kernel-fxtec-pro1x/arch/ia64/kvm/kvm_fw.c

675 lines
16 KiB
C
Raw Normal View History

/*
* PAL/SAL call delegation
*
* Copyright (c) 2004 Li Susie <susie.li@intel.com>
* Copyright (c) 2005 Yu Ke <ke.yu@intel.com>
* Copyright (c) 2007 Xiantao Zhang <xiantao.zhang@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*/
#include <linux/kvm_host.h>
#include <linux/smp.h>
#include <asm/sn/addrs.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/shub_mmr.h>
#include "vti.h"
#include "misc.h"
#include <asm/pal.h>
#include <asm/sal.h>
#include <asm/tlb.h>
/*
* Handy macros to make sure that the PAL return values start out
* as something meaningful.
*/
#define INIT_PAL_STATUS_UNIMPLEMENTED(x) \
{ \
x.status = PAL_STATUS_UNIMPLEMENTED; \
x.v0 = 0; \
x.v1 = 0; \
x.v2 = 0; \
}
#define INIT_PAL_STATUS_SUCCESS(x) \
{ \
x.status = PAL_STATUS_SUCCESS; \
x.v0 = 0; \
x.v1 = 0; \
x.v2 = 0; \
}
static void kvm_get_pal_call_data(struct kvm_vcpu *vcpu,
u64 *gr28, u64 *gr29, u64 *gr30, u64 *gr31) {
struct exit_ctl_data *p;
if (vcpu) {
p = &vcpu->arch.exit_data;
if (p->exit_reason == EXIT_REASON_PAL_CALL) {
*gr28 = p->u.pal_data.gr28;
*gr29 = p->u.pal_data.gr29;
*gr30 = p->u.pal_data.gr30;
*gr31 = p->u.pal_data.gr31;
return ;
}
}
printk(KERN_DEBUG"Failed to get vcpu pal data!!!\n");
}
static void set_pal_result(struct kvm_vcpu *vcpu,
struct ia64_pal_retval result) {
struct exit_ctl_data *p;
p = kvm_get_exit_data(vcpu);
if (p->exit_reason == EXIT_REASON_PAL_CALL) {
p->u.pal_data.ret = result;
return ;
}
INIT_PAL_STATUS_UNIMPLEMENTED(p->u.pal_data.ret);
}
static void set_sal_result(struct kvm_vcpu *vcpu,
struct sal_ret_values result) {
struct exit_ctl_data *p;
p = kvm_get_exit_data(vcpu);
if (p->exit_reason == EXIT_REASON_SAL_CALL) {
p->u.sal_data.ret = result;
return ;
}
printk(KERN_WARNING"Failed to set sal result!!\n");
}
struct cache_flush_args {
u64 cache_type;
u64 operation;
u64 progress;
long status;
};
cpumask_t cpu_cache_coherent_map;
static void remote_pal_cache_flush(void *data)
{
struct cache_flush_args *args = data;
long status;
u64 progress = args->progress;
status = ia64_pal_cache_flush(args->cache_type, args->operation,
&progress, NULL);
if (status != 0)
args->status = status;
}
static struct ia64_pal_retval pal_cache_flush(struct kvm_vcpu *vcpu)
{
u64 gr28, gr29, gr30, gr31;
struct ia64_pal_retval result = {0, 0, 0, 0};
struct cache_flush_args args = {0, 0, 0, 0};
long psr;
gr28 = gr29 = gr30 = gr31 = 0;
kvm_get_pal_call_data(vcpu, &gr28, &gr29, &gr30, &gr31);
if (gr31 != 0)
printk(KERN_ERR"vcpu:%p called cache_flush error!\n", vcpu);
/* Always call Host Pal in int=1 */
gr30 &= ~PAL_CACHE_FLUSH_CHK_INTRS;
args.cache_type = gr29;
args.operation = gr30;
smp_call_function(remote_pal_cache_flush,
(void *)&args, 1);
if (args.status != 0)
printk(KERN_ERR"pal_cache_flush error!,"
"status:0x%lx\n", args.status);
/*
* Call Host PAL cache flush
* Clear psr.ic when call PAL_CACHE_FLUSH
*/
local_irq_save(psr);
result.status = ia64_pal_cache_flush(gr29, gr30, &result.v1,
&result.v0);
local_irq_restore(psr);
if (result.status != 0)
printk(KERN_ERR"vcpu:%p crashed due to cache_flush err:%ld"
"in1:%lx,in2:%lx\n",
vcpu, result.status, gr29, gr30);
