kernel-fxtec-pro1x/drivers/base/node.c

653 lines
17 KiB
C
Raw Normal View History

/*
* drivers/base/node.c - basic Node class support
*/
#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mm.h>
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
#include <linux/memory.h>
#include <linux/vmstat.h>
#include <linux/node.h>
#include <linux/hugetlb.h>
#include <linux/compaction.h>
#include <linux/cpumask.h>
#include <linux/topology.h>
#include <linux/nodemask.h>
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 03:53:41 -06:00
#include <linux/cpu.h>
#include <linux/device.h>
#include <linux/swap.h>
#include <linux/slab.h>
static struct sysdev_class_attribute *node_state_attrs[];
static struct sysdev_class node_class = {
.name = "node",
.attrs = node_state_attrs,
};
static ssize_t node_read_cpumap(struct sys_device *dev, int type, char *buf)
{
struct node *node_dev = to_node(dev);
const struct cpumask *mask = cpumask_of_node(node_dev->sysdev.id);
int len;
/* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
len = type?
cpulist_scnprintf(buf, PAGE_SIZE-2, mask) :
cpumask_scnprintf(buf, PAGE_SIZE-2, mask);
buf[len++] = '\n';
buf[len] = '\0';
return len;
}
static inline ssize_t node_read_cpumask(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
return node_read_cpumap(dev, 0, buf);
}
static inline ssize_t node_read_cpulist(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
return node_read_cpumap(dev, 1, buf);
}
static SYSDEV_ATTR(cpumap, S_IRUGO, node_read_cpumask, NULL);
static SYSDEV_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
#define K(x) ((x) << (PAGE_SHIFT - 10))
static ssize_t node_read_meminfo(struct sys_device * dev,
struct sysdev_attribute *attr, char * buf)
{
int n;
int nid = dev->id;
struct sysinfo i;
si_meminfo_node(&i, nid);
n = sprintf(buf,
vmscan: split LRU lists into anon & file sets Split the LRU lists in two, one set for pages that are backed by real file systems ("file") and one for pages that are backed by memory and swap ("anon"). The latter includes tmpfs. The advantage of doing this is that the VM will not have to scan over lots of anonymous pages (which we generally do not want to swap out), just to find the page cache pages that it should evict. This patch has the infrastructure and a basic policy to balance how much we scan the anon lists and how much we scan the file lists. The big policy changes are in separate patches. [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset] [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru] [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page] [hugh@veritas.com: memcg swapbacked pages active] [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED] [akpm@linux-foundation.org: fix /proc/vmstat units] [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration] [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo] [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:26:32 -06:00
"Node %d MemTotal: %8lu kB\n"
"Node %d MemFree: %8lu kB\n"
"Node %d MemUsed: %8lu kB\n"
"Node %d Active: %8lu kB\n"
"Node %d Inactive: %8lu kB\n"
"Node %d Active(anon): %8lu kB\n"
"Node %d Inactive(anon): %8lu kB\n"
"Node %d Active(file): %8lu kB\n"
"Node %d Inactive(file): %8lu kB\n"
"Node %d Unevictable: %8lu kB\n"
"Node %d Mlocked: %8lu kB\n",
nid, K(i.totalram),
nid, K(i.freeram),
nid, K(i.totalram - i.freeram),
nid, K(node_page_state(nid, NR_ACTIVE_ANON) +
node_page_state(nid, NR_ACTIVE_FILE)),
nid, K(node_page_state(nid, NR_INACTIVE_ANON) +
node_page_state(nid, NR_INACTIVE_FILE)),
nid, K(node_page_state(nid, NR_ACTIVE_ANON)),
nid, K(node_page_state(nid, NR_INACTIVE_ANON)),
nid, K(node_page_state(nid, NR_ACTIVE_FILE)),
nid, K(node_page_state(nid, NR_INACTIVE_FILE)),
nid, K(node_page_state(nid, NR_UNEVICTABLE)),
nid, K(node_page_state(nid, NR_MLOCK)));
#ifdef CONFIG_HIGHMEM
n += sprintf(buf + n,
