that vmalloc will update the
kernel address space mappings, and those updates need to be propagated into
all processes if the kernel mappings are not intrinsically shared. In the
non-PAE case, this is done by maintaining a pgd_list of all processes; this
list is used when all process pagetables must be updated. pgd_list is
threaded via otherwise unused entries in the page structure for the pgd, which
means that the pgd must be page-sized for this to work.
Normally the PAE pgd is only 4x64 byte entries large, but Xen requires the PAE
pgd to page aligned anyway, so this patch forces the pgd to be page
aligned+sized when the kernel pmd is unshared, to accomodate both these
requirements.
Also, since there may be several distinct kernel pmds (if the user/kernel
split is below 3G), there's no point in allocating them from a slab cache;
they're just allocated with get_free_page and initialized appropriately. (Of
course the could be cached if there is just a single kernel pmd - which is the
default with a 3G user/kernel split - but it doesn't seem worthwhile to add
yet another case into this code).
[ Many thanks to wli for review comments. ]
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <clameter@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-05-02 11:27:13 -06:00
|
|
|
if (SHARED_KERNEL_PMD)
|
|
|
|
return;
|
|
|
|
|
2006-03-23 03:59:45 -07:00
|
|
|
BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
|
|
|
|
for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
|
|
|
|
if (!test_bit(pgd_index(address), insync)) {
|
|
|
|
unsigned long flags;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
|
|
for (page = pgd_list; page; page =
|
|
|
|
(struct page *)page->index)
|
|
|
|
if (!vmalloc_sync_one(page_address(page),
|
|
|
|
address)) {
|
|
|
|
BUG_ON(page != pgd_list);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
if (!page)
|
|
|
|
set_bit(pgd_index(address), insync);
|
|
|
|
}
|
|
|
|
if (address == start && test_bit(pgd_index(address), insync))
|
|
|
|
start = address + PGDIR_SIZE;
|
2005-04-16 16:20:36 -06:00
|
|
|
}
|
|
|
|
}
|