#if 0
if (gr29 == PAL_CACHE_TYPE_COHERENT) {
cpus_setall(vcpu->arch.cache_coherent_map);
cpu_clear(vcpu->cpu, vcpu->arch.cache_coherent_map);
cpus_setall(cpu_cache_coherent_map);
cpu_clear(vcpu->cpu, cpu_cache_coherent_map);
}
#endif
return result;
}
struct ia64_pal_retval pal_cache_summary(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result;
PAL_CALL(result, PAL_CACHE_SUMMARY, 0, 0, 0);
return result;
}
static struct ia64_pal_retval pal_freq_base(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result;
PAL_CALL(result, PAL_FREQ_BASE, 0, 0, 0);
/*
* PAL_FREQ_BASE may not be implemented in some platforms,
* call SAL instead.
*/
if (result.v0 == 0) {
result.status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
&result.v0,
&result.v1);
result.v2 = 0;
}
return result;
}
/*
* On the SGI SN2, the ITC isn't stable. Emulation backed by the SN2
* RTC is used instead. This function patches the ratios from SAL
* to match the RTC before providing them to the guest.
*/
static void sn2_patch_itc_freq_ratios(struct ia64_pal_retval *result)
{
struct pal_freq_ratio *ratio;
unsigned long sal_freq, sal_drift, factor;
result->status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
&sal_freq, &sal_drift);
ratio = (struct pal_freq_ratio *)&result->v2;
factor = ((sal_freq * 3) + (sn_rtc_cycles_per_second / 2)) /
sn_rtc_cycles_per_second;
ratio->num = 3;
ratio->den = factor;
}
static struct ia64_pal_retval pal_freq_ratios(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result;
PAL_CALL(result, PAL_FREQ_RATIOS, 0, 0, 0);
if (vcpu->kvm->arch.is_sn2)
sn2_patch_itc_freq_ratios(&result);
return result;
}
static struct ia64_pal_retval pal_logical_to_physica(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result;
INIT_PAL_STATUS_UNIMPLEMENTED(result);
return result;
}
static struct ia64_pal_retval pal_platform_addr(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result;
INIT_PAL_STATUS_SUCCESS(result);
return result;
}
static struct ia64_pal_retval pal_proc_get_features(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result = {0, 0, 0, 0};
long in0, in1, in2, in3;
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
result.status = ia64_pal_proc_get_features(&result.v0, &result.v1,
&result.v2, in2);
return result;
}
static struct ia64_pal_retval pal_register_info(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result = {0, 0, 0, 0};
long in0, in1, in2, in3;
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
result.status = ia64_pal_register_info(in1, &result.v1, &result.v2);
return result;
}
static struct ia64_pal_retval pal_cache_info(struct kvm_vcpu *vcpu)
{
pal_cache_config_info_t ci;
long status;
unsigned long in0, in1, in2, in3, r9, r10;
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
status = ia64_pal_cache_config_info(in1, in2, &ci);
r9 = ci.pcci_info_1.pcci1_data;
r10 = ci.pcci_info_2.pcci2_data;
return ((struct ia64_pal_retval){status, r9, r10, 0});
}
#define GUEST_IMPL_VA_MSB 59
#define GUEST_RID_BITS 18
static struct ia64_pal_retval pal_vm_summary(struct kvm_vcpu *vcpu)
{
pal_vm_info_1_u_t vminfo1;
pal_vm_info_2_u_t vminfo2;
struct ia64_pal_retval result;