vmscan: split LRU lists into anon & file sets Split the LRU lists in two, one set for pages that are backed by real file systems ("file") and one for pages that are backed by memory and swap ("anon"). The latter includes tmpfs. The advantage of doing this is that the VM will not have to scan over lots of anonymous pages (which we generally do not want to swap out), just to find the page cache pages that it should evict. This patch has the infrastructure and a basic policy to balance how much we scan the anon lists and how much we scan the file lists. The big policy changes are in separate patches. [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset] [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru] [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page] [hugh@veritas.com: memcg swapbacked pages active] [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED] [akpm@linux-foundation.org: fix /proc/vmstat units] [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration] [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo] [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:26:32 -06:00
"Node %d HighTotal: %8lu kB\n"
"Node %d HighFree: %8lu kB\n"
"Node %d LowTotal: %8lu kB\n"
"Node %d LowFree: %8lu kB\n",
nid, K(i.totalhigh),
nid, K(i.freehigh),
nid, K(i.totalram - i.totalhigh),
nid, K(i.freeram - i.freehigh));
#endif
n += sprintf(buf + n,
vmscan: split LRU lists into anon & file sets Split the LRU lists in two, one set for pages that are backed by real file systems ("file") and one for pages that are backed by memory and swap ("anon"). The latter includes tmpfs. The advantage of doing this is that the VM will not have to scan over lots of anonymous pages (which we generally do not want to swap out), just to find the page cache pages that it should evict. This patch has the infrastructure and a basic policy to balance how much we scan the anon lists and how much we scan the file lists. The big policy changes are in separate patches. [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset] [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru] [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page] [hugh@veritas.com: memcg swapbacked pages active] [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED] [akpm@linux-foundation.org: fix /proc/vmstat units] [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration] [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo] [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:26:32 -06:00
"Node %d Dirty: %8lu kB\n"
"Node %d Writeback: %8lu kB\n"
"Node %d FilePages: %8lu kB\n"
"Node %d Mapped: %8lu kB\n"
"Node %d AnonPages: %8lu kB\n"
"Node %d Shmem: %8lu kB\n"
"Node %d KernelStack: %8lu kB\n"
vmscan: split LRU lists into anon & file sets Split the LRU lists in two, one set for pages that are backed by real file systems ("file") and one for pages that are backed by memory and swap ("anon"). The latter includes tmpfs. The advantage of doing this is that the VM will not have to scan over lots of anonymous pages (which we generally do not want to swap out), just to find the page cache pages that it should evict. This patch has the infrastructure and a basic policy to balance how much we scan the anon lists and how much we scan the file lists. The big policy changes are in separate patches. [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset] [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru] [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page] [hugh@veritas.com: memcg swapbacked pages active] [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED] [akpm@linux-foundation.org: fix /proc/vmstat units] [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration] [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo] [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 21:26:32 -06:00
"Node %d PageTables: %8lu kB\n"
"Node %d NFS_Unstable: %8lu kB\n"
"Node %d Bounce: %8lu kB\n"
"Node %d WritebackTmp: %8lu kB\n"
"Node %d Slab: %8lu kB\n"
"Node %d SReclaimable: %8lu kB\n"
"Node %d SUnreclaim: %8lu kB\n"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
"Node %d AnonHugePages: %8lu kB\n"
#endif
,
nid, K(node_page_state(nid, NR_FILE_DIRTY)),
nid, K(node_page_state(nid, NR_WRITEBACK)),
nid, K(node_page_state(nid, NR_FILE_PAGES)),
nid, K(node_page_state(nid, NR_FILE_MAPPED)),
nid, K(node_page_state(nid, NR_ANON_PAGES)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ node_page_state(nid, NR_ANON_TRANSPARENT_HUGEPAGES) *
HPAGE_PMD_NR
#endif
),
nid, K(node_page_state(nid, NR_SHMEM)),
nid, node_page_state(nid, NR_KERNEL_STACK) *
THREAD_SIZE / 1024,
nid, K(node_page_state(nid, NR_PAGETABLE)),
nid, K(node_page_state(nid, NR_UNSTABLE_NFS)),
nid, K(node_page_state(nid, NR_BOUNCE)),
nid, K(node_page_state(nid, NR_WRITEBACK_TEMP)),
nid, K(node_page_state(nid, NR_SLAB_RECLAIMABLE) +
node_page_state(nid, NR_SLAB_UNRECLAIMABLE)),
nid, K(node_page_state(nid, NR_SLAB_RECLAIMABLE)),
nid, K(node_page_state(nid, NR_SLAB_UNRECLAIMABLE))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
, nid,
K(node_page_state(nid, NR_ANON_TRANSPARENT_HUGEPAGES) *
HPAGE_PMD_NR)
#endif
);
n += hugetlb_report_node_meminfo(nid, buf + n);
return n;
}
#undef K
static SYSDEV_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
static ssize_t node_read_numastat(struct sys_device * dev,
struct sysdev_attribute *attr, char * buf)
{
return sprintf(buf,
"numa_hit %lu\n"
"numa_miss %lu\n"
"numa_foreign %lu\n"
"interleave_hit %lu\n"
"local_node %lu\n"
"other_node %lu\n",
node_page_state(dev->id, NUMA_HIT),
node_page_state(dev->id, NUMA_MISS),
node_page_state(dev->id, NUMA_FOREIGN),
node_page_state(dev->id, NUMA_INTERLEAVE_HIT),
node_page_state(dev->id, NUMA_LOCAL),
node_page_state(dev->id, NUMA_OTHER));
}
static SYSDEV_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
static ssize_t node_read_vmstat(struct sys_device *dev,
struct sysdev_attribute *attr, char *buf)
{
int nid = dev->id;
int i;
int n = 0;
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
n += sprintf(buf+n, "%s %lu\n", vmstat_text[i],
node_page_state(nid, i));
return n;
}
static SYSDEV_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
static ssize_t node_read_distance(struct sys_device * dev,
struct sysdev_attribute *attr, char * buf)
{
int nid = dev->id;
int len = 0;
int i;
/*
* buf is currently PAGE_SIZE in length and each node needs 4 chars
* at the most (distance + space or newline).
*/
BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
for_each_online_node(i)
len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
len += sprintf(buf + len, "\n");
return len;
}
static SYSDEV_ATTR(distance, S_IRUGO, node_read_distance, NULL);
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 18:58:25 -07:00
#ifdef CONFIG_HUGETLBFS
/*
* hugetlbfs per node attributes registration interface:
* When/if hugetlb[fs] subsystem initializes [sometime after this module],
* it will register its per node attributes for all online nodes with
* memory. It will also call register_hugetlbfs_with_node(), below, to
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 18:58:25 -07:00
* register its attribute registration functions with this node driver.
* Once these hooks have been initialized, the node driver will call into
* the hugetlb module to [un]register attributes for hot-plugged nodes.
*/
static node_registration_func_t __hugetlb_register_node;
static node_registration_func_t __hugetlb_unregister_node;
static inline bool hugetlb_register_node(struct node *node)
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 18:58:25 -07:00
{
if (__hugetlb_register_node &&
node_state(node->sysdev.id, N_HIGH_MEMORY)) {
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 18:58:25 -07:00
__hugetlb_register_node(node);
return true;
}
return false;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 18:58:25 -07:00
}
static inline void hugetlb_unregister_node(struct node *node)
{
if (__hugetlb_unregister_node)
__hugetlb_unregister_node(node);
}
void register_hugetlbfs_with_node(node_registration_func_t doregister,
node_registration_func_t unregister)
{
__hugetlb_register_node = doregister;
__hugetlb_unregister_node = unregister;
}
#else
static inline void hugetlb_register_node(struct node *node) {}
static inline void hugetlb_unregister_node(struct node *node) {}
#endif
/*
* register_node - Setup a sysfs device for a node.
* @num - Node number to use when creating the device.
*
* Initialize and register the node device.
*/
int register_node(struct node *node, int num, struct node *parent)
{
int error;
node->sysdev.id = num;
node->sysdev.cls = &node_class;
error = sysdev_register(&node->sysdev);
if (!error){
sysdev_create_file(&node->sysdev, &attr_cpumap);
sysdev_create_file(&node->sysdev, &attr_cpulist);
sysdev_create_file(&node->sysdev, &attr_meminfo);
sysdev_create_file(&node->sysdev, &attr_numastat);
sysdev_create_file(&node->sysdev, &attr_distance);
sysdev_create_file(&node->sysdev, &attr_vmstat);
scan_unevictable_register_node(node);
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 18:58:25 -07:00
hugetlb_register_node(node);
compaction_register_node(node);
}
return error;
}
/**
* unregister_node - unregister a node device
* @node: node going away
*
* Unregisters a node device @node. All the devices on the node must be
* unregistered before calling this function.