PAL_CALL(result, PAL_VM_SUMMARY, 0, 0, 0);
if (!result.status) {
vminfo1.pvi1_val = result.v0;
vminfo1.pal_vm_info_1_s.max_itr_entry = 8;
vminfo1.pal_vm_info_1_s.max_dtr_entry = 8;
result.v0 = vminfo1.pvi1_val;
vminfo2.pal_vm_info_2_s.impl_va_msb = GUEST_IMPL_VA_MSB;
vminfo2.pal_vm_info_2_s.rid_size = GUEST_RID_BITS;
result.v1 = vminfo2.pvi2_val;
}
return result;
}
static struct ia64_pal_retval pal_vm_info(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result;
unsigned long in0, in1, in2, in3;
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
result.status = ia64_pal_vm_info(in1, in2,
(pal_tc_info_u_t *)&result.v1, &result.v2);
return result;
}
static u64 kvm_get_pal_call_index(struct kvm_vcpu *vcpu)
{
u64 index = 0;
struct exit_ctl_data *p;
p = kvm_get_exit_data(vcpu);
if (p->exit_reason == EXIT_REASON_PAL_CALL)
index = p->u.pal_data.gr28;
return index;
}
static void prepare_for_halt(struct kvm_vcpu *vcpu)
{
vcpu->arch.timer_pending = 1;
vcpu->arch.timer_fired = 0;
}
static struct ia64_pal_retval pal_perf_mon_info(struct kvm_vcpu *vcpu)
{
long status;
unsigned long in0, in1, in2, in3, r9;
unsigned long pm_buffer[16];
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
status = ia64_pal_perf_mon_info(pm_buffer,
(pal_perf_mon_info_u_t *) &r9);
if (status != 0) {
printk(KERN_DEBUG"PAL_PERF_MON_INFO fails ret=%ld\n", status);
} else {
if (in1)
memcpy((void *)in1, pm_buffer, sizeof(pm_buffer));
else {
status = PAL_STATUS_EINVAL;
printk(KERN_WARNING"Invalid parameters "
"for PAL call:0x%lx!\n", in0);
}
}
return (struct ia64_pal_retval){status, r9, 0, 0};
}
static struct ia64_pal_retval pal_halt_info(struct kvm_vcpu *vcpu)
{
unsigned long in0, in1, in2, in3;
long status;
unsigned long res = 1000UL | (1000UL << 16) | (10UL << 32)
| (1UL << 61) | (1UL << 60);
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
if (in1) {
memcpy((void *)in1, &res, sizeof(res));
status = 0;
} else{
status = PAL_STATUS_EINVAL;
printk(KERN_WARNING"Invalid parameters "
"for PAL call:0x%lx!\n", in0);
}
return (struct ia64_pal_retval){status, 0, 0, 0};
}
static struct ia64_pal_retval pal_mem_attrib(struct kvm_vcpu *vcpu)
{
unsigned long r9;
long status;
status = ia64_pal_mem_attrib(&r9);
return (struct ia64_pal_retval){status, r9, 0, 0};
}
static void remote_pal_prefetch_visibility(void *v)
{
s64 trans_type = (s64)v;
ia64_pal_prefetch_visibility(trans_type);
}
static struct ia64_pal_retval pal_prefetch_visibility(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result = {0, 0, 0, 0};
unsigned long in0, in1, in2, in3;
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
result.status = ia64_pal_prefetch_visibility(in1);
if (result.status == 0) {
/* Must be performed on all remote processors
in the coherence domain. */
smp_call_function(remote_pal_prefetch_visibility,
(void *)in1, 1);
/* Unnecessary on remote processor for other vcpus!*/
result.status = 1;
}
return result;
}
static void remote_pal_mc_drain(void *v)
{
ia64_pal_mc_drain();
}
static struct ia64_pal_retval pal_get_brand_info(struct kvm_vcpu *vcpu)
{
struct ia64_pal_retval result = {0, 0, 0, 0};
unsigned long in0, in1, in2, in3;
kvm_get_pal_call_data(vcpu, &in0, &in1, &in2, &in3);