*/
void unregister_node(struct node *node)
{
sysdev_remove_file(&node->sysdev, &attr_cpumap);
sysdev_remove_file(&node->sysdev, &attr_cpulist);
sysdev_remove_file(&node->sysdev, &attr_meminfo);
sysdev_remove_file(&node->sysdev, &attr_numastat);
sysdev_remove_file(&node->sysdev, &attr_distance);
sysdev_remove_file(&node->sysdev, &attr_vmstat);
scan_unevictable_unregister_node(node);
hugetlb_unregister_node(node); /* no-op, if memoryless node */
sysdev_unregister(&node->sysdev);
}
struct node node_devices[MAX_NUMNODES];
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 03:53:41 -06:00
/*
* register cpu under node
*/
int register_cpu_under_node(unsigned int cpu, unsigned int nid)
{
int ret;
struct sys_device *obj;
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 03:53:41 -06:00
if (!node_online(nid))
return 0;
obj = get_cpu_sysdev(cpu);
if (!obj)
return 0;
ret = sysfs_create_link(&node_devices[nid].sysdev.kobj,
&obj->kobj,
kobject_name(&obj->kobj));
if (ret)
return ret;
return sysfs_create_link(&obj->kobj,
&node_devices[nid].sysdev.kobj,
kobject_name(&node_devices[nid].sysdev.kobj));
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 03:53:41 -06:00
}
int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
{
struct sys_device *obj;
if (!node_online(nid))
return 0;
obj = get_cpu_sysdev(cpu);
if (!obj)
return 0;
sysfs_remove_link(&node_devices[nid].sysdev.kobj,
kobject_name(&obj->kobj));
sysfs_remove_link(&obj->kobj,
kobject_name(&node_devices[nid].sysdev.kobj));
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 03:53:41 -06:00
return 0;
}
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
#define page_initialized(page) (page->lru.next)
static int get_nid_for_pfn(unsigned long pfn)
{
struct page *page;
if (!pfn_valid_within(pfn))
return -1;
page = pfn_to_page(pfn);
if (!page_initialized(page))
return -1;
return pfn_to_nid(pfn);
}
/* register memory section under specified node if it spans that node */
int register_mem_sect_under_node(struct memory_block *mem_blk, int nid)
{
int ret;
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
unsigned long pfn, sect_start_pfn, sect_end_pfn;
if (!mem_blk)
return -EFAULT;
if (!node_online(nid))
return 0;
sect_start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
sect_end_pfn = section_nr_to_pfn(mem_blk->end_section_nr);
sect_end_pfn += PAGES_PER_SECTION - 1;
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
int page_nid;
page_nid = get_nid_for_pfn(pfn);
if (page_nid < 0)
continue;
if (page_nid != nid)
continue;
ret = sysfs_create_link_nowarn(&node_devices[nid].sysdev.kobj,
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
&mem_blk->sysdev.kobj,
kobject_name(&mem_blk->sysdev.kobj));
if (ret)
return ret;
return sysfs_create_link_nowarn(&mem_blk->sysdev.kobj,
&node_devices[nid].sysdev.kobj,
kobject_name(&node_devices[nid].sysdev.kobj));
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
}
/* mem section does not span the specified node */
return 0;
}
/* unregister memory section under all nodes that it spans */
int unregister_mem_sect_under_nodes(struct memory_block *mem_blk,
unsigned long phys_index)
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
{
NODEMASK_ALLOC(nodemask_t, unlinked_nodes, GFP_KERNEL);
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
unsigned long pfn, sect_start_pfn, sect_end_pfn;
if (!mem_blk) {
NODEMASK_FREE(unlinked_nodes);
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
return -EFAULT;
}
if (!unlinked_nodes)
return -ENOMEM;
nodes_clear(*unlinked_nodes);
sect_start_pfn = section_nr_to_pfn(phys_index);
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
sect_end_pfn = sect_start_pfn + PAGES_PER_SECTION - 1;
for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
mm: get_nid_for_pfn() returns int get_nid_for_pfn() returns int Presumably the (nid < 0) case has never happened. We do know that it is happening on one system while creating a symlink for a memory section so it should also happen on the same system if unregister_mem_sect_under_nodes() were called to remove the same symlink. The test was actually added in response to a problem with an earlier version reported by Yasunori Goto where one or more of the leading pages of a memory section on the 2nd node of one of his systems was uninitialized because I believe they coincided with a memory hole. That earlier version did not ignore uninitialized pages and determined the nid by considering only the 1st page of each memory section. This caused the symlink to the 1st memory section on the 2nd node to be incorrectly created in /sys/devices/system/node/node0 instead of /sys/devices/system/node/node1. The problem was fixed by adding the test to skip over uninitialized pages. I suspect we have not seen any reports of the non-removal of a symlink due to the incorrect declaration of the nid variable in unregister_mem_sect_under_nodes() because - systems where a memory section could have an uninitialized range of leading pages are probably rare. - memory remove is probably not done very frequently on the systems that are capable of demonstrating the problem. - lingering symlink(s) that should have been removed may have simply gone unnoticed. [garyhade@us.ibm.com: wrote changelog] Signed-off-by: Roel Kluin <roel.kluin@gmail.com> Cc: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-03-10 13:55:45 -06:00