if (in1 == 0 && in2) {
char brand_info[128];
result.status = ia64_pal_get_brand_info(brand_info);
if (result.status == PAL_STATUS_SUCCESS)
memcpy((void *)in2, brand_info, 128);
} else {
result.status = PAL_STATUS_REQUIRES_MEMORY;
printk(KERN_WARNING"Invalid parameters for "
"PAL call:0x%lx!\n", in0);
}
return result;
}
int kvm_pal_emul(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
u64 gr28;
struct ia64_pal_retval result;
int ret = 1;
gr28 = kvm_get_pal_call_index(vcpu);
switch (gr28) {
case PAL_CACHE_FLUSH:
result = pal_cache_flush(vcpu);
break;
case PAL_MEM_ATTRIB:
result = pal_mem_attrib(vcpu);
break;
case PAL_CACHE_SUMMARY:
result = pal_cache_summary(vcpu);
break;
case PAL_PERF_MON_INFO:
result = pal_perf_mon_info(vcpu);
break;
case PAL_HALT_INFO:
result = pal_halt_info(vcpu);
break;
case PAL_HALT_LIGHT:
{
INIT_PAL_STATUS_SUCCESS(result);
prepare_for_halt(vcpu);
if (kvm_highest_pending_irq(vcpu) == -1)
ret = kvm_emulate_halt(vcpu);
}
break;
case PAL_PREFETCH_VISIBILITY:
result = pal_prefetch_visibility(vcpu);
break;
case PAL_MC_DRAIN:
result.status = ia64_pal_mc_drain();
/* FIXME: All vcpus likely call PAL_MC_DRAIN.
That causes the congestion. */
smp_call_function(remote_pal_mc_drain, NULL, 1);
break;
case PAL_FREQ_RATIOS:
result = pal_freq_ratios(vcpu);
break;
case PAL_FREQ_BASE:
result = pal_freq_base(vcpu);
break;
case PAL_LOGICAL_TO_PHYSICAL :
result = pal_logical_to_physica(vcpu);
break;
case PAL_VM_SUMMARY :
result = pal_vm_summary(vcpu);
break;
case PAL_VM_INFO :
result = pal_vm_info(vcpu);
break;
case PAL_PLATFORM_ADDR :
result = pal_platform_addr(vcpu);
break;
case PAL_CACHE_INFO:
result = pal_cache_info(vcpu);
break;
case PAL_PTCE_INFO:
INIT_PAL_STATUS_SUCCESS(result);
result.v1 = (1L << 32) | 1L;
break;
case PAL_REGISTER_INFO:
result = pal_register_info(vcpu);
break;
case PAL_VM_PAGE_SIZE:
result.status = ia64_pal_vm_page_size(&result.v0,
&result.v1);
break;
case PAL_RSE_INFO:
result.status = ia64_pal_rse_info(&result.v0,
(pal_hints_u_t *)&result.v1);
break;
case PAL_PROC_GET_FEATURES:
result = pal_proc_get_features(vcpu);
break;
case PAL_DEBUG_INFO:
result.status = ia64_pal_debug_info(&result.v0,
&result.v1);
break;
case PAL_VERSION:
result.status = ia64_pal_version(
(pal_version_u_t *)&result.v0,
(pal_version_u_t *)&result.v1);
break;
case PAL_FIXED_ADDR:
result.status = PAL_STATUS_SUCCESS;
result.v0 = vcpu->vcpu_id;
break;
case PAL_BRAND_INFO:
result = pal_get_brand_info(vcpu);
break;
case PAL_GET_PSTATE:
case PAL_CACHE_SHARED_INFO:
INIT_PAL_STATUS_UNIMPLEMENTED(result);
break;
default:
INIT_PAL_STATUS_UNIMPLEMENTED(result);
printk(KERN_WARNING"kvm: Unsupported pal call,"
" index:0x%lx\n", gr28);
}
set_pal_result(vcpu, result);
return ret;
}
static struct sal_ret_values sal_emulator(struct kvm *kvm,
long index, unsigned long in1,
unsigned long in2, unsigned long in3,
unsigned long in4, unsigned long in5,
unsigned long in6, unsigned long in7)
{
unsigned long r9 = 0;
unsigned long r10 = 0;
long r11 = 0;
long status;
status = 0;
switch (index) {
case SAL_FREQ_BASE:
status = ia64_sal_freq_base(in1, &r9, &r10);
break;
case SAL_PCI_CONFIG_READ:
printk(KERN_WARNING"kvm: Not allowed to call here!"
" SAL_PCI_CONFIG_READ\n");
break;
case SAL_PCI_CONFIG_WRITE:
printk(KERN_WARNING"kvm: Not allowed to call here!"
" SAL_PCI_CONFIG_WRITE\n");
break;
case SAL_SET_VECTORS:
if (in1 == SAL_VECTOR_OS_BOOT_RENDEZ) {
if (in4 != 0 || in5 != 0 || in6 != 0 || in7 != 0) {
status = -2;
} else {
kvm->arch.rdv_sal_data.boot_ip = in2;
kvm->arch.rdv_sal_data.boot_gp = in3;
}
printk("Rendvous called! iip:%lx\n\n", in2);
} else
printk(KERN_WARNING"kvm: CALLED SAL_SET_VECTORS %lu."
"ignored...\n", in1);
break;
case SAL_GET_STATE_INFO:
/* No more info. */
status = -5;
r9 = 0;
break;
case SAL_GET_STATE_INFO_SIZE:
/* Return a dummy size. */
status = 0;
r9 = 128;
break;
case SAL_CLEAR_STATE_INFO:
/* Noop. */
break;
case SAL_MC_RENDEZ:
printk(KERN_WARNING
"kvm: called SAL_MC_RENDEZ. ignored...\n");
break;
case SAL_MC_SET_PARAMS:
printk(KERN_WARNING
"kvm: called SAL_MC_SET_PARAMS.ignored!\n");
break;
case SAL_CACHE_FLUSH:
if (1) {
/*Flush using SAL.
This method is faster but has a side
effect on other vcpu running on
this cpu. */
status = ia64_sal_cache_flush(in1);
} else {
/*Maybe need to implement the method
without side effect!*/
status = 0;
}
break;
case SAL_CACHE_INIT:
printk(KERN_WARNING
"kvm: called SAL_CACHE_INIT. ignored...\n");
break;
case SAL_UPDATE_PAL:
printk(KERN_WARNING
"kvm: CALLED SAL_UPDATE_PAL. ignored...\n");
break;
default:
printk(KERN_WARNING"kvm: called SAL_CALL with unknown index."
" index:%ld\n", index);
status = -1;
break;
}
return ((struct sal_ret_values) {status, r9, r10, r11});
}
static void kvm_get_sal_call_data(struct kvm_vcpu *vcpu, u64 *in0, u64 *in1,
u64 *in2, u64 *in3, u64 *in4, u64 *in5, u64 *in6, u64 *in7){
struct exit_ctl_data *p;
p = kvm_get_exit_data(vcpu);
if (p->exit_reason == EXIT_REASON_SAL_CALL) {
*in0 = p->u.sal_data.in0;
*in1 = p->u.sal_data.in1;
*in2 = p->u.sal_data.in2;
*in3 = p->u.sal_data.in3;
*in4 = p->u.sal_data.in4;
*in5 = p->u.sal_data.in5;
*in6 = p->u.sal_data.in6;
*in7 = p->u.sal_data.in7;
return ;
}
*in0 = 0;
}
void kvm_sal_emul(struct kvm_vcpu *vcpu)
{
struct sal_ret_values result;
u64 index, in1, in2, in3, in4, in5, in6, in7;
kvm_get_sal_call_data(vcpu, &index, &in1, &in2,
&in3, &in4, &in5, &in6, &in7);
result = sal_emulator(vcpu->kvm, index, in1, in2, in3,
in4, in5, in6, in7);
set_sal_result(vcpu, result);
}