int nid;
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
nid = get_nid_for_pfn(pfn);
if (nid < 0)
continue;
if (!node_online(nid))
continue;
if (node_test_and_set(nid, *unlinked_nodes))
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
continue;
sysfs_remove_link(&node_devices[nid].sysdev.kobj,
kobject_name(&mem_blk->sysdev.kobj));
sysfs_remove_link(&mem_blk->sysdev.kobj,
kobject_name(&node_devices[nid].sysdev.kobj));
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
}
NODEMASK_FREE(unlinked_nodes);
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
return 0;
}
static int link_mem_sections(int nid)
{
unsigned long start_pfn = NODE_DATA(nid)->node_start_pfn;
unsigned long end_pfn = start_pfn + NODE_DATA(nid)->node_spanned_pages;
unsigned long pfn;
struct memory_block *mem_blk = NULL;
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
int err = 0;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *mem_sect;
int ret;
if (!present_section_nr(section_nr))
continue;
mem_sect = __nr_to_section(section_nr);
mem_blk = find_memory_block_hinted(mem_sect, mem_blk);
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
ret = register_mem_sect_under_node(mem_blk, nid);
if (!err)
err = ret;
/* discard ref obtained in find_memory_block() */
}
if (mem_blk)
kobject_put(&mem_blk->sysdev.kobj);
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
return err;
}
#ifdef CONFIG_HUGETLBFS
/*
* Handle per node hstate attribute [un]registration on transistions
* to/from memoryless state.
*/
static void node_hugetlb_work(struct work_struct *work)
{
struct node *node = container_of(work, struct node, node_work);
/*
* We only get here when a node transitions to/from memoryless state.
* We can detect which transition occurred by examining whether the
* node has memory now. hugetlb_register_node() already check this
* so we try to register the attributes. If that fails, then the
* node has transitioned to memoryless, try to unregister the
* attributes.
*/
if (!hugetlb_register_node(node))
hugetlb_unregister_node(node);
}
static void init_node_hugetlb_work(int nid)
{
INIT_WORK(&node_devices[nid].node_work, node_hugetlb_work);
}
static int node_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
struct memory_notify *mnb = arg;
int nid = mnb->status_change_nid;
switch (action) {
case MEM_ONLINE:
case MEM_OFFLINE:
/*
* offload per node hstate [un]registration to a work thread
* when transitioning to/from memoryless state.
*/
if (nid != NUMA_NO_NODE)
schedule_work(&node_devices[nid].node_work);
break;
case MEM_GOING_ONLINE:
case MEM_GOING_OFFLINE:
case MEM_CANCEL_ONLINE:
case MEM_CANCEL_OFFLINE:
default:
break;
}
return NOTIFY_OK;
}
#endif /* CONFIG_HUGETLBFS */
#else /* !CONFIG_MEMORY_HOTPLUG_SPARSE */
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
static int link_mem_sections(int nid) { return 0; }
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
#if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
!defined(CONFIG_HUGETLBFS)
static inline int node_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
return NOTIFY_OK;
}
static void init_node_hugetlb_work(int nid) { }
#endif
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
int register_one_node(int nid)
{
int error = 0;
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 03:53:41 -06:00
int cpu;
if (node_online(nid)) {
int p_node = parent_node(nid);
struct node *parent = NULL;
if (p_node != nid)
parent = &node_devices[p_node];
error = register_node(&node_devices[nid], nid, parent);
[PATCH] node hotplug: register cpu: remove node struct With Goto-san's patch, we can add new pgdat/node at runtime. I'm now considering node-hot-add with cpu + memory on ACPI. I found acpi container, which describes node, could evaluate cpu before memory. This means cpu-hot-add occurs before memory hot add. In most part, cpu-hot-add doesn't depend on node hot add. But register_cpu(), which creates symbolic link from node to cpu, requires that node should be onlined before register_cpu(). When a node is onlined, its pgdat should be there. This patch-set holds off creating symbolic link from node to cpu until node is onlined. This removes node arguments from register_cpu(). Now, register_cpu() requires 'struct node' as its argument. But the array of struct node is now unified in driver/base/node.c now (By Goto's node hotplug patch). We can get struct node in generic way. So, this argument is not necessary now. This patch also guarantees add cpu under node only when node is onlined. It is necessary for node-hot-add vs. cpu-hot-add patch following this. Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard to its 'struct node *root' argument. This patch removes it. Also modify callers of register_cpu()/unregister_cpu, whose args are changed by register-cpu-remove-node-struct patch. [Brice.Goglin@ens-lyon.org: fix it] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 03:53:41 -06:00
/* link cpu under this node */
for_each_present_cpu(cpu) {
if (cpu_to_node(cpu) == nid)
register_cpu_under_node(cpu, nid);
}
mm: show node to memory section relationship with symlinks in sysfs Show node to memory section relationship with symlinks in sysfs Add /sys/devices/system/node/nodeX/memoryY symlinks for all the memory sections located on nodeX. For example: /sys/devices/system/node/node1/memory135 -> ../../memory/memory135 indicates that memory section 135 resides on node1. Also revises documentation to cover this change as well as updating Documentation/ABI/testing/sysfs-devices-memory to include descriptions of memory hotremove files 'phys_device', 'phys_index', and 'state' that were previously not described there. In addition to it always being a good policy to provide users with the maximum possible amount of physical location information for resources that can be hot-added and/or hot-removed, the following are some (but likely not all) of the user benefits provided by this change. Immediate: - Provides information needed to determine the specific node on which a defective DIMM is located. This will reduce system downtime when the node or defective DIMM is swapped out. - Prevents unintended onlining of a memory section that was previously offlined due to a defective DIMM. This could happen during node hot-add when the user or node hot-add assist script onlines _all_ offlined sections due to user or script inability to identify the specific memory sections located on the hot-added node. The consequences of reintroducing the defective memory could be ugly. - Provides information needed to vary the amount and distribution of memory on specific nodes for testing or debugging purposes. Future: - Will provide information needed to identify the memory sections that need to be offlined prior to physical removal of a specific node. Symlink creation during boot was tested on 2-node x86_64, 2-node ppc64, and 2-node ia64 systems. Symlink creation during physical memory hot-add tested on a 2-node x86_64 system. Signed-off-by: Gary Hade <garyhade@us.ibm.com> Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:39:14 -07:00
/* link memory sections under this node */
error = link_mem_sections(nid);
/* initialize work queue for memory hot plug */
init_node_hugetlb_work(nid);
}
return error;
}
void unregister_one_node(int nid)
{
unregister_node(&node_devices[nid]);
}
/*
* node states attributes
*/
static ssize_t print_nodes_state(enum node_states state, char *buf)
{
int n;
n = nodelist_scnprintf(buf, PAGE_SIZE, node_states[state]);
if (n > 0 && PAGE_SIZE > n + 1) {
*(buf + n++) = '\n';
*(buf + n++) = '\0';
}
return n;
}
struct node_attr {
struct sysdev_class_attribute attr;
enum node_states state;
};
static ssize_t show_node_state(struct sysdev_class *class,
struct sysdev_class_attribute *attr, char *buf)
{
struct node_attr *na = container_of(attr, struct node_attr, attr);
return print_nodes_state(na->state, buf);
}
#define _NODE_ATTR(name, state) \
{ _SYSDEV_CLASS_ATTR(name, 0444, show_node_state, NULL), state }
static struct node_attr node_state_attr[] = {
_NODE_ATTR(possible, N_POSSIBLE),
_NODE_ATTR(online, N_ONLINE),
_NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
_NODE_ATTR(has_cpu, N_CPU),
#ifdef CONFIG_HIGHMEM
_NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
#endif
};
static struct sysdev_class_attribute *node_state_attrs[] = {
&node_state_attr[0].attr,
&node_state_attr[1].attr,
&node_state_attr[2].attr,
&node_state_attr[3].attr,
#ifdef CONFIG_HIGHMEM
&node_state_attr[4].attr,
#endif
NULL
};
#define NODE_CALLBACK_PRI 2 /* lower than SLAB */
static int __init register_node_type(void)
{
int ret;
BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
ret = sysdev_class_register(&node_class);
if (!ret) {
hotplug_memory_notifier(node_memory_callback,
NODE_CALLBACK_PRI);
}
/*
* Note: we're not going to unregister the node class if we fail
* to register the node state class attribute files.
*/
return ret;
}
postcore_initcall(register_node_